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d. Posterior-to-anterior preference scatterplots, Figure S9 
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f. Comparison to Konkle & Caramazza, 2013: Figure S11 

 
4. Supplement to Experiment 2 

a. Eye-tracking stability: Figure S12 
b. Voxel mask construction: Figure S13 
c. Group-level conjunction topographies: Figure S14 
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Other supplementary materials for this manuscript include the following:  
 

All stimuli, pre-processed data, and main analysis code for this paper are available at the 
Open Science Repository for this project, https://osf.io/69pbd/, which is also linked to a GitHub 
codebase for generating texforms.  Raw fMRI data is available on request. 

 
 

  



 
 

3 
 

 

1. Extended Methods 
 
fMRI Data Preprocessing. Functional data were analyzed using Brain Voyager QX software and 
MATLAB. Preprocessing included slice scan-time correction, 3D motion correction, linear trend removal, 
temporal high-pass filtering (0.01 Hz cutoff), spatial smoothing (4 mm FWHM kernel), and 
transformation into Talairach (TAL) coordinates. Two subjects had one run in which they moved more 
than 0.5 mm within 2 seconds (1 TR) and these runs were discarded from analysis.  The cortical surface 
of each subject from the high-resolution T1-weighted anatomical scan, acquired with a 3D MPRAGE 
protocol. To do so, we used the default segmentation procedures in FreeSurfer. Surfaces were then 
imported into Brain Voyager and inflated using BV surface module. Gray matter masks were defined in 
the volume and were constructed based on the Freesurfer segmentations.  
 
General linear models (GLMs) were computed at the single subject level for texforms and original runs 
separately, both for the four main conditions (big animals, big objects, small animals, and small objects) 
as well as separately for the full set of nested conditions (each category x each classifiability level, 24 
conditions total).  GLMs included square-wave regressors for each condition’s presentation times, 
convolved with a gamma function to approximate the hemodynamic response, fit to voxel-wise time 
course data with percent signal change normalization and correction for serial correlations.  In 
Experiment 2, GLMs were fit eight main conditions of interest: each combination of category (big 
animals, big objects, small animals, and small objects) and visual field presentation (upper, lower) 
separately for texforms and originals.  
 
MRI acquisition. Imaging data were collected using a 32-channel phased-array head coil with a 3T 
Siemens Prisma fMRI Scanner at the Harvard Center for Brain Sciences. High-resolution T1-weighted 
anatomical scans were acquired using a 3D MPRAGE protocol (176 sagittal slices; FoV = 256 mm; 
1x1x1 mm voxel resolution; gap thickness = 0 mm; TR = 2530 ms; TE = 1.69 ms; flip angle = 7 degrees). 
For functional runs, blood oxygenation level-dependent (BOLD) contrast was obtained using a gradient 
echo-planar T2* sequence (84 oblique axial slices acquired at a 25° angle off of the anterior commissure-
posterior commissure line; FoV = 204 mm; 1.5×1.5×1.5 mm voxel resolution; gap thickness = 0 mm, TR 
= 2000 ms; TE = 30 ms; flip angle = 80 degrees; multi-band acceleration factor = 3).                         

fMRI Experiment Design. Each run had twelve 6s blocks for each condition (big animals, big objects, 
small animals, small objects), with 10s rest periods interleaved every four blocks. Each block consisted of 
six images (5 unique images and 1 repeat) each presented for 800ms followed by a 200ms blank. Further, 
each block contained images from one of the six classifiability levels.  Each classifiability level for each 
condition was shown twice per run. Thus, each texform image was shown twice during a run and 8 times 
over the entire experiment.  All images were presented in isolation on a uniform gray background. This 
design choice allowed us to analyze neural responses in both a high-powered, four-condition design as 
well as a moderately powered 24-condition design for the predictive modeling analysis. Note, however, 
this does not allow us to model responses to individual texforms or their corresponding recognizable 
images.   

In Experiment 1, each image subtended 10.36° x 10.36° visual angle centered at fixation. In 
Experiment 2, each block of images could appear either above or below fixation (6.92° x 6.92° degrees of 
visual angle, bottom edge .86° degrees from center). These positions were counterbalanced across blocks 
such that, for each level of classifiability and condition, one block was presented in the upper visual field 
and the other block was presented in the lower visual field.  Participants were instructed that maintaining 
fixation was more important than task performance, and fixation was monitored online using an EyeLink 
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1000 eye-tracker. Participants were calibrated to the eye-tracker at the beginning of the experiment and 
were recalibrated every 2-3 runs as needed.  See Figure S12 for fixation heatmaps for each participant. 

Retinotopy Protocol. Additionally, participants completed a retinotopy protocol in order to define early 
visual areas V1-V3. Observers viewed bands of flickering checkerboards in a blocked design. The 
conditions included vertical meridian bands (~22° × 1.7°), horizontal meridian bands (~22° × 1.7°), iso-
eccentricity bands covered by a central ring (radius ~1.2° to 2.4°), a peripheral ring (radius ~5.7° to 9.3°), 
and an extra wide peripheral ring (inner radius ~9.3°, filling the extent of the screen). In Experiment 2, the 
vertical and horizontal meridian bands were replaced with wedges. The apex of each wedge was at 
fixation and the base extended to ~22° in the periphery, and the checkerboard patterns flickered at 6 Hz.  
Each block was 6 seconds, within which the checkerboard cycled at 8 Hz between states of black-and-
white, randomly colored, white-and-black, and random colored. In each 4.4-min run (142 volumes), the 5 
visual field band conditions and 1 fixation condition were repeated 7 times with their order randomly 
permuted within each repetition. Each run started and ended with a 6 s fixation period. Participants’ task 
was to maintain fixation and press a button every time the fixation dot turned red, which happened once 
per block. Using data from this retinotopy protocol, early visual regions (V1-V3) were defined by hand on 
inflated brain guided by the contrast of horizontal vs. vertical meridians (see (1)). 
 
Preference Map Correlation Details. Two comparisons were used to assess map-correlation robustness. 
First, we compared map correlations to a shuffled voxel baseline. For each subject, the spatial position of 
texform voxels was shuffled and then correlated with the unshuffled original preference map. This was 
repeated 1000 times, yielding a chance distribution for each subject, from which a p-value was computed 
based on how often the simulated shuffled values were greater than the observed map correlation.  
Second, we considered the map correlations relative to an estimated noise ceiling.  To do so, in each 
subject, texform preference maps were correlated between odd and even runs, yielding a texform map 
split-half correlation.  The same analysis was repeated for originals. If any of these odd-even correlations 
was less than zero (i.e., a negative correlation), we substituted this value with zero; this occurred in one 
subject for the object size comparison. Given these split-half texform and original map correlations were 
estimated with half the power of the texform-original map comparison, we used the Spearman Brown 
prophecy formula to approximately adjust the reliabilities (N*observed reliability / 1 +(N-1)*observed 
reliability, where N = 2 as we divided the data in half). Then, the noise ceiling for the texform-original 
map correlation was computed separately for each participant, as the square root of the product of these 
corrected reliabilities.  
 
Posterior-to-Anterior Correlations.  To assess whether there was a difference in the overall strength of 
the original animacy preferences vs. the texform animacy preferences along the posterior-to-anterior 
gradient, we computed difference scores for each anatomical section for each participant. We then 
performed a simple rank correlation between ascending anatomical sections (i.e., 1,2,3,4,5) and these 
difference scores (originals – texforms) in each subject. A rank correlation metric was used to assess 
whether originals generate greater animacy preferences along this posterior to anterior gradient, without 
assuming a meaningful relationship with the TAL-Y coordinates of the anatomical sections. Finally, we 
asked whether these rank correlations were above zero at the group level by performing a one-sample t-
test over subjects.  The same procedure was repeated for the object size distinction. For visualization 
purposes, in Figure S9A-C, we also defined group-level anatomical sections based on the Group GLM 
activations, with the scatter plots showing voxel response preferences for animacy and size dimensions 
based on the group GLM beta fits. 

Predictive Modeling Feature Spaces. 
Gabor & Gist Models.  Gabor features were extracted in an 8 x 8 grid over the original, recognizable 
images (440 x 440 pixels) at three different 3 scales, with 8,6, and 4 oriented Gist per scale, respectively 
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(Oliva & Torralba, 2006).  GIST model features were extracted by taking the first 20 principle 
components of this Gabor feature matrix. In both cases, these features were then averaged across the five 
images in each nested classifiability group presented during the fMRI experiment. The squared Euclidean 
distance along each feature was used to construct feature RDMs for use in the predictive modeling 
procedure, and all dissimilarities were scaled between 0 and 1, yielding a 276 x 896 feature vector for 
Gabor features and a 276 x 20 feature vector for Gist features.  

 
Texture Synthesis Model (Freeman & Simoncelli, 2011): The texture synthesis model has 10 feature 
classes (corresponding to pixel statistics, weighted marginal statistics, simple cell responses, complex cell 
responses, cross-position correlations (i.e., autocorrelation) within scales computed separately for simple 
and complex cells, cross-orientation correlations computed separately for simple and complex cells, and 
cross-scale correlations computed separately for simple and complex cells). Features were included if 
they (1) had any variance across the images (SD > 0) and (2) were calculated within pooling windows 
tiling the depicted item (see Figure S1 for an illustration of the pooling windows). The values for each 
feature were then z-scored across the 120 images, and then averaged over the five images in each 
classifiability group. Each feature was converted to an RDM using squared Euclidean distance, and all 
dissimilarities were scaled between 0 and 1, generating a 276 x 20,914 feature matrix.  

 
Behavioral Ratings–Animacy/Size: For texforms, feature RDMs were constructed based on the behavioral 
animacy and size classifiability scores.  Note these are the same scores used to group the texforms into the 
nested design. These experiments yielded a vector corresponding to participants ability to classify each 
texform as an animal (range: 0-1, where 1 = always classified as an animal, and 0 = never classified as an 
animal) and their ability to classify each texform according to their size in the real world (range: 0-1, 
where 1 = always classified as big in the real-world, and 0 = never classified as big in the real world).  
These scores were averaged according to the 24 nested conditions presented during the experiment, 
yielding a 24 x 1 vector for animacy and a 24 x 1 vector for size for texforms and for originals.  We then 
took the squared Euclidean distance of each 1-dimensional feature vector and all dissimilarities were 
scaled between 0 and 1; the final feature matrix was a 276 x 2 feature matrix.  

 
For original images, feature RDMs were constructed using their actual animacy/size in real-world. These 
yielded a vector corresponding to the actual animacy of the recognizable image (1 = animate, and 0 = 
inanimate), and a vector corresponding the actual size of the object in the real world (1 = big in the real-
world, and 0 = small in the real world).  We then took the squared Euclidean distance of each 1-
dimensional feature vector and all dissimilarities were scaled between 0 and 1; the final feature matrix 
was a 276 x 2 feature matrix. 

 
Behavioral Ratings–Curvature: Behavioral ratings on Amazon Mechanical Turk were obtained to assess 
the perceived curvature of both the texforms and the originals; 30 participants rated the curvature of the 
120 texforms, and another 30 participants rated the curvature of their 120 corresponding original images. 
Participants were asked, “How boxy or curvy is the thing depicted in this image?” and asked to respond 
using a 1-5 scale (1: Very curvy, 2: Mostly curvy, 3: Equally boxy and curvy, 4: Mostly boxy, 5: Very 
boxy). See Figure S4A for an illustration of the task. These ratings were averaged across participants, and 
then averaged across the five images in each classification group. This yielded two 24 x 1 vectors 
corresponding to the average perceived curvature of each group of texforms and of each group of original 
images. The squared Euclidean distance of all pairwise comparisons of these conditions was computed 
separately for texforms and originals, yielding two 276 x 1 feature vectors for curvature for modeling 
responses to texforms and originals; all dissimilarities were scaled between 0 and 1. See Figure S4B for a 
visualization of this data and a comparison of the curvature ratings between texforms and recognizable 
images. 

 



 
 

6 
 

CNN Features (Texforms & Originals):  The AlexNet architecture (2) as was trained using the 
conventional image classification task using the ImageNet dataset. The standard AlexNet training regime 
was adopted using a public code package (https://github.com/soumith/imagenet-multiGPU.torch) that was 
optimized for multi-threaded CNN training in Torch7. Specifically, stochastic gradient descent (SGD) 
optimization was used with 0.9 momentum, an initial learning rate of 0.02, and weight decay of 0.0005. 
Both the learning rate and the weight decay follow a pre-defined decreasing schedule (see train.lua from 
the code package) using a mini-batch size of 128, with 10,000 mini-batches per epoch over a total of 55 
training epochs. Standard data augmentation such as random horizontal flips and random 224-by-224 
crops were performed during training.  

 
Using the fully-trained network, CNN features were extracted from each unit in the CNN from both 
original and texform image sets.  Specifically, for each image and each convolutional filter, we computed 
the summed activation map of the filter (an m-by-m map where m is the output size of the convolutional 
layer), accounting for border effects by setting to zero all values in the activation map within 10% of the 
four edges. This procedure yielded five feature matrices for the original images of 120-by-64, 120-by-
192, 120-by-384, 120-by-256, and 120-by-256, corresponding to each of the five convolutional layers, 
and another set corresponding to the texform images. For the two fully-connected layers (layer 6 & 7), the 
activation level to each image was direct computed (no global summation required), resulting in two 
feature matrices of 120-by-4096, corresponding to layer 6 and 7, and another set for texform images. 
 
Each feature matrix was normalized by dividing the rows with its L2-norm, and the rows were averaged 
over the five images in each classifiability group. Finally, for each feature (column) of each feature 
matrix, we computed the pairwise squared Euclidean distance between all of the 24 conditions, yielding 
five 276-by-m representational dissimilarity matrices, where m is the number of convolutional filters for 
the corresponding layer. All dissimilarities were then scaled between 0 and 1. These RDMs were used to 
perform feature modeling of the individual CNN layers. 
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2. Extended Materials: Texform stimuli details 

Here, we provide additional details on (a) how the stimuli set was constructed (Fig. S1) (b) an overview 
of how basic-level recognition was assessed (Fig. S2A), (c) how classifiable the texforms are by their 
animacy/size, how these were used to form the nested groupings, and relationship between basic-level 
recognition and classifiability (Fig. S3, Fig. S2B), (d) the perceived curvature of the texforms and 
recognizable images (Fig. S4)  and (e) how recognizable the texforms were after the neuroimaging 
session (Fig. S5). 
 

 
Fig. S1. Overview of the procedure used to generate texforms. Original, color, images were converted to 
grayscale and matched for overall luminance and contrast within the superset of 240 images. Next, these 
normed images were placed in the “periphery” of the model on the uniform gray background. First and 
second-order image statistics (3) were measured and pooled within overlapping, tiled regions illustrated 
here (pooling window parameters, scaling = .5, AR = 1). Next, synthetic stimuli were generated by 
coercing random noise to have the similar image statistics within these pooling windows. The procedure 
was run for 50 iterations using a variant of gradient descent. This produced a synthesized image with two 
texforms, which were then cropped out. Norming tasks were then used to select a set of texforms that 
were unrecognizable at the basic-level (see below). 
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Texform Selection Details. Online recognition experiments were run to assess how recognizable each 
texform was. First, 18 participants guessed the identity of each of 240 texform images. Next, six new 
participants assessed the validity of these guesses. These participants were presented with the original 
images and all of the texform guesses and judged whether each guess could be “used to correctly 
describe” the original image (see Figure S2A). The proportion of guesses accepted as correct yielded a 
basic-level identification score for each image. Images in which a rater accepted more than 3/18 responses 
as correct were removed.  Next, 120 texforms and their corresponding originals were selected (30 images 
per category), with the constraints that the categories did not significantly differ in either aspect ratio or 
pixel area; all p >= .1).  On average, these 120 texforms were identified at the basic level <3% of the time.  
Finally, the overall luminance and contrast levels across all 240 images (120 texforms, 120 originals) 
equated using the SHINE toolbox (4) and the edges of all of images were blurred so that they gradually 
faded into their backgrounds.  
 

 
Figure S2. (A). Example trial from the basic-level identification task; raters determined whether the 
guesses could be used the describe the original image from which the texform was generated. (B). Basic-
level identification rate from the 18 norming participants as a function of animacy/size classification 
group for each object category; each point represents a texform image. X-axis position is jittered to show 
all points. 
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Figure S3.  (A) Schematic of the animacy/size classification tasks.  (B) The classifiability of each image 
is plotted for animacy (x-axis) and real-world size (y-axis); each dot corresponds to a texform image. The 
position of the dot reflects its classifiability score on both axes, the color of the dot indicates the actual 
condition of the texform (big/small animal/object), and the size of the dot indicates which of the 6 
classifiability groups it was assigned to, where larger dots represent groups of texform images that were 
better classified by their animacy and real-world size.  
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Figure S4. (A) Schematic of the perceived curvature task. (B). The perceived curvature of the texforms 
(y-axis) is plotted as a function of the perceived curvature of the recognizable, original images (x-axis); 
larger dots represent groups of images that were better classified by their animacy and real-world size.   
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Figure S5. Post-test recognition results for the neuroimaging participants.  After the scanning session, 
participants were told that the texforms actually were generated from real-world objects, and then 
completed a task in which they guessed what each texform might be. Note that all observers had seen 
each texform image eight times, then each original image 8 times, while in the scanner, before this test 
was taken. Three naïve observers rated whether the participants’ texform guesses could be used to 
describe the original images, and they were told to be generous with what they counted as correct. (A) 
The number of texforms recognized by each participant is plotted.  (B) The number of participants who 
recognized each texform is plotted; texforms are ordered according to their condition and composite 
classifiability score. (C) The item effects in B are plotted by the classifiability score of each item.  We did 
not find strong evidence that the more classifiable texforms were also the ones that were more likely to be 
recognized after the scanning session; if anything, the trend was in the opposite direction.  
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3. Supplement to Experiment 1 

Here, we first (a) provide additional details on how active OTC voxels were selected (Fig. S6), (b) show 
group preference maps (Fig. S7) and all individual subject preference maps (Fig. S8) for the animacy and 
object size distinctions, (c) plot group tripartite maps for direct comparison with Konkle & Caramazza 
(2013) (5) (Fig. S9), (d) plot posterior-to-anterior scatterplots of group-level animacy and object size 
preferences (Fig. S10), and (e) illustrate overall differences in response magnitude to texforms vs. 
recognizable images (Fig. S11).  
 
 
 

 
 
Figure S6. Schematic of how active OTC voxels were defined for use in Experiment 1. An 
anatomical mask of the occipitotemporal cortex was defined on the surface, with early visual 
regions (V1-V3) localized from the retinotopy protocol removed (left panel). Task-active voxels 
were defined from the contrast of all conditions > rest with t > 2 in either texform runs or 
original runs (middle panel).  Active OTC was taken as the intersection of these two masks and 
was used for subsequent analyses. This procedure was carried out in each participant.  
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Figure S7. Whole brain group topographies for the animacy and object size distinctions, shown 
separately for originals (left panels) and texforms (right panels).  
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Figure S8. All single-subject topographies in both hemispheres for the animacy (left panels) and 
object size (right panel) distinctions, shown separately for originals and texforms. Preferences 
are shown within task-active occipito-temporal voxels. 
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Figure S9.  (A). Anatomical sections (shown here at the group level) from posterior to anterior 
in blue to red. (B) The animacy preferences elicited by texforms (x-axis) and by originals (y-
axis) are plotted for each of the anatomical sections in the five subplots. Each point is a voxel. 
The x- and y-axes show strength of the animacy preference, computed as the absolute value of 
the difference between animal and object beta values. All points above the diagonal are voxels 
that show stronger animal/object preferences for original images than for texforms. Voxels 
where texforms and originals did not show the same preference are plotted in grey. (C) Object 
size preferences elicited by texforms (x-axis), and originals (y-axis) for each anatomical section.   
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Figure S10. Overall activation differences between originals and texforms are shown at the 
group level. Voxels that showed stronger responses to originals are colored in red, and voxels 
that showed greater response differences to texforms are colored in blue. 
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Figure S11.  Comparison with Konkle & Caramazza, 2013 (5). (A) Group tripartite preference 
maps shown for both texforms (left) and originals (right) within task-active voxels. 
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4. Supplement to Experiment 2 

Below, we show (a) maps of fixation stability for each participant (Fig. S12), (b) our procedure for 
defining location-tolerant voxels (Fig. S13), and (c) both group conjunction preference maps (Fig. S14) 
and all individual conjunction preference maps (Fig. S15). 
 
 

Figure S12.  Fixation distributions are shown for each of the seven participants of Experiment 2 
for whom we have eye-tracking data. The left column shows fixation distributions during time 
periods in which only a fixation dot was on the screen, and the right panel during time periods in 
which the stimuli were on screen at either an upper or lower visual location (in addition to the 
fixation dot). Note that while we were unable to obtain accurate calibrations for each participant, 
the deviations from fixation are highly similar between fixation and stimulus blocks. Thus, it is 
likely that this deviations from tight fixation reflect drift/noise in the calibration, rather than 
systematic looks towards the upper or lower visual field.   
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Figure S13.  The procedure for defining location-tolerant voxels is shown for a single 
participant. First, an anatomical mask was defined on the surface for each participant to include 
occipitotemporal voxels and exclude early visual voxels (V1-V3) localized from a separate 
retinotopy protocol. Next, location-tolerant voxels were computed for each contrast (e.g., 
animals > objects and objects > animal) within this anatomical mask (middle panel).  Finally, 
these two sets of location-tolerant voxels that prefer animals and objects, respectively, were 
fused together to create the final conjunction mask.  The same procedure was followed for the 
object size distinction. These masks were computed separately for original images and texform 
images, in each participant.  
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Figure S14. Group-level conjunction topographies for animacy (top) and object size (bottom) for 
texforms and originals. Preferences are shown within location-tolerant OTC voxels to originals 
(see Fig. S13). 
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Figure S15. All single-subject conjunction topographies are shown in both hemispheres for the 
animacy (upper panel) and object size (lower panel) distinctions, shown separately for originals 
and texforms. Preferences are shown within location-tolerant OTC voxels to originals (see Fig. 
S13). 
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5. Supplement to Predictive Modeling Analyses 

Below, we illustrate how reliable, task-active voxels were selected for the predictive modeling analyses 
(Fig. S16). We then report the results of additional modeling analyses long a posterior – anterior gradient 
of the ventral stream (Fig. S17, S18) and in early visual cortex (Fig. S19). 

 
 
 

 
Figure S16. The procedure for reliable OTC voxels is shown for a single participant. First, we 
started with the task active voxel mask, as defined in Figure S6.  Next, for each of these voxels, 
we extracted data from the condition-rich design (24 conditions), in odd and even runs in which 
original images were presented. The correlation between these two activation profiles was 
computed, and these voxel-wise split-half reliabilities are plotted in the middle panel. Voxels that 
are colored blue have slightly negative reliabilities. For the predictive modeling analysis, we 
excluded any voxel with a split-half reliability below zero. The right panel shows the final set of 
selected voxels for analysis for this participant. This voxel selection procedure was made a 
priori, with the motivation that it makes sense to only allow voxels that positively correlate with 
themselves in odd-even halves of the data to contribute to the final neural RDM. That being said, 
we also tested the impact of this choice in a post-hoc analysis, by repeating the analyses on the 
full set of active OTC voxels. The modeling results were extremely similar both qualitatively and 
quantitively.  
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Figure S17. Predictive modeling results by anatomical sections of occipito-temporal cortex for 
originals (A) and texforms (B).  
 
 

 
Figure S18. A summary of the results from Fig. S17 are shown, where the performance of each 
model across regions is plotted for both originals (A) and texforms (B). 
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Modeling in Early Visual Cortex (EVC).  Given that we generated texforms using a texture 
synthesis model that explains variance in V2/V4 (6, 7), we explored which feature spaces 
explained variance in early visual cortex by applying the same analytic method. Consistent with 
prior work, we found that Gabor-based models explained the most variance in early visual 
cortex, whereas models based on perceptual properties (e.g., perceived curvature) or category-
based models explained less variance.  
 

 
Figure S19. (A) Neural patterns in response to texforms in early visual cortex and predicted 
neural dissimilarities for selected models obtained through the same cross-validation procedure.  
(B) Average predicted model correlation (Kendall Tau-α) with individual subjects’ neural 
patterns in EVC. Data is plotted with respect to the noise ceiling, shown in light gray.  
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