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Supplementary Materials: 
Materials and Methods: All methods were performed in accordance with the relevant 

guidelines and regulations. For our experiments, a piece of a human cerebellum was used. The 
sample was excised at the Institute of Forensic Medicine (Ludwig Maximilian Universität 
München, Germany) and is part of the ethics applicant 319/13, which was approved by the ethics 
commission of the Faculty of Medicine of the Technische Universität München. The review 
board waived the need for consent as this sample was excised for forensics. 
The sample was dried with a critical point drying method. In detail, the sample was originally 
embedded in a formalin solution, which was replaced by acetone step by step. Afterwards, the 
sample was inserted into the critical point dryer, sealed and the temperature was reduced to 
approximately 7 °C. The sample was then flushed with CO2 ten times. Following the drying 
process, the remaining gas was removed and the temperature was raised to approximately 32 °C. 

For our experiments, we used a symmetrical Talbot-Lau grating interferometer setup with 
an inter-grating distance of 920 mm as proposed in (1) (see fig. 1 A)). Two gold-based 
attenuation gratings with a period of 10 μm were used as G0 and G2. The nickel-based G1 
phase-grating with a period 5μm was designed to provide a π/2-phase-shift at a photon energy of 
45 kVp. Accordingly, the interferometer was run at the first fractional Talbot distance. X-rays 
were generated with a tungsten-target X-ray WorX 160-SE microfocus X-ray tube, operated at 
60kVp and anode current of 1.66 mA. Images were recorded with a Varian PaxScan 2520 DX 
flat-panel detector with a CsI scintillator screen. An area of 800×800 pixels with an isotropic 
pixel size of 127 μm was used. Aiming at a sufficiently good sampling scheme during the 
measurement process, we used a spherical t-design of strength 13 with effectively 94 sampling 
directions (c.f. (2)). These directions are symmetric and consequently, due to the symmetry in 
our reconstruction problem, we only use unique directions up to mirroring. This yields 47 
primary sensitivity directions. Each of these directions was measured from 45 views that form a 
tomographic set over 360° around the given axis. 

Accounting for the geometrical restrictions of the rotation device, this amounts to 1404 
viewpoints in total. Eight phase-stepping images with an exposure time of 2 s were recorded for 
all viewpoints over a total time period of approximately 11 hours. 

For the dark-field images, the recorded raw data was binned by a factor of 4 prior to any 
processing, yielding an effective pixel resolution of isotropic 0.508 mm. This preprocessing step 
was only added to reduce the memory load during the reconstruction stage and does not impose a 
general limitation of the method. The absorption and the dark-field images are extracted using a 
cosine fitting according to (1, 3). For details of the setup we refer to (1, 3, 4, 5). 



For the AXDT reconstruction we model the scattering using a field of spherical functions. 
Mathematically, this is a function 𝜂 𝑢, 𝑥 :	𝕊(×ℝ+ → 	ℝ where 𝑥 determines the position within 
the sample and 𝑢 defines the scattering direction of interest (𝕊(:= 	 {𝑢 ∈ ℝ+, |𝑢| 	= 	1} denotes 
the surface of a unit sphere in 3D space). Further a weighting based on the detectability is 
introduced,  ℎ 𝑢, 𝑡, 𝑙 :	𝕊(×𝕊(×𝕊( → ℝ. This function maps the scattering direction of interest 𝑢, 
the grating orientation 𝑡 and the X-ray direction 𝑙 to a single weighting factor as proposed by 
Malecki et al. (6). In a recent publication (5) we use real-valued spherical harmonics 
𝑉78 79	:,;7<	8<	7  , which constitute a basis for spherical functions, to describe the forward 

model. The simulation of a single anisotropic dark-field measurement 𝑑 can thus be 
approximated as  

𝑑	 = exp 	−
1
4𝜋 ℎ78 𝑡, 𝑙 𝜂78 𝑥 𝑑𝑥
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with L denoting the X-ray,  ℎ78 𝑡, 𝑙  denoting the spherical harmonics coefficients of ℎ 𝑢, 𝑡, 𝑙  
and 𝜂78(𝑥) denoting those of 𝜂(𝑢, 𝑥). This forward model enables the tomographic 
reconstruction of the scattering profile in each location of the specimen with respect to spherical 
harmonics. 

The tomographic reconstruction of both the absorption as well as the AXDT (5) was 
carried out using our C++ framework CampRecon (7). For the X-ray projection model, we used 
a ray-driven multi-GPU projector developed by Fehringer et al. (8) written in OpenCL. In order 
to compute the tomography data set, we used the method of conjugate gradients (9) with 20 
iterations. The machine, on which the tomography was computed, is equipped with dual Intel 
Xeon E5-2687W v2 with 128 GB RAM and dual Nvidia GeForce GTX 980Ti GPU accelerators. 
The AXDT reconstruction was performed according to (5), which reconstructs the scattering 
profile in each position of the specimen using spherical harmonics. The setup weighting function 
has been set to ℎ: 𝕊(×𝕊(×𝕊( → ℝ:	 𝑢, 𝑡, 𝑙 ↦ 	 𝑙×𝑢 𝑢, 𝑡 ( according to Malecki et al. (6). 
This leads to a maximum degree of the spherical harmonics of 𝐾 = 4 and degrees 𝑘 = 0,2,4, as 
the scattering profile is assumed to be symmetric, effectively leading to 15 coefficient volumes 
𝜂78. 

The tomographic reconstruction of the (unbinned) linear attenuation coefficients took 85 
min, while the AXDT tomography took 18 min. Please note that the reduced time in case of 
AXDT is due to the reduced resolution. In general, the complexity of AXDT is 15 times higher 
than the one of the standard computed tomography. 

In order to compute the Funk-Radon transform for a reconstructed scattering field 𝜂(𝑢, 𝑥) 
at location 𝑥, i.e.  

	𝜂(𝑢, 𝑥) ∶= 𝜂(𝑢′, 𝑥)	𝑑𝑠(𝑢′)
Q(R)

 

with 𝐶 𝑢 := 𝑢T ∈ 𝕊(	, 	𝑢T, 𝑢	 = 	0   denoting the great circle orthogonal to the direction 𝑢, 
we use the direct and highly efficient formula based on spherical harmonics. Meaning that the 
spherical harmonics coefficients 𝜂78(𝑥) of 𝜂(𝑢, 𝑥) can be directly computed from the spherical 
harmonics coefficients 𝜂78 𝑥  of the reconstruction 𝜂 𝑢, 𝑥  as (10):  

𝜂78 𝑥 = 	𝑃7 0 𝜂78 𝑥  



with 𝑃7 denoting the Legendre polynomials:  

𝑃(7VW 0 = 	0,									𝑃(7 	= 	 −1 7 1 ⋅ 	3 ⋅ 	5⋯ 	2𝑘 − 1
2 ⋅ 	4 ⋅ 	6⋯ 	2𝑘  

After this transform we consider peaks in 𝜂(𝑢, 𝑥) to correspond to the fiber directions. For 
maxima detection, we used the method recently proposed in (11) with 1500 directions well 
distributed on the sphere computed by Voronoi tesselation (12, 13). The neighborhood is 
computed via the spherical Delauney triangulation (14). 

The visualization of the fiber tracts in fig. 3 D) was created with the ImFusion Suite (15). 
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