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1. General information 
 
All commercial chemicals were used as received. Solvents were dried according to standard procedures 
(dichloromethane was dried over 4 Å molecular sieves). Cage 1 and guests 3-5 were prepared following the 
literature procedures. NMR spectra were recorded on a Bruker Avance III 400 MHz or on Bruker Avance III HD 
500 MHz spectrometer. Chemical shifts (δ) are given in ppm relative to residual protio solvent resonances (2.51 
ppm for (CD3)2SO and 4.79 ppm for D2O). 2D 1H-DOSY NMR measurements were performed on a Bruker 
Avance III 400 MHz spectrometer with temperature and gradient calibration prior to the measurements. The 
diffusion coefficient of the solvent was used as a calibration standard. A constant temperature of 298 K was 
maintained during the measurements unless indicated otherwise. UV/Vis absorption spectra were recorded with a 
Shimadzu UV-2700 or a UV-3600 spectrophotometer. For photoirradiation experiments, we used a Prizmatix 
Mic-LED 365 nm light-emitting diode (LED) or a 4 W hand-held UV lamp (UVP, LLC; model number UVGL-
25) as a UV light source, a 100-W UV lamp (UVP, LLC; model number B-100AP; light intensity ~10 mW·cm–2) 
as a high-intensity UV light source, a Prizmatix Mic-LED 420 nm LED as a blue light sources (Mic-LEDs had a 
collimated LED power of 400 mW), a Prizmatix 520 nm Ultra High Power (UHP) Mic-LED LED (collimated 
LED power of 900 mW) as a green light source, and a Prizmatix UHP White LED equipped with a bandpass filter 
of 580±25 nm as a yellow light source. For studying the photoisomerization reactions in-situ using NMR 
spectroscopy, the LEDs were equipped with a high numerical aperture polymer optical fiber (POF) (diameter 1 
mm, length 5 m), which was inserted into the NMR spectrometer. The measurement was performed under a 
nitrogen flow (100 mL·min–1) at a heating rate of 10 °C·min–1. Elemental analysis was carried out on a FlashEA 
1112 CHN analyzer (Thermo Fischer Scientific). Infrared (IR) spectra were recorded on a Thermo Scientific 
Nicolet 380 FT-IR spectrometer. The spectra were recorded in KBr pellets.  
 

2. Synthesis of cage 1 
 
Cage 1 was synthesized according to a modified literature procedure (1). A solution of cis-[(tmen)Pd(NO3)2] (200 
mg, 0.577 mmol) in water (25 mL) was added slowly to 1,3,5-tris(1-imidazolyl)benzene (106 mg, 0.384 mmol) 
and the resulting reaction mixture was stirred for 24 h at room temperature. Then, the mixture was centrifuged to 
remove any insoluble materials. The supernatant was collected and it was concentrated under reduced pressure. 
Cage 1 in the crystalline form was obtained by slow vapor diffusion of acetone. Isolated yield: 95%. 
 

1H NMR (500 MHz, D2O): δ = 9.10 (s, 8H, 44), 8.82 (s, 4H, 41), 7.74 (s, 4H, 48), 7.71 (s, 4H, 43), 7.69 (s, 8H, 47), 
7.64 (s, 8H, 46), 7.54 (s, 12H, 42+5), 3.11 (s, 24H, 4CH2), 2.77–2.70 (m, 72H, 4CH3). 13C NMR (100 MHz, D2O): δ 
= 138.04 (49), 137.75 (410), 137.49 (44), 137.25 (41), 128.73 (42+5), 120.74 (46), 120.52 (43), 114.79 (48), 113.09 
(47), 62.52 (4CH2), 50.29 (4CH3), 50.24 (4CH3), 50.02 (4CH3). 
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Fig. S1. 1H NMR spectrum of 1 (500 MHz, D2O, 298 K).  
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Fig. S2. 13C NMR spectrum of 1 (125 MHz, D2O, 298 K). 
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3. Synthesis of guest molecules 
 
• Guest 2 (azobenzene) was used as received (Aldrich).  
• Guest 3 (p-allyloxyazobenzene) was synthesized based on a reported literature procedure (2). 
• Guest 4 (tetra-o-methoxyazobenzene) was synthesized based on a reported literature procedure (3). This procedure 

afforded a mixture of ~90% cis-4 and ~10% trans-4. Pure trans-4 was obtained by irradiating a solution of 4 in 
DCM with 420 nm light for 2 h followed by removing the solvent in vacuo and washing the residue with diethyl 
ether (once) and n-hexane (once).  

• Guest 5 (tetra-o-fluoroazobenzene) was synthesized based on a reported literature procedure (4).  
 

4. Encapsulation of guests inside cage 1 
 

General procedure for encapsulation: solid 2 (3.7 mg; 0.02 mmol), 3 (4.8 mg; 0.02 mmol), cis-4 (6.1 mg; 0.02 
mmol), trans-4 (6.1 mg; 0.02 mmol), or 5 (5.1 mg; 0.02 mmol) was added to an aqueous (H2O or D2O) solution 
of cage 1 (15 mg = 0.005 mmol) in 1 mL of water. The mixture was stirred for 24 h at room temperature. 
Encapsulation entailed solubilization of the guest in water. The resulting milky suspension was filtered through 
glass wool and centrifuged several times at 5,000 rpm to yield a clear solution. The encapsulation yield was 
determined by 1H NMR spectroscopy by comparing the intensity of the signals due to the encapsulated guests’ 
aromatic protons to the intensity of 1’s imidazole protons. We verified that stirring times longer than 24 h did not 
increase the encapsulation yield. In addition, we found that the encapsulation yield did not increase by 
ultrasonication or heating to 60 °C. 
 

The high molar absorption coefficients of azobenzene dyes allowed us to follow the encapsulation kinetics by 
UV/Vis absorption spectroscopy. In a typical experiment, an aqueous solution of 1 (c = 1.73 mg/mL) was stirred 
with solid azobenzene 2, 3, cis-4, trans-4, or 5 for a given amount of time, after which an aliquot was removed 
from the mixture and centrifuged for 5 min to remove the excess of azobenzene. Then, 20 µL of the supernatant 
was diluted with 600 µL of distilled water and a UV/Vis absorption spectrum was recorded. Representative 
spectra (for azobenzene 2) are shown Fig. S3. From these spectra, we can conclude that the encapsulation is 
practically complete within 4.5 h. 
 

 
 

Fig. S3. Following the uptake of azobenzene 2 by cage 1 using UV/Vis absorption spectroscopy.  
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Similarly, we collected sets of absorption spectra for azobenzenes 3-5 and plotted the absorption maxima as a 
function of time (Fig. S4). Interestingly, these results show that both isomers of 4 (which form 1:1 complexes 
with 1) are solubilized significantly slower than azobenzenes 2, 3, and 5 (all of which form 2:1 complexes), which 
suggests a cooperative mechanism of encapsulation of 2, 3, and 5.  
 
 

 
 

Fig. S4. Uptake profiles of azobenzenes 2-5 by cage 1 before (left) and after (right) normalization. Absorption 
maxima: 317 nm (2), 352 nm (3), 435 nm (cis-4), 327 nm (trans-4), and 313 nm (5).  
 

5. Photoisomerization of 1-encapsulated azobenzenes 2-5  
 
• To isomerize 2 within (trans-2)2⊂1, we used a 365 nm LED. 10 min of irradiation was needed to reach a photo-

stationary state. For back-isomerization, we used a 420 nm LED; photostationary state was reached after 8 min. 
• To isomerize 3 within (trans-3)2⊂1, we used a 365 nm LED. 4 min of irradiation was needed to reach a photo-

stationary state. For back-isomerization, we used a 420 nm LED. A photostationary state was reached after 4 min. 
• To isomerize 4 within cis-4⊂1, we used a 420 nm LED. 5 min of irradiation was needed to reach a photo-

stationary state. 
• To isomerize 4 within trans-4⊂1, we used a 580 nm LED. 90 min of irradiation was needed to reach a photo-

stationary state. 
• To isomerize 5 within (trans-5)2⊂1, we used a 520 nm LED. 4 min of irradiation was needed to reach a photo-

stationary state. For back-isomerization, we used a 420 nm LED. A photostationary state was reached after 4 min.  
 

In all cases, the concentration of the complex was ~0.05 mM. 
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6. Characterization of inclusion complex (trans-2)2⊂1 
 

Inclusion complex (trans-2)2⊂1 was obtained in ~60% yield (i.e., treating 1 with excess of trans-2 resulted in 
filling of ~60% of the cages). 
 

1H NMR (500 MHz, D2O, 298 K): δ = 9.15 (br, 4H, 11), 9.06 (br, 8H, 14), 7.70 (m, 8H, 12+3), 7.51 (m, 24H, 
15+7+8), 7.28 (br, 6H, 16), 7.03 (t, 3J = 7.3 Hz, 4H, trans-2a), 6.71 (t, 3J = 7.6 Hz, 8H, trans-2b), 6.19 (d, 3J = 7.6 
Hz, 8H, trans-2c), 3.14–3.07 (m, 24H, 1CH2), 2.79–2.61 (m, 72H, 1CH3). 13C NMR (100 MHz, D2O, 298 K): δ = 
150.34 (trans-2d), 137.96 (19), 137.63 (110), 137.44 (14), 137.01 (11), 131.71 (trans-2a), 129.29 (12), 129.06 (trans-
2b), 128.86 (15), 121.08 (trans-2c), 120.75 (13), 120.42 (16), 113.65 (18), 112.40 (17), 62.64 (1CH2), 62.54 (1CH2), 
62.12 (1CH2), 50.30 (1CH3), 50.28 (1CH3), 50.02 (1CH3), 49.80 (1CH3). 1H-DOSY NMR (D2O, 298 K): D = 0.19 (± 
0.01) × 10–5 cm2/s. Elemental analysis: calcd: C, 38.96; H, 4.62; N, 20.74; found: 38.86; H, 4.52; N, 20.74. 
 
 

 
 
Fig. S5. 1H NMR spectrum of (trans-2)2⊂1 (500 MHz, D2O, 298 K). For signal assignment, see p. 7, above. 
 
 



	 8 

 
 
Fig. S6. 13C NMR spectrum of (trans-2)2⊂1 (100 MHz, D2O, 298 K). 
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Fig. S7. 1H DOSY NMR spectrum of (trans-2)2⊂1 (400 MHz, D2O, 298 K). The spectrum reveals that all the 
resonances belong to a single chemical species.  
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Fig. S8. 1H-1H COSY NMR spectrum of (trans-2)2⊂1 (500 MHz, D2O, 298 K). 
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Fig. S9. 1H-1H NOESY NMR spectrum of (trans-2)2⊂1 (500 MHz, D2O, 298 K). 
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Fig. S10. Partial 1H-1H NOESY NMR spectrum of (trans-2)2⊂1 showing nuclear Overhauser (nOe) correlations 
between the host and the guests (500 MHz, D2O, 298 K) (the corresponding full-range spectrum is shown in Fig. 
S9). 
 
 
 



	 13 

 
 
Fig. S11. 1H-13C HSQC NMR spectrum of (trans-2)2⊂1 (400 MHz, D2O, 298 K). 
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Fig. S12. Changes in the 1H NMR spectra of 1 during the gradual addition of 2 (500 MHz, D2O, 298 K). 
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Fig. S13. Changes in the partial 1H NMR spectra of 1 (focusing on 1’s aromatic protons) during the gradual 
addition of 2 (500 MHz, D2O, 298 K) (the corresponding full-range spectra are shown in Fig. S12). 
 
 

 
 
Fig. S14. Changes in the UV/Vis spectra of 1 in the presence of increasing amounts of 2. 
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Fig. S15. ORTEP representation of the X-ray structure of inclusion complex (trans-2)2⊂1 (thermal ellipsoids at a 
50% probability level). Anions and solvent molecules were eliminated for clarity. Pd, brown; C gray; N, blue; H, 
white. 
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Analysis  of  in termolecular  in teract ions within  inclusion complex ( trans -2 ) 2⊂1  
 
Analysis was performed with PLATON on the cif file deposited in CCDC (accession number 1551435).  
 
Host-guest interactions 
 

Cage 1 contains four benzene rings: Ring19 (C10-C15); Ring20 (C34-C39); Ring21 (C52-C57); Ring22 (C70-C75). 
Encapsulated azobenzenes 2 contain four benzene rings: Ring23 (C100-C105); Ring24 (C106-C111); Ring25 
(C200-C205); Ring26 (C206-C211).  
 

The table below lists distances between the center of gravity of a given ring to the plane of the neighboring ring (in 
blue); distances between the center of gravity of the neighboring ring to the plane of the given ring (in red); and 
dihedral angles between the planes of the two rings (in green).  
 

 Ring23 Ring24 Ring25 Ring26 
Ring19 3.23 Å / 3.69 Å 

20.1° 
3.60 Å / 3.13 Å 

18.4° 
  

Ring20   3.76 Å / 2.87 Å 
27.6° 

 

Ring21   3.51 Å / 2.93 Å 
17.0° 

3.25 Å / 3.62 Å 
20.8° 

Ring22  3.65 Å / 3.12 Å 
27.6° 

  

 
In addition, the following edge-to-face interactions are present:  
 

C111 to the imidazole ring (N31N32C79C80C81), distance = 3.65 Å 
C202 to the imidazole ring (N15N16C40C41C42), distance = 3.43 Å 
 
Guest-guest interactions 
 

The distance between the center of gravity of azobenzene’s Ring23 to the plane of the neighboring azobenzene’s 
Ring26 is 3.34 Å. The distance between the center of gravity of azobenzene’s Ring26 to the plane of the neighboring 
azobenzene’s Ring23 is 3.42 Å. The dihedral angle between the planes of the benzene rings is 1.5°. 
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Fig. S16. 1H NMR spectrum obtained by dissolving crystalline (trans-2)2⊂1 in water (500 MHz, D2O, 298 K). 
Integration reveals that 63% of the cages are filled, compared to 61% in the sample obtained by saturating a 
solution of 1 with trans-2 (Fig. S5). Initially, (trans-2)2⊂1 formed a clear solution in water. Within ~10 min, the 
solution became hazy, followed by precipitation of a yellow solid (trans-2). The solid was discarded and the 
resulting yellow solution was analyzed by NMR. 
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Fig. S17. Reversible photoisomerization of 22⊂1. Purple markers correspond to the absorbance of solutions 
exposed to a 365 nm LED until no further changes in the spectra were seen (a photostationary state reached after 
10 min). Blue markers correspond to the absorbance of solutions exposed to a 420 nm LED until no further 
changes in the spectra were seen (a photostationary state achieved after 8 min). 
 

 
 
Fig. S18. A series of partial 1H NMR spectra (400 MHz, D2O, 298 K) of 22⊂1 at a concentration of ~15 mg/mL 
following exposure to UV light (λ = 365 nm) inside the NMR spectrometer (using an optical fiber) for different 
periods of time (indicated in purple font) for up to 150 min and after a subsequent exposure to blue light (blue font) 
for up to 50 min. The top spectrum, marked with an asterisk (*), was recorded following 56 min of exposure to 
blue light inside the spectrometer, followed by 30 min of direct exposure to blue light outside of the spectrometer.  
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Fig. S19. A series of partial 1H NMR spectra (replotted from Fig. S18) of 22⊂1 following exposure to UV light (λ 
= 365 nm) inside the NMR spectrometer (using an optical fiber) for different periods (indicated in purple font) for 
up to 150 min and after a subsequent exposure to blue light (blue font) for up to 50 min. The top spectrum, 
marked with an asterisk (*), was recorded following 56 min of exposure to blue light inside the spectrometer, 
followed by 30 min of direct exposure to blue light outside of the spectrometer. 
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Fig. S20. 1H-1H NOESY NMR spectrum of 22⊂1 subjected to partial isomerization and consisting of a ~1:1 
mixture of trans-2 and cis-2 (500 MHz, D2O, 298 K).  
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Fig. S21. Partial 1H-1H NOESY NMR spectrum of 22⊂1 subjected to partial isomerization and consisting of a 
~1:1 mixture of trans-2 and cis-2 (500 MHz, D2O, 298 K) (the corresponding full-range spectrum is shown in 
Fig. S20). The three signals in the partial 1H NMR spectrum shown on top can be attributed to the protons of 
trans-2. The three signals in the partial 1H NMR spectrum shown on the left can be attributed to the protons of 
cis-2. nOe correlations between trans-2’s protons and cis-2’s protons reveal through-space interactions between 
the two isomers of 2, confirming that they can coexist within the same cage. Note the strong correlation between 
trans-2’s ortho protons and cis-2’s ortho and meta protons. There is also a weak correlation between trans-2’s 
meta protons and cis-2’s ortho and meta protons. The para protons of neither trans-2 nor cis-2 show any 
correlations with other protons of 2. 
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Fig. S22. Partial 1H-13C HSQC NMR spectrum of 22⊂1 following exposure to UV light (λ = 365 nm) (500 MHz, 
D2O, 298 K). 
 

7. Characterization of inclusion complex (trans-3)2⊂1 
 

Inclusion complex (trans-3)2⊂1 was obtained in ~35% yield (i.e., treating 1 with excess of trans-3 resulted in 
filling of ~35% of the cages). 
 
1H NMR (500 MHz, D2O, 298 K): δ = 9.10 (s, 8H, 14), ~9.00 (br, 4H, 11), 7.68 (br, 20H, 13+6+7+8), 7.54 (s, 16H, 
12+5), 7.51 (br, 1H, 3a), 7.29 (br, 2H, 3b), 6.24 (br, 2H, 3c), 6.19 (br, 2H, 3b′), 6.11 (br, 1H, 3f), 5.87 (br, 2H, 3c′), 5.33 
(m, 2H, 3g+h), 4.50 (br, 2H, 3e), 3.12–3.08 (m, 24H, 1CH2), 2.78–2.64 (m, 72H, 1CH3). 13C NMR (125 MHz, D2O, 
298 K): δ = 160.34 (3a′), 150.63 (3d), 144.38 (3d′), 137.95 (19), 137.60 (110), 137.45 (14), 137.05 (11), 132.61 (3f), 
131.61 (3a) 130.00 (3b), 128.81 (12+5), 122.78 (3b′), 120.96 (3c), 120.70 (13), 120.45 (16), 117.81 (3g/h), 114.79 (18), 
113.77 (3c′), 112.62 (17), 68.65 (3e), 62.48 (1CH2), 50.23 (1CH3), 49.98 (1CH3). 1H-DOSY NMR (D2O, 298 K): D = 
0.19 (± 0.01) × 10-5 cm2/s. Elemental analysis: calcd: C, 38.07; H, 4.62; N, 20.66; found: 38.06; H, 4.76; N, 20.50. 
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Fig. S23. 1H NMR spectrum of (trans-3)2⊂1 (500 MHz, D2O, 298 K). For signal assignment, see p. 22. 
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Fig. S24. 13C NMR spectrum of (trans-3)2⊂1 (125 MHz, D2O, 298 K). 
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Fig. S25. 1H DOSY NMR spectrum of (trans-3)2⊂1 (400 MHz, D2O, 298 K). 
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Fig. S26. 1H-1H COSY NMR spectrum of (trans-3)2⊂1 (500 MHz, D2O, 298 K). 
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Fig. S27. 1H-1H NOESY NMR spectrum of (trans-3)2⊂1 (500 MHz, D2O, 298 K). 
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Fig. S28. Partial 1H-1H NOESY NMR spectrum of (trans-3)2⊂1 showing nOe correlations between the host and 
the guests (500 MHz, D2O, 298 K) (the corresponding full-range spectrum is shown in Fig. S27). 
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Fig. S29. 1H-13C HSQC NMR spectrum of (trans-3)2⊂1 (500 MHz, D2O, 298 K). 
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Fig. S30. Two views of the X-ray crystal structure of (trans-3)2⊂1 where 3 = p-allyloxyazobenzene as a model 
para-functionalized azobenzene. See also Fig. S31. 
 
 

 
 
Fig. S31. ORTEP representation of the X-ray structure of inclusion complex (trans-3)2⊂1 (thermal ellipsoids at a 
50% probability level). Anions and solvent molecules were eliminated for clarity. Pd, brown; C gray; N, blue; O, 
orange, H, white. 
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Analysis  of  in termolecular  in teract ions within  inclusion complex ( trans -3 ) 2⊂1  
 
Analysis was performed with PLATON on the cif file deposited in CCDC (accession number 1569281).  
 
Host-guest interactions 
 

Two benzene rings of cage 1 participate in π-π stacking interactions: Ring10 (C22-C27); Ring11 (C37-C42). Two 
benzene rings of encapsulated azobenzenes 3 participate in π-π stacking interactions: Ring12 (C49-C54); Ring13 
(C55-C60).  
 

The table below lists distances between the center of gravity of a given ring to the plane of the neighboring ring (in 
blue); distances between the center of gravity of the neighboring ring to the plane of the given ring (in red); and 
dihedral angles between the planes of the two rings (in green).  
 

 Ring12 Ring13 
Ring10 3.36 Å / 3.07 Å 

17.3° 
3.33 Å / 3.54 Å 

14.0° 
Ring11 3.72 Å / 2.82 Å 

23.8° 
 

 
In addition, the following edge-to-face interactions are present:  
 

C50 to the imidazole ring (N9N10C28C29C30), distance = 3.42 Å 
C50 to the imidazole ring (N13N14C28C29C30), distance = 3.45 Å 
 
Guest-guest interactions 
 

The distance between the center of gravity of azobenzene’s Ring13 to the plane of the benzene ring of the symmetry-
generated neighboring azobenzene is 3.27 Å. The dihedral angle between the planes of the benzene rings is 0° 
(symmetry relation 2-x,1-y,z). 
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Fig. S32. 1H NMR spectrum obtained by dissolving crystalline (trans-3)2⊂1 in water (500 MHz, D2O, 298 K). 
Integration reveals that 36% (as opposed to the expected 100%) of the cages are filled, compared to 33% in the 
sample obtained by saturating a solution of 1 with trans-3 (Fig. S23). Upon placing (trans-3)2⊂1 in water, a hazy 
suspension was obtained. Upon standing, a yellow solid (trans-3) precipitated. The resulting yellow supernatant 
was analyzed by NMR.  
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Fig. S33. 1H NMR spectrum of (trans-3)2⊂1 after exposure to UV light (500 MHz, D2O, 298 K). Blue asterisk 
denotes acetone. Black asterisk denotes acetonitrile. 
 
 

 
 
 

Fig. S34. Comparison of partial 1H NMR spectra of (trans-3)2⊂1 before (blue) and after (red) exposure to UV 
light (extracted from Fig. S23 and S33, respectively).  
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Fig. S35. (A) Changes in the UV/Vis absorption spectrum of (trans-3)2⊂1 following exposure to UV light (4 min) 
and then to blue light (4 min). (B) Eight cycles of reversible photoisomerization of 3 within (trans-3)2⊂1 followed 
by UV/Vis absorption spectroscopy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	 36 

8. Characterization of inclusion complex cis-4⊂1 
 
Inclusion complex cis-4⊂1 was obtained in ~100% yield (i.e., all the cages were filled when treated with excess 
of cis-4). 
 
1H NMR (500 MHz, D2O, 298 K): δ = 9.22 (s, 8H, 14), 8.89 (s, 4H, 11), 7.82 (s, 4H, 18), 7.79 (s, 4H, 13), 7.75 (s, 
8H, 16), 7.73 (s, 8H, 17), 7.64 (s, 8H, 15), 7.61 (s, 4H, 12), 5.48 (br, 2H, cis-4a), 5.20 (d, 3J = 7.2 Hz, 4H, cis-4b), 
3.10 (m, 24H, 1CH2), 2.77–2.71 (m, 72H, 1CH3), 2.53 (s, 12H, cis-4CH3). 13C NMR (125 MHz, D2O, 298 K): δ = 
148.56 (cis-4c), 138.47 (19), 137.36 (110+4), 137.02 (11), 131.81 (cis-4d), 128.92 (15), 128.76 (12), 127.87 (cis-4a), 
120.58 (13), 120.51 (16), 112.45 (18), 111.96 (17), 102.73 (cis-4b), 62.57 (1CH2), 53.75 (cis-4CH3), 50.34 (1CH3), 
50.18 (1CH3), 50.05 (1CH3). 1H-DOSY NMR (D2O, 298 K): D = 0.19 (± 0.01) × 10-5 cm2/s. Elemental analysis: 
calcd: C, 38.57; H, 4.68; N, 20.08; found: 38.46; H, 4.78; N, 20.15. 
 

 

 
 
Fig. S36. 1H NMR spectrum of cis-4⊂1 (500 MHz, D2O, 298 K). For signal assignment, see p. 34, above. 
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Fig. S37. 13C NMR spectrum of cis-4⊂1 (125 MHz, D2O, 298 K). 
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Fig. S38. 1H DOSY NMR spectrum of cis-4⊂1 (400 MHz, D2O, 298 K). 
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Fig. S39. 1H-1H COSY NMR spectrum of cis-4⊂1 (500 MHz, D2O, 298 K). 
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Fig. S40. 1H-1H NOESY NMR spectrum of cis-4⊂1 (500 MHz, D2O, 298 K). 
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Fig. S41. Partial 1H-1H NOESY NMR spectrum of cis-4⊂1 showing nOe correlations between the host and the 
guests (500 MHz, D2O, 298 K) (the corresponding full-range spectrum is shown in Fig. S40). 
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Fig. S42. 1H-13C HSQC NMR spectrum of cis-4⊂1 (500 MHz, D2O, 298 K). 
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Fig. S43. 1H NMR spectrum of cis-4⊂1 (400 MHz, D2O, 298 K) after exposure to blue light.  
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9. Characterization of inclusion complex trans-4⊂1 
 
Inclusion complex trans-4⊂1 was obtained in ~100% yield (i.e., all the cages were filled when treated with excess 
of trans-4). 
 
1H NMR (500 MHz, D2O, 323 K): δ = 9.42 (s, 8H, 14), 8.94 (s, 4H, 11), 8.18 (s, 4H, 13), 8.09 (s, 8H, 17), 8.03 (s, 
8H, 16), 7.94 (s, 8H, 15), 7.93 (s, 8H, 12+8), 7.03 (br, 2H, trans-4a), 6.59 (br, 4H, trans-4b), 3.59 (s, 12H, trans-
4CH3), 3.45 (s, 16H, 1CH2), 3.36 (s, 8H, 1CH2), 3.11 (s, 24H, 1CH3), 3.04 (s, 24H, 1CH3), 3.00 (s, 24H, 1CH3). 13C 
NMR (125 MHz, D2O, 323 K): δ = 151.85 (trans-4c), 137.93 (19), 137.73 (14+10), 137.03 (11), 131.98 (trans-4a), 
131.60 (trans-4d), 128.80 (12+5), 120.54 (16), 120.28 (13), 114.06 (18), 112.43 (17), 104.61 (trans-4b), 62.58 (1CH2), 
62.49 (1CH2), 55.75 (trans-4CH3), 50.28 (1CH3), 50.16 (1CH3), 50.02 (1CH3). 
 
 

 
 
Fig. S44. 1H NMR spectrum of trans-4⊂1 (500 MHz, D2O, 323 K). For signal assignment, see p. 42, above. 
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Fig. S45. 13C NMR spectrum of trans-4⊂1 (125 MHz, D2O, 323 K). 
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Fig. S46. Partial 1H-13C HSQC NMR spectrum of trans-4⊂1 (125 MHz, D2O, 323 K). 
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Fig. S47. 1H NMR spectrum of trans-4⊂1 (500 MHz, D2O, 298 K) after exposure to yellow light.  
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Fig. S48. 1H-1H NOESY NMR spectrum of 4⊂1 subjected to partial isomerization and containing a ~1:1 mixture 
of trans-4 and cis-4 (500 MHz, D2O, 298 K). 
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Fig. S49. Partial 1H-1H NOESY NMR spectrum of 4⊂1 subjected to partial isomerization and consisting of a ~1:1 
mixture of trans-4 and cis-4 (500 MHz, D2O, 298 K) (the corresponding full-range spectrum is shown in Fig. 
S48). The signals centered at ~6.75 ppm and at ~6.27 ppm correspond to para and meta protons of trans-4, 
respectively. The signals centered at ~5.42 ppm and at ~5.15 ppm correspond to para and meta protons of cis-4, 
respectively. The absence of nOe correlations between trans-4’s and cis-4’s protons indicates that host 1 is 
incapable of simultaneously accommodating cis-4 and trans-4, which suggests that all inclusion complexes 
involving 4 are of 1:1 stoichiometry. 
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10. Characterization of inclusion complex (trans-5)2⊂1 
 
Inclusion complex 52⊂1 was obtained in ~100% yield (i.e., all the cages were filled when treated with excess of 
trans-5). 
 
1H NMR (500 MHz, D2O, 298 K): δ = 9.31 (s, 8H, 14), 8.93 (s, 4H, 11), 7.77 (s, 8H, 13+8), 7.62 (s, 12H, 12+7), 7.48 
(s, 8H, 15), 7.19 (br, 10H, 16+5a), 6.32 (t, 3J = 9.3 Hz, 8H, 5b), 3.10–3.06 (m, 24H, 1CH2), 2.77–2.57 (m, 72H, 1CH3). 
13C NMR (125 MHz, D2O, 298 K): δ = 154.80 (5c, dd, 1JCF = 261.4 Hz, 3JCF = 4.0 Hz), 138.24 (19), 137.49 (110), 
137.32 (14), 136.61 (11), 132.85 (5a, t, 3JCF = 10.1 Hz), 129.27 (5d, t, 2JCF = 8.7 Hz), 129.12 (12), 128.97 (15), 120.42 
(13), 119.50 (16), 112.25 (5b, dd, 2JCF = 19.1 Hz, 4JCF = 2.8 Hz), 111.20 (18), 110.92 (17), 62.53 (1CH2), 50.22 (1CH3), 
50.05 (1CH3). 1H-DOSY NMR (D2O, 298 K): D = 0.19 (± 0.01) × 10–5 cm2/s. Elemental analysis: calcd: C, 
39.02; H, 4.26; N, 19.72; found: 39.01; H, 4.34; N, 19.73. 
 

 
 

 
 
Fig. S50. 1H NMR spectrum of 52⊂1 (500 MHz, D2O, 298 K). 
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Fig. S51. 13C NMR spectrum of 52⊂1 (125 MHz, D2O, 298 K). 
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Fig. S52. 1H DOSY NMR spectrum of 52⊂1 (400 MHz, D2O, 298 K). 
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Fig. S53. 1H-1H COSY NMR spectrum of 52⊂1 (500 MHz, D2O, 298 K). 
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Fig. S54. 1H-1H NOESY NMR spectrum of 52⊂1 (500 MHz, D2O, 298 K). 
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Fig. S55. Partial 1H-1H NOESY NMR spectrum of 52⊂1 showing nOe correlations between the host and the 
guests (500 MHz, D2O, 298 K) (the corresponding full-range spectrum is shown in Fig. S54). 
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Fig. S56. 1H-13C HSQC NMR spectrum of 52⊂1 (400 MHz, D2O, 298 K). 
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Fig. S57. 1H-1H NOESY NMR spectrum of 52⊂1 subjected to partial isomerization and consisting of a ~1:1 
mixture of trans-5 and cis-5 (500 MHz, D2O, 298 K). 
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Fig. S58. Partial 1H-1H NOESY NMR spectrum of 52⊂1 subjected to partial isomerization and consisting of a 
~1:1 mixture of trans-5 and cis-5 (500 MHz, D2O, 298 K) (the corresponding full-range spectrum is shown in 
Fig. S57). The signals at ~6.35 ppm and ~7.2 ppm correspond to meta and para protons of trans-5, respectively. 
The signals at ~5.5 ppm and ~6.15 ppm correspond to meta and para protons of cis-5, respectively. The absence 
of nOe correlations between trans-5‘s and cis-5‘s protons indicates that they do not stably coexist in the same 
cage molecule. 
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Fig. S59. Changes in the UV/Vis spectra of 1 in the presence of increasing amounts of 5. 

 

 
Fig. S60. ORTEP representation of the X-ray structure of the inclusion complex (trans-5)2⊂1 (thermal ellipsoids 
at a 50% probability level). Anions and solvent molecules were eliminated for clarity. Pd, brown; C gray; N, blue; 
F, green, H, white. 
Dissolving crystalline (trans-5)2⊂1 in water was not followed by precipitation of trans-5 (in contrast to (trans-
2)2⊂1 and (trans-3)2⊂1; see Figs. S16 and S32, respectively).  
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Fig. S61. H···F distances and C-H···F angles in the crystal structure of (trans-5)2⊂1. The average H···F distance 
in (trans-5)2⊂1 is 2.73 Å, whereas the average C-H···F angle is 129.5°, which constitutes a moderately strong 
C-H···F hydrogen bond (5). 
 
 
Analysis  of  in termolecular  in teract ions within  inclusion complex ( trans -3 ) 2⊂1  
 
Analysis was performed with PLATON on the cif file deposited in CCDC (accession number 1569281).  
 
Host-guest interactions 
 

Two benzene rings of cage 1 participate in π-π stacking interactions: Ring10 (C22-C27); Ring11 (C37-C42). Two 
benzene rings of encapsulated azobenzenes 3 participate in π-π stacking interactions: Ring12 (C49-C54); Ring13 
(C55-C60).  
 

The table below lists distances between the center of gravity of a given ring to the plane of the neighboring ring (in 
blue); distances between the center of gravity of the neighboring ring to the plane of the given ring (in red); and 
dihedral angles between the planes of the two rings (in green).  
 

 Ring12 Ring13 
Ring10 3.34 Å / 4.22 Å 

50.1° 
3.83 Å / 3.87 Å 

35.5° 
Ring11 3.33 Å / 3.60 Å 

5.9° 
3.25 Å / 3.63 Å 

12.4° 
 
In addition, the following edge-to-face interactions are present:  
 

C60-F1 to the imidazole ring (N7N8C19C20C21), distance = 4.30 Å 
C60-F1 to the imidazole ring (N13N14C46C47C48), distance = 4.82 Å 
 
Guest-guest interactions 
 

The distance between the center of gravity of azobenzene’s Ring13 to the plane the symmetry-generated neighboring 
azobenzene’s Ring12 is 3.74 Å. The distance between the center of gravity of azobenzene’s Ring12 to the plane of 
the neighboring azobenzene’s Ring13 is 2.63 Å. The dihedral angle between the planes of the benzene rings is 17.5° 
(symmetry relation 1-x,-y,-z). 



	 61 

 
 
Fig. S62. A series of 1H NMR spectra (500 MHz, D2O, 298 K) of (trans-5)2⊂1 at a concentration of ~15 mg/mL, 
following exposure to green light (λ = 520 nm) inside the NMR spectrometer (using an optical fiber) for different 
periods (indicated in green font) for up to 60 min and after a subsequent exposure to blue light (blue font) for up 
to 21 min, during which a complete back-isomerization was achieved.  
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Fig. S63. 1H-13C HSQC NMR spectrum of 52⊂1 following exposure to green light (λ = 520 nm) (500 MHz, D2O, 
298 K). 
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11. Analysis of guest-induced distortion of cage 1  
 

To determine the degree of structural deformation of cage 1 (6) induced by azobenzenes 2, 3, and 5, we super-
imposed the X-ray structures of:  
• 1 and 22⊂1,  
• 1 and 32⊂1, and  
• 1 and 52⊂1 (Fig. S64, bottom panel).  
In all cases, the cage undergoes pronounced structural changes upon binding azobenzenes. Root-mean-square displa-
cements correspond to 1.230 for 22⊂1 vs. 1, 1.389 for 32⊂1 vs. 1, and 1.348 for 52⊂1 vs. 1. Maximal displacements 
were determined as 2.076 Å for 22⊂1 vs. 1, 2.002 Å for 32⊂1 vs. 1, and 2.408 Å for 52⊂1 vs. 1. 
 

 
Fig. S64. Top panel: Comparison of the X-ray crystal structures of guest-free cage 1 with 1 encapsulating azobenzenes 
2, 3, and 5 (hydrogen atoms and tmeda capping ligands were removed for clarity). Bottom panel: Superpositions of 
guest-free 1 with 1 encapsulating azobenzenes 2, 3, and 5 (hydrogen atoms removed for clarity). 
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12. Investigating light-induced expulsion of 5 from (trans-5)2⊂1  
 

 
 

Fig. S65. Photographs of 52⊂1 in water (c ≈ 10 mM) before (left) and after (center) exposure to green light and 
after centrifuging and collecting the supernatant (right).  
 
 
 
 
 
 
 

 
 

Fig. S66. 1H NMR spectrum of the precipitate obtained by exposing (trans-5)2⊂1 to green light (500 MHz, 
CDCl3, 298 K). The spectrum shows the presence of cis-5 with less than 3% of the trans isomer. 
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Fig. S67. Following expulsion of 1 from (trans-5)2⊂1 by UV/Vis spectroscopy.  
Red: UV/Vis absorption spectra of (trans-5)2⊂1 in water;  
Yellow: Solution obtained by exposing (trans-5)2⊂1 to 520 nm light followed by removing the precipitate by 
centrifugation; Orange: Supernatant shown in yellow exposed to 420 nm light; 
Blue: MeCN solution of precipitate collected by centrifuging (trans-5)2⊂1 following its exposure to 520 nm light; 
Purple: Solution shown in blue exposed to 420 nm light. 
 

• The spectra shown in red, yellow, and orange are shown after subtracting spectra of pure 1 at the same 
concentration. 

• The samples shown in red, orange, and purple contain predominantly trans-5; the samples shown in yellow and 
blue contain predominantly cis-5. 

 

Absorbance at λmax of the orange spectrum is roughly half that of the red spectrum, which indicates that ~50% of 
5 is expelled from the cage using 520 nm light. This conclusion is further supported by i) similar values of 
absorbance at λmax of the orange and the purple spectra, ii) similar values of absorbance at λmax of the yellow and 
the blue spectra. The experiments were carried out on a c = 5 mM solution of 52⊂1. Prior to recording UV/Vis 
spectra, the samples were diluted 100-fold. 
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Fig. S68. From the bottom: 1) 1H NMR spectrum (500 MHz, D2O, 298 K) of cage 1. 2) NMR spectrum of (trans-
5)2⊂1. The signal at ~7.2 ppm corresponds to the para protons of trans-5 overlapping with one of the protons of 
1. 3) NMR spectrum of (trans-5)2⊂1 exposed to green light, followed by removal of the precipitate. The signal at 
~6.1 ppm corresponds to the para protons of cis-5. 4) NMR spectrum of (trans-5)2⊂1 exposed to green light, 
followed by removal of the precipitate and subsequent exposure to blue light. Note that the signals due to azobenzene 
protons are identical to those in spectrum 2) except that the signal intensity decreased by half. Also note the 
presence of two sets of the imidazole signals with relative intensities 2:2:1:1. The positions of these signals match 
those of the empty cage (spectrum 1) and the completely filled cage (spectrum 2; compare with Fig. 3C in the 
main text). Overall, these results suggest the coexistence of two populations of cages: empty 1 and 1 encapsulating 
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dimer of trans-5. 5) NMR spectrum of sample 4) exposed to green light. Note that this time, no precipitation was 
observed, in agreement with reaction equation, (trans-5)2⊂1 + 1 → 2 cis-5⊂1. The spectrum is very similar to 
that of 3). 6) NMR spectrum of sample 5) exposed to blue light. The spectrum is very similar to that of 4).  
 
To obtain additional insight into the binding of cis-5 by 1, we compared the NMR spectrum of a solution obtained 
by exposing (trans-5)2⊂1 to green light with the one recorded after a direct encapsulation of cis-5 (Fig. S69). The 
cis isomer of 5 was obtained by the light-induced expulsion of cis-5 from 52⊂1. Interestingly, cis-5 obtained this 
way contained a significantly smaller fraction of the trans isomer (<3%) compared to the sample obtained slowly 
evaporating the solvent (CH2Cl2) from the solution of 5 under intense green light irradiation (~10% trans). Inclusion 
complex (cis-5)⊂1 was obtained by stirring excess of solid cis-5 with an aqueous (D2O) solution of cage 1 for 24 
hr at room temperature in the dark. NMR spectra revealed that the resulting mixture (following removal of excess 
of solid cis-5) comprised ~64% of (cis-5)⊂1, ~30% of free 1, and ~6% of (trans-5)2⊂1 (spectrum 2 in Fig. S69). 
The relatively large fraction of unoccupied cage can be attributed to the lower affinity of 1 to cis-5 vs. trans-5 dimer. 
The unexpectedly large fraction of trans-5 in the final solution (~16% vs. <3% in the solid) can be due to cis→trans 
isomerization of 5 induced by the cage, which can again be explained by the relatively high affinity to 1 to trans-5. 
 

 
 
Fig. S69. From the bottom: 1) 1H NMR spectrum (500 MHz, D2O, 298 K) of a solution obtained by exposing 
(trans-5)2⊂1 to green light (replotted from 3 in Fig. S68). 2) 1H NMR spectrum (500 MHz, D2O, 298 K) of a 
solution prepared by encapsulating cis-5. 
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13. Fabrication of light-sensitive agarose gel 
 
One gram of agarose (CAS # 9012-36-6, biotechnology grade, Amresco product # 0710) was added to an Erlenmeyer 
flask containing 50 mL of distilled water. The mixture was heated in a microwave oven until water started to boil 
and for an additional 3 min. Then, heating was discontinued and the flask was removed from the oven. The resulting 
colorless, homogeneous solution was poured while hot between two glass slides separated by a 1 mm spacer. After 
having been cooled to room temperature, a 5×4×0.1 cm piece of solidified agarose gel was placed in a Petri dish 
containing 2 mL of a 12 mM solution of (trans-5)2⊂1 in distilled water for 2 h. Finally, the gel was briefly rinsed 
with water.  
 

14. Solid-state photoswitching of 22⊂1 and 52⊂1  
 
To investigate the possibility of photoswitching of encapsulated azobenzenes in the solid state, we prepared thin 
films of 22⊂1 and 52⊂1 on glass slides by evaporating water from the respective solutions. UV/Vis spectra were 
recorded and the samples were exposed to UV (365 nm; 22⊂1) or green (520 nm; 52⊂1) light until no further 
changes in the spectra could be seen. Next, the samples were exposed to blue light (420 nm) and the sequence was 
repeated for several cycles.  
 

 
 

Fig. S70. Effect of irradiating 22⊂1 in the solid state. Left: Switching the optical response by alternating exposure 
to UV (10 min) and blue light (10 min). Right: Changes in the absorbance at 330 nm and 430 nm induced by 
alternating exposure to UV and blue light.  
 

 
 

Fig. S71. Effect of irradiating 52⊂1 in the solid state. Left: Switching the optical response by alternating exposure 
to green light (4 min) and blue light (6 min). 
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15. Infrared (IR) analysis of the inclusion complexes 
 
In addition to X-ray crystallography, NMR, and elemental analysis, we attempted to characterize the inclusion 
complexes by IR absorption spectroscopy. However, the IR absorption of 1 and the inclusion complexes were 
overwhelmed by the response due to the cage and the differences between the spectra were small. 
 
 
 

 
 

Fig. S72. IR absorption spectra of cage 1 and inclusion complexes 22⊂1, 32⊂1, 4⊂1, and 52⊂1. 
 
• 1 (KBr, ν, cm–1): 3421 (O−H), 3103 (C−H), 2927 (C−H), 1618 (C=N), 1518 (C=C), 1383, 1082, 1011, 956, 825, 

811, 762. 
•  (trans-2)2⊂1 (KBr, ν, cm–1): 3431 (O−H), 3105 (C−H), 2927 (C−H), 1618 (C=N), 1519 (C=C), 1385, 1083, 

1011, 956, 826, 812, 763. 
•  (trans-3)2⊂1 (KBr, ν, cm–1): 3424 (O−H), 3088 (C−H), 2925 (C−H), 1618 (C=N), 1581 (N=N), 1518 (C=C), 

1468 (C=C), 1380, 1259 (C−N), 1141, 1116, 1081, 1043, 1012, 956, 826, 812, 764. 
• cis-4⊂1 (KBr, ν, cm–1): 3420 (O−H), 3107 (C−H), 2931 (C−H), 1618 (C=N), 1587 (N=N), 1518 (C=C), 1473 

(C=C), 1380, 1257 (C−N), 1111, 1082, 1011, 956, 826, 761. 
•  (trans-5)2⊂1 (KBr, ν, cm–1): 3416 (O−H), 3105 (C−H), 2925 (C−H), 1616 (C=N), 1587 (N=N), 1517 (C=C), 

1473 (C=C), 1378, 1277 (C−N), 1121, 1081, 1015, 956, 826, 812, 761, 737. 
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16. Impact of encapsulation on the photoisomerization of azobenzenes 
 
We were interested in how encapsulating azobenzenes affects the composition of the photostationary states. 
Figures S72-S75 show the effect of photoirradiation of non-encapsulated azobenzenes 2-5 in organic solvents. 
Comparison with 2-5 in the presence of cage 1 is discussed in the figure captions. It should be emphasized, 
however, that the comparison is not trivial because the encapsulation entails the change of the environment from 
an organic solvent to water.  
 

 
 

Fig. S73. Partial 1H NMR spectra of 2 in CDCl3 (500 MHz, 298 K): initial (black, 100% trans), after 2 hr of 
exposure to a 365 nm light (purple, 47% trans), and after the subsequent exposure (10 min) to a 420 nm light 
(blue, 83% trans). The poor photostationary state induced by UV light is due to the relatively poor overlap 
between 2’s absorption and the UV source’s emission. Changing the solvent to CD3CN, CD3OD, or DMSO-d6 
afforded even lower amounts of cis-2. 
The presence of 1 had a profound beneficial effect of the trans→cis conversion efficiency: 22⊂1 in the presence 
of 0.4 eq of free 1 (the lowest amount rendering 22⊂1 stable in water) exposed to UV afforded ~60% of cis-2. The 
amount of cis-2 was increased to ~72% upon adding an additional 1 eq of 1 (overall 1.4 eq of free 1) and to ~85% 
upon adding additional 3 eq of 1 (overall 3.4 eq of free 1). Subsequent exposure of 22⊂1 (without extra 1) to blue 
light resulted in 11% of the residual cis-2. 
 

 

 
 
Fig. S74. Partial 1H NMR spectra of 3 in CD3CN (500 MHz, 298 K): initial (black, 100% trans), after 40 min of 
exposure to a 365 nm light (purple, 4% trans), and after the subsequent exposure (25 min) to a 420 nm light (blue, 
69% trans). 
Similarly, 32⊂1 in the presence of ~2 eq of free 1 (the lowest amount rendering 32⊂1 stable in water) isomerized 
efficiently when exposed to UV light—in fact, no residual trans isomer could be detected (Fig. S34).  
 



	 71 

 
 
Fig. S75. Partial 1H NMR spectra of 4 in CD3CN (500 MHz, 298 K): initial (black, 100% trans), after 20 min of 
exposure to a 580 nm light (orange, 4% trans), and after the subsequent exposure (20 min) to a 420 nm light 
(blue, 85% trans). 
When the photoisomerization was carried out in the presence of 1 in water, the equilibrium was further shifted 
towards the more stable isomer, with ~93% trans under blue light and no detectable trans under yellow light (Fig. 
S43 and S47, respectively). 
 
 

 
 
Fig. S76. Partial 1H NMR spectra of 5 in CD3CN (500 MHz, 298 K): initial (black, 100% trans), after 10 min of 
exposure to a 520 nm light (green, 9% trans), and after the subsequent exposure (20 min) to a 420 nm light (blue, 
79% trans). 
Exposing an aqueous solution of 52⊂1 to green light decreased the amount of trans-5 to only ~19% (Fig. S68 and 
Fig. 3 in the main text), with most of cis-5 precipitating out. Subsequent exposure to blue light regenerated the 
solution of (trans-5)2⊂1 with less than 1% of the cis isomer. Interestingly, in the presence of one extra equivalent 
of 1, the amount of the residual trans-5 under green light irradiation amount to as much as ~33% (spectrum 5 in 
Fig. S68). This result can be attributed to the relatively high affinity of 1 towards trans- vs. cis-5 (see also the 
discussion preceding Fig. S69). Subsequent exposure to blue light afforded (trans-5)2⊂1 with <1% of cis-5 
(spectrum 6 in Fig. S68).  
 

17. X-ray data collection and structure refinement 
 
Single crystals of inclusion complexes (trans-2)2⊂1, (trans-3)2⊂1, and (trans-5)2⊂1 were obtained by slow 
evaporation of water from the respective aqueous solutions. Single crystals of cis-5 were obtained by slow 
evaporation of water from the aqueous solution of cis-5⊂1. The diffraction data of (trans-2)2⊂1, (trans-3)2⊂1, 
and cis-5 were collected on a Rigaku XtaLABPRO diffractometer using Cu-Kα radiation (1.54184 Å) and 
processed with CrysAlisPRO. The diffraction data of (trans-5)2⊂1 were collected on a Bruker APEX-II Kappa 
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CCD diffractometer using Mo-Kα radiation (0.7107 Å) and processed with SAINT. Data collection was 
performed under a stream of nitrogen at 100 K. The structures were solved by direct methods using SHELXT (7). 
All non-hydrogen atoms were further refined by SHELXL with anisotropic displacement coefficients (8). 
Hydrogen atoms were assigned isotropic displacement coefficients, U(H) = 1.2U(C) or 1.5U (C-methyl), and their 
coordinates were allowed to ride on their respective carbons. Crystallographic data and refinement parameters are 
summarized in Table S1. 
 
 
 

Species (trans-2)2⊂1 (trans-3)2⊂1 (trans-5)2⊂1 cis-5 
CCDC No. 1551435 1569281 1551438 1569282 

Formula* C480H656N198O187Pd24 C126H172N52O96Pd6 C120H156F8N49O27Pd6 C12H6F4N2 

Formula weight* 14745.59 4587.96 3507.33 254.19 

Crystal system Monoclinic Triclinic Triclinic Orthorhombic 

Space group P21/c P ī P ī Pna21 

Crystal size (mm) 0.376×0.083×0.077 0.128×0.066×0.060 0.250×0.140×0.100 0.100×0.100×0.100 

Crystal color and shape Orange needle Orange prism Orange prism Orange block 

Temperature (K) 100 100 100 100 
Wavelength (Å) 1.54178 1.54178 0.71073 1.54178 

a (Å) 18.28560(10) 18.0192(1) 15.3303(5) 13.8743(2) 
b (Å) 34.5838(2) 18.8066(1) 16.1494(5) 11.5126(2) 
c (Å) 30.6461(2) 20.4806(1) 20.0076(7) 6.5526(1) 

α (°) 90 116.3318(5) 69.631(2) 90 

β (°) 100.7740(10) 96.4839(4) 81.977(2) 90 

γ (°) 90 111.9048(4) 83.372(2) 90 
Volume (Å3) 19038.5(2) 5438.18(5) 4586.3(3) 1046.64(3) 

Z 1 1 1 4 
ρcalcd,(g cm-1) 1.286 1.401 1.270 1.613 

µ (mm-1) 5.145 4.796 0.652 1.307 
No. of reflections (unique) 120635 (34814) 276289(22146) 136893 (23880) 7899(2114) 

Rint 0.0548 0.0517 0.0537 0.0416 

Completeness to θ (%) 99.9 99.5 99.9 99.2 

Data / restraints / parameters 34814 / 136 / 2089 22146 / 194 / 1148 23880 / 79 / 901 2114 / 1 / 163 

Goodness-of-fit on F2 1.047 1.016 1.246 1.126 

Final R1 and wR2 indices 
[I > 2σ(I)] 

0.0932, 0.2557 0.0772, 0.2129 0.0545, 0.1552 0.0482, 0.1354 

R1 and wR2 indices (all data) 0.0994, 0.2608 0.0783, 0.2139 0.0703, 0.1626 0.0496, 0.1368 

 
Table S1. Crystallographic data.  
*Formula and weight derived from the crystal structure.  
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