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Supplementary Information Text
SI Materials and Methods.

Microfluidics. Microfluidic chips with a flow-focusing geometry were produced using the
standard soft lithographic techniques, i.e., SU-8/Si masters were used to make PDMS slides with
20%22 um (width/height) orifices. Inlets and outlets were made using a 1.2 mm biopsy punch
(Harris Uni-Core). PDMS slides were bound with glass slides using Atto plasma cleaner (Diener).
Immediately after bonding, chips were treated with 1% (w/v) poly(vinyl alcohol) Mowiol 23-88
(Kuraray Specialties Europe) for hydrophilic chips or Aquapel (PPG Industries) for hydrophobic
chips. MDE generation was made using piezoelectric pressure controller OB1 MKII (Elveflow) in
flow control mode. The inner water streams of cells (IW1) and substrate/antibiotic (IW2) were
mixed before the hydrophobic chip with MicroTee (P-890, IDEX). The joint stream was
sequentially emulsified in hydrophobic and hydrophilic chips using fluorocarbon oil (O) Novec
7500 with 2% (w/v) Pico-Surf 2 (Dolomite) and outer water (OW) phase (2% (w/v) Pluronic
F127 (Sigma-Aldrich), 0.1% Mowiol 23-88, and 50 mM potassium phosphate pH 7.2). The
characteristic flow rates were 3:3:3:20-50 pl/min for IW1:IW2:0:0OW phases.

Microbiota collection and storage. The study was approved by the Local Ethics Committee of
the Federal Research and Clinical Centre of Physical-Chemical Medicine (FRCC PCM),
conclusion No. 2017/02 from 13.04.2017. All donors provided written informed consent. The
healthy donor (D) was examined before collecting the fecal sample. The examination includes:
general blood test, biochemical blood test, ELISA blood screening for Lamblias, Toksokary,
Opisthorchy, Ascaris and Trichinella, hepatitis B and C test, HIV test, syphilis test, urinalysis,
and stool screening for Clostridium difficile, Campylobacter, Salmonella, EIEC, Shigella,
Rotavirus, Norovirus, Adenovirus, Cryptosporidium, Cyclospora, Giardia, and Isospora. The
patient (P) was diagnosed with ulcerative colitis confirmed by a colonoscopy before the stool
sample collection. Stool samples were suspended in 10 volumes of PBS, filtered through 40-pm
cell strainers (Greiner Bio-One), and washed with sterile medium for microbiota cryopreservation
composed from BHI (BD), 20% glycerol and 30% heat inactivated FBS (Gibco). Oral microbiota
samples (B) were collected from a healthy 3-4 year old East Siberian brown bear (Ursus arctos
collaris) using noninvasive probe immediately after capture in Siberian taiga (Novosibirsk
Region, Maslyaninsky District). Noninvasive probe containing the collected microbiota samples
was thoroughly washed with sterile medium for microbiota cryopreservation. The cell suspension
was immediately frozen in liquid nitrogen, transported in dry ice and stored in liquid nitrogen.
Selection of bacteria displaying anti-S. aureus activity. The target S. aureus cells producing
GFP reporter were vitally stained with sulfo-Cyanine5 NHS (Lumiprobe), washed, filtered using
20-um solvent filters (A-313, IDEX), and coencapsulated with microbiota suspension in MDE
droplets using 20-um microfluidic chips. Microbiota samples were unfrozen directly prior
encapsulation, resuspended in BHI broth (BD), and filtered through 40-um cell strainers (Greiner
Bio-One). After overnight incubation at 35°C, Calcein Violet AM (Thermo Fisher Scientific) was
added to the droplet emulsion to the final concentration of 10 uM. Subsequently, the droplets
with simultaneous sCy5"" GFP%, and Calcein Violet®®" fluorescence were sorted using
FACSAria III cell sorter (BD). Bacterial colonies were regenerated after plating on BHI-agar and
Columbia agar (Oxoid Ltd., UK) supplied with a 5% of sheep blood and tested for anti-S. aureus
activity using agar overlay assay. Bacterial clones demonstrating inhibition of S. aureus growth
were identified by mass spectrometry.

Identification of bacteria using mass spectrometry. Bacterial cells were spotted on a sample
spot of a MALDI target plate (MSP 96 target, ground steel; Bruker Daltonics) and were overlaid
with 2 uL of matrix solution HCCA (saturated solution of a-4-cyano-hydroxycinnamic acid;
Bruker Daltonics) in 50% acetonitrile (Sigma-Aldrich) and 2.5% trifluoroacetic acid solution
(Sigma-Aldrich). Mass spectra profiles were acquired using a Microflex spectrometer (Bruker



Daltonics). The molecular ions were measured automatically in linear positive ion mode with the
instrument parameters optimized for a range of 2,000-20,000 m/z. The software packages
flexControl 3.0 (Bruker Daltonics) and flexAnalysis 3.0 (Bruker Daltonics) were used for mass
spectra recording and processing. Spectra identification and analysis were carried out using the
MALDI Biotyper 3.0 (Bruker Daltonics). The identification was performed by comparing the
obtained spectra with the MALDI Biotyper 3.0 library (version 3.2.1.1).

Antimicrobial activity. Bacterial collection of clinical isolates was kindly provided by Lytech
Co. Ltd. The MICs for bacteria were determined by a serial two-fold dilution (0.1-256 pg/ml) in
Mueller-Hinton Broth (BD) or Anaerobe Basal Broth (Oxoid) in anaerobic conditions for
Bacteroides. MIC was defined as the lowest concentration of amicoumacins that prevented the
growth of the test organism in 96-well plate after 10-hour cultivation. Prolonged cultivation is
undesirable due to spontanecous Ami self-hydrolysis reaction (Figure 2D) and leads to
overestimated MICs. Bacterial growth time course was monitored using absorbance at 600 nm
measured using Varioskan Flash multimode reader (Thermo Fisher Scientific).

NGS sequencing. The selected MDE droplets were freeze dried and total DNA was isolated
using the QIAamp DNA Investigator Kit (Qiagen). Whole-genome amplification was performed
using the REPLI-g Single Cell Kit (Qiagen). Fragment libraries were prepared using the
NEBNext® DNA Library Prep Reagent Set for Illumina and the NEBNext® Multiplex Oligos for
[lumina® (96 Index Primers) (Illumina) according to the manufacturer’s instructions.
Sequencing of libraries was performed using the genetic analyzer HiSeq2500, the HiSeq® PE
Cluster Kit v4 — cBot™ and the HiSeq® SBS Kit v4 (250 cycles) (Illumina) according to the
manufacturer’s instructions. For individual strains, genomic DNA (100 ng for each sample) was
disrupted into 400-550 bp fragments by Covaris S220 System (Covaris, Woburn, Massachusetts,
USA). Fragment libraries were prepared using the NEBNext® DNA Library Prep Reagent Set for
[llumina and the NEBNext® Multiplex Oligos for Illumina® (96 Index Primers) (Illumina)
according to the manufacturer’s instructions. Sequencing of libraries was performed using the
genetic analyzer HiSeq2500, the HiSeq® PE Cluster Kit v4 — cBot™, and the HiSeq® SBS Kit
v4 (250 cycles) (Illumina) according to the manufacturer’s instructions.

Bioinformatics. Genome assemblies were performed using SPAdes 3.9.0 (1). Genomes were
annotated with prokka (2). Bacteria abundance in metagenome samples was assessed with
Metaphlan2 (3). Comparative analysis of Ami gene clusters (Fig. 2A) were obtained using
EMBOSS Stretcher and resulting protein identity was color-coded. Package genoplotR was used
to draw the plot. To detect the presence of the clusters similar to Ami cluster in various genomes,
genome annotations of all genomes available from NCBI Refseq database were downloaded in a
genebank format and amino acid sequences were blasted to proteins of Ami cluster of B. pumilus
124 as reference. Blastp search with 1e-5 e-value threshold was performed. Then we searched for
clusters of proteins with blast hits. We demanded that proteins with hits in these clusters were
separated from each other no longer than 10 kbp. A chain of such genes with the maximum
number of genes in it was further considered. To calculate synteny length, we summed length of
all fragments of reference sequence covered by blast HSPs (High Scoring Pairs) to a detected
cluster in query genome. To calculate the total blast score we summed scores of best hits for each
query sequence. R script to perform these operations is available at github
(https://github.com/paraslonic/ami). To build phylogenetic tree, we inferred 16S gene with
barrnap (https://github.com/tseemann/barrnap), aligned sequences with MUSCLE v3.8.31 (4) and
a Maximum Likelihood tree was built using the PhyML 3.1 tool (5). We performed all reciprocal
blastp alignments of protein sequences to obtain maximum likelihood tree for comparison of
different biosynthetic clusters plotted in. Blast scores of all hits were summed and normalized by

dividing it on the scores of self-hits: Score(i,j) = Score (i,j)/\/Score(i, i) * Score(j,j), where
i and j are different biosynthetic clusters. Then the maximum likelihood tree was built using 1 —
Score as an input to bionj function from R ape library. Tree then was rooted by the midpoint.
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Comparative analysis of gene clusters homologous to Ami cluster (Fig. 3) were obtained using
MultiGeneBlast (6). To obtain phylogenetic trees of different B. pumilis strains, we inferred one-
copy orthologs with Orthofinder 2.2.1 (7), and aligned their nucleotide sequences with MUSCLE
v3.8.31. Aligned sequences were concatenated by strain, and a Maximum Likelihood tree was
built using the PhyML 3.1 tool. Ami genes in different strains were considered as present if they
belonged to the same homology group (inferred with Orthofinder) as genes in B. pumilus 124
strain. Taxonomy tree of the bacteria encoding gens homologous to amiN was built using blastp
hits of B. pumilus 124 amiN on nt database ordered by e-value using 1e-65 as a cutoff. Multiple
cases of organisms with unidentified taxonomy were merged into one record for every e-value
range.

Cultivation of B. pumilus 124 and Ami purification. B. pumilus 124 was cultivated using LB
agar (BD) plates and 2YT broth (BD) supplemented with 100 mM NH3 and 50 mM potassium
phosphate buffer pH 7.5 at 30°C. For metabolomic studies, B. pumilus 124 was cultivated in
different conditions with «activated» (F) and «inactivated» (N) Ami production. The induction of
Ami production (F) was performed by cultivation for 24 hours using 25 c¢cm? culture flasks
without agitation in 5 ml volume. The cultivation conditions with reduced Ami production (N)
were achieved by cultivation in 10 ml volume using 50 ml centrifuge tubes with 250 rpm shaking.
B. pumilus 124 was cultivated for 24 hours using 750 ml flasks in 50 ml volume with 220 rpm
shaking for a high-scale Ami production. The cells were centrifuged at 10,000 g for 10 min. Ami
was extracted from supernatant with ethylacetate and dried by rotary evaporation. The extract was
dissolved in DMSO and fractionated on RP-HPLC Zorbax C8 (Agilent) column using buffer A
(20 mM NH4OAc pH 5.0, 5% ACN), buffer B (20 mM NH4OAc pH 5.0, 80% ACN); flow rate 5
ml/min; gradient rate 0—10 min (0% B), 10-12 min (0-40% B), 12—16 min (40-52% B), 16-17.5
min (52-67% B), 17.5-19 min (67-100% B). Finally, Ami was purified on Symmetry C18
(Waters) RP-HPLC column using buffer A and B; flow rate 1 ml/min; gradient rate 0—3 min (0%
B), 3—4 min (0-30% B), 4-11 min (30-37% B), 11-12 min (37-100% B). Amicoumacin and its
derivatives were monitored by absorbance, & 10! = 4380 M'cm™! for Ami (8).

Metabolomic analysis of Ami and its derivatives. Culture medium was collected after 24 hours
of cultivation and frozen in liquid nitrogen. Cells count in F and N samples were normalized
using absorbance at 600 nm. Cells were washed with 50 mM Tris-HC1 pH 7.2 and lysed by
vortexing with acid-washed glass beads (Sigma-Aldrich) on ice. Cell lysates were filtered using 3
kDa Amicon Ultra Centrifugal Filters (Millipore) and frozen in liquid nitrogen. Samples were
analyzed with an LC-MS/MS system consisting of a nanopump (G2226A) with a four-channel
microvacuum degasser (G1379B), a microfluidic chip cube (G4240-64000) interfaced to a Q-
TOF mass spectrometer (6530), a capillary pump (G1376A) with degasser (G1379B), and an
autosampler with thermostat (G1377A) (all Agilent technologies). All modules were controlled
by Mass Hunter software (version B.06.00, Agilent technologies). A microfluidic reversed-phase
HPLC chip (Zorbax 300SB-C18, 5-um particle size, 75-um i.d., and 150-mm length) was used to
separate the samples. A mixture of 96.9% water, 3% acetonitrile, and 0.1% formic acid (v/v) was
used as the sample loading buffer and buffer A. Buffer B was 90% ACN, 9.9% water, and 0.1%
formic acid (v/v). The samples were loaded on a trap-column at a flow rate of 3 ul/min for 5 min
and eluted with a linear 20-min gradient of 0-80% buffer B at a flow rate of 300 nl/min. After
each gradient, the column was washed with 100% buffer B for 5 min and reequilibrated with
buffer A for 5 min. Raw MS/MS data were analyzed by Agilent MassHunter workstation
software (B.06.00) with Qualitative Analysis (6.0.633.0) software. Acceptance criteria included a
match to retention time (within 0.015 minutes), isotope spacing and abundance, accurate mass
(within 5 ppm), and fragmentation spectra.

Ami phosphorylation by AmiN and dephosphorylation by AmiO. AmiN and amiO genes were
amplified from B. pumilus DNA by PCR and cloned into DHFR Control Template plasmid
(NEB) using Ndel/Kpnl restriction sites. Recombinant AmiN, AmiO and the respective 6xHis-
tagged proteins were produced in FE.coli BL21(DE3) using autoiduction protocol (9).
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Recombinant proteins were purified using metal affinity chromatography on cOmplete™ His-Tag
column (Roche), anion exchange chromatography on Mono Q (GE), and size exclusion
chromatography on Superdex 75 GL (GE). In vitro phosphorylation was performed in AmiN
reaction buffer (50 mM Tris-HCI pH 8.0, 10 mM Mg(OAc),, 0.1 mM EDTA, 1 mM ATP) using
1.4 nM AmiN and 60 uM Ami. /n vitro dephosphorylation was conducted in AmiO reaction
buffer (50 mM Tris-HCI pH 8.0, 100 mM NaCl, 1 mM MgCl,, 0.2 mM CoCls, 0.2 mM ZnCl,)
using 5 nM AmiO and 40 uM AmiA-P. Reaction mix was analyzed using Symmetry C18
(Waters) RP-HPLC column (1 mL/min, linear gradient 5-80% ACN with 20 mM NH4OAc pH
5.0, in 20 min). Reaction products were subsequently analyzed by LC-MS/MS spectrometry.
Reconstitution of AmiN and AmiO activity in B. subtilis 168. B. subtilis 168 yerl gene encodes
putative phosphotransferase, which is highly homologous to B. pumilus AmiN Kkinase.
Construction of B. subtilis 168 Ayerl strain was performed as described in (10). Briefly, a
fragment of the yerl gene  generated by PCR using yerl F  (5’-
TTATATGGATCCTATATGATGGGAGAGATGGAATG-3’) and yerl R (5°-
TTATATCTCGAGCGTAGTTGTCCTGGCTTTTC-3) primers was inserted into temperature-
sensitive pSC vector between BamHI and Xhol sites. Electrocompetent B. subtilis 168 cells were
transformed with pSC-yerl vector and cells carrying insertion at yer/ gene were selected at 37°C
on LB agar supplemented with 5 pg/ml erythromycin. Curing of the integrated vector was carried
out using pCRE-PAS plasmid. B. pumilis amiN and amiO genes were amplified with amiN_F (5’-
TTATATGGATCCCAGCATGCATAAAGATGTAAAAGC-3") and amiN_R (5°-
TTATATGACGTCTTAAGATTGACTTAGCTTTGTAAAGTCA-3’), and amiO F (5’-
TTATATGGATCCCAGCATGGGCTATATGGATCGTAAAAAAC-3’) and amiO R (5’-
TTATATGACGTCTTATGGGCGATAGGTGGACG-3") primer pairs, respectively. Obtained
PCR products were inserted into the pHT-01 vector (MoBiTech GmbH) between BamHI and
Aatll. For the phenotypic assay, the B. subtilis 168 Ayerl cells were transformed with either the
pHT-amiN, pHT-amiO or control pHTOI plasmid, and expression of the genes was induced with
ImM IPTG.

MS sample preparation and measurements. Dry pellets prior to mass spectrometry analysis
were resuspended in 500 pl of 20% acetonitrile in water (v/v). After brief rigorous vortexing the
samples were shaken for 10 min at 4°C, sonicated in an ice-cooled sonication bath for 10 min,
and centrifuged 10 min at 14.000 g at 4°C. Then 900 pl of mixture of 20% acetonitrile in water
with 0.1% formic acid (v/v) solution was added to 100 pul of supernatant. After brief rigorous
vortexing, 100 pl of diluted sample were transferred to Hamilton glass syringe (100 pl, Hamilton
Company, Romania) and placed into the KD Scientific Syringe Pumps (USA). The flow rate was
set to 500 nl/min. The mass spectra (Supplementary Fig. 13-18) were acquired in direct injection
and positive ionization mode using TripleTOF 5600+ mass spectrometer with a NanoSpray III
ion source (AB Sciex, Framingham, MA). We applied the following source parameters: the
nanospray needle voltage was set to 3,500 V, curtain gas was set to 50, ion source gas 1 was set
to 20, spray temperature was 150°C. MS1 and MS2 spectra were obtained with the following
parameters: mass range 50-2000 m/z, number of cycles 100, period cycle time 1000 ms, and
accumulation time 1000 ms. Collision-activated dissociation was performed with nitrogen gas
with the collision energy ramped from 10 to 70 V with step 1 V per 1 sec.

Sample preparation for proteomics. Reduction, alkylation, and digestion of the proteins were
performed as described previously (11). Briefly, sodium deoxycholate (SDC) reduction and
alkylation buffer pH 8.5 were added to a sample contained 100 pg protein so that the final
concentrations of protein, TRIS, SDC, TCEP, and 2-chloroacetamide were 1 mg/ml, 100 mM, 1%
(w/v), 10 mM and 40 mM, respectively. The solution was boiled for 10 min and the equal volume
of trypsin solution in 100 mM TRIS pH 8.5 was added in a 1:100 (w/w) ratio. After overnight
digestion at 37°C, peptides were acidified by 1% trifluoroacetic acid (TFA) for SDB-RPS
binding, and 20 pg was loaded on two 14-gauge StageTip plugs. Ethylacetate/1% TFA (125 pl)
was added, and the StageTips were centrifuged at 300 g. After washing the StageTips, peptides
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were eluted by 60 pl 80% acetonitrile/5% ammonia mixture. The collected material was stored at
-80°C. The peptides were suspended in 2% acetonitrile/0.1% TFA buffer and sonicated for 2 min
before the analyses.

Liquid chromatography and mass spectrometry of proteome samples. Approximately 1 ug of
peptides were loaded for 2 h gradient. Peptides were separated on a 25-cm 75-um i.d. column
packed in-house with Aeris Peptide XB-C18 2.6 um resin (Phenomenex). Reverse-phase
chromatography was performed with an Ultimate 3000 Nano LC System (Thermo Fisher
Scientific), which was coupled to the Q Exactive HF benchtop Orbitrap mass spectrometer
(Thermo Fisher Scientific) via a nanoelectrospray source (Thermo Fisher Scientific). Peptides
were loaded in buffer A (0.2% (v/v) formic acid) and eluted with a linear 120-min gradient of 4—
45% buffer B (0.1% (v/v) formic acid, 80% (v/v) acetonitrile) at a flow rate of 350 nl/min. The
column was washed with 95% buffer B for 5 min and reequilibrated with buffer A for 5 min after
each gradient. Column temperature was maintained at 40°C. Peptides were analyzed on a mass
spectrometer, with one full scan (300-1,400 m/z, R = 60,000 at 200 m/z) at a target of 3e6 ions
and max ion fill time 60 ms, followed by up to 15 data-dependent MS/MS scans with higher-
energy collisional dissociation (HCD) (target 1e5 ions, max ion fill time 30 ms, isolation window
1.2 m/z, normalized collision energy (NCE) 28%, underfill ratio 2%), detected in the Orbitrap (R
= 15,000 at fixed first mass 100 m/z). Other settings: charge exclusion - unassigned, 1, >6;
peptide match — preferred; exclude isotopes — on; dynamic exclusion - 30 s was enabled.
Proteomic data analysis. Label-free protein was quantified by MaxQuant software version
1.5.6.5 and a common contaminants database by the Andromeda search engine (12), with
cysteine carbamidomethylation as a fixed modification and N-terminal acetylation and
methionine oxidations as variable modifications. Peak lists were searched against the database of
CDS sequences which was obtained after genome annotation with prokka (2). The FDR was set
to 0.01 for both proteins and peptides with a minimum length of seven amino acids. Peptide
identification was performed with an allowed initial precursor mass deviation up to 20 ppm and
an allowed fragment mass deviation of 20 ppm. The downstream bioinformatics analysis was
carried out with Perseus (13) (versions 1.5.5.1). Protein groups only identified by site, only from
peptides identified also in the reverse database, or belonging to the common contaminants
database, were excluded from the analyses. For Student’s t-test, missing values were imputed
with a width of 0.3 and a downshift of 1.8 over the total matrix. Two sample tests were performed
in Perseus with s0 set to 0. Label free quantification was performed with a minimum ratio count
of 1 (14). To quantify proteins in each sample, we used the iBAQ algorithm, implemented into
MaxQuant software (15). The normalization of each protein's iBAQ value to the sum of all iBAQ
values generates a relative iBAQ (riBAQ) value corresponding to the mole fraction of each
protein (16).



A °
°
°
°
' <
o @%’4-
sc.//,/""
& & <
" ¢
PR ) > L
& 8 b, "”9/@,);5’?.»
So. S
.B' Bingmay o s
Ongensis
B. parabrevis
Brevibacillus sp-
B. agri
Bbfe"l? [ ]
\ém{.{\d )
G- “0(\9? .
[ 0‘\\\)\0\*3\_0 AQ"}_ ) ‘\',-' %, 5"’@-
R A Y T
S FTHFLEIL 2R Y B
FNFFsssEETR R 2
S 5 % 83 2B
FIxEsE 1%
Yoy < 88 ERE .
¥ X o B X o
'3
o
Total blast score, x10° ® . * Ami cluster genes
0 05 10 15 20 28 0 3 6 9 12 15
B o] : o Ami
0 ; cluster
H genes
o
(SO . } 15
n i Qes
=N ol I12
2 .
o
% o ’
s
o} 6
5 ™ NS :
1 :
3 3 e 3
i :
3 T A -,
L w0 |
w® ° » o
ey @
=]
[ g— H
— | L]
o
)
O_,
o
T I \ T T \ N \
0 2 4 6 8 10 12 14

Synteny length, x103

Fig. S1. (4) Phylogenetic tree with a total blast score to B. pumilus 124 Ami cluster and
homologous genes count coded with color. The best match from all strains of species is chosen.
The species with the top 50 synteny length are illustrated. Representative species with clusters
discussed in paper (Fig. 3) are designated with gray dots. Phylogeny is reconstructed based on
16S gene. (B) Total blast score to B. pumilus 124 Ami cluster and synteny length of clusters in
different species. Count of different Ami genes encoded with a color gradient. The dotted line
shows the top 50 hits ordered by a synteny length.
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Fig. S2. Comparative metabolomic analysis of Ami and its derivatives after B. pumilus 124
cultivation in «activated» (F) and «inactivated» (N) conditions. **** represents how F differs from
N, p<0.0001. The data represent mean + SD. ND indicates that the peak area is less than 10* AU.
AmiA (Ami) denotes amicoumacin A, AmiB — amicoumacin B, AmiA-P and AmiB-P —
phosphorylated AmiA and AmiB, respectively.
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Fig. S3. Slimy biofilm produced by Bacillus pumilus and its role in suppressing the cell growth of
Staphylococcus aureus. Coculture of S. aureus producing GFP reporter and Ami producing B.
pumilus 124 (4, C) or reference B. pumilus 123 without Ami cluster (B, D) after 7 hours and 24
hours of cocultivation respectively. Coculture of S. aureus and B. pumilus 124 following 9 hours
of coincubation prior (E) and after (F) treatment with DNase for 10 min.
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Faecalibacterium prausnitzii
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Fig. S6. Cultivation of the microbiota samples in droplets results in the fast-growing bacteria
enrichment as well as depletion of particular slow-growing or unculturable population. The heat
map indicates bacterial species that are culturable in MDE microcompartments (Culturable),
partially depleted after cultivation in MDE (Slow-growing), or deplete below the level of less
than 0.1% in overall population (Rare/unculturable).
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Fig. S7. Values of scores obtained from the shift of microbiota composition after single-cell
cultivation in MDE compartments in the presence of Ami (left). Bars of the plot (right) represent
confidential intervals (oo = 0.05) of predicted MIC obtained according to the scores (left). Grey
points indicate mean MIC obtained in vitro for particular bacterial strains, the vertical lanes show
mean values of predicted MIC.
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Fig. S8. Comparison between microbiota of the patient with colitis (P) and a healthy donor (D).
The heat maps indicate the portion of bacteria in each microbiota sample (left) and bacterial
species that are overrepresented (red) or underrepresented (green) in P vs D (P/D).
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Fig. S9. (4) Presence of Ami cluster genes in different strains of B. pumilus is designated with
orange color. Unrooted phylogenetic tree is shown on the left. (B) Maximum likelihood tree
based on alignment of amiN gene. The circles designate the strains with Ami cluster present. A
huge difference is observed between amiN genes in strains with and without cluster.
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Fig. S12. MS/MS spectrum of amicoumacin B (AmiB) and its phosphorylated analog (AmiB-P).
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Fig. S13. MS spectra of amicoumacin A in direct injection, positive ionization mode in the scan

range 410-450 m/z. Amicoumacin A [M+H]+ m/z
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Fig. S14. MS/MS spectrum of amicoumacin A ion. Fragmentation spectrum was obtained
through direct injection method in positive ionization mode with collision energy 21.9 eV (ramp

8 ppm. Detected fragments

mode used); amicoumacin A parent ion [M+H]+ m/z=424.2116, A

m/z 250.1452, 407.1842.
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Fig. S16. MS/MS spectrum of amicoumacin B ion. Fragmentation spectrum was obtained using
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Fig. S17. Full-scan MS spectra of amicoumacin C in direct injection, positive ionization mode in

the scan range 360 - 465 m/z. Amicoumacin C [M+H]+ m/z=407.1797, A
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Table S1. The influence of heterologous expression of amiN on MIC of model bacteria E.
coli BL21(DE3), B. subtilis 168 and B. subtilis 168 Ayerl gene knock out.

MIC, pg/ml
Strain
WT +amiN
E. coli BL21(DE3) 16 >100
B. subtilis 168 >100 -
B. subtilis 168 08 >100

Ayerl
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	Supplementary Information Text
	Fig. S1. (A) Phylogenetic tree with a total blast score to B. pumilus 124 Ami cluster and homologous genes count coded with color. The best match from all strains of species is chosen. The species with the top 50 synteny length are illustrated. Representative species with clusters discussed in paper (Fig. 3) are designated with gray dots. Phylogeny is reconstructed based on 16S gene. (B) Total blast score to B. pumilus 124 Ami cluster and synteny length of clusters in different species. Count of different Ami genes encoded with a color gradient. The dotted line shows the top 50 hits ordered by a synteny length.
	Fig. S2. Comparative metabolomic analysis of Ami and its derivatives after B. pumilus 124 cultivation in «activated» (F) and «inactivated» (N) conditions. **** represents how F differs from N, p<0.0001. The data represent mean ± SD. ND indicates that the peak area is less than 104 AU. AmiA (Ami) denotes amicoumacin A, AmiB – amicoumacin B, AmiA-P and AmiB-P – phosphorylated AmiA and AmiB, respectively.
	Fig. S3. Slimy biofilm produced by Bacillus pumilus and its role in suppressing the cell growth of Staphylococcus aureus. Coculture of S. aureus producing GFP reporter and Ami producing B. pumilus 124 (A, C) or reference B. pumilus 123 without Ami cluster (B, D) after 7 hours and 24 hours of cocultivation respectively. Coculture of S. aureus and B. pumilus 124 following 9 hours of coincubation prior (E) and after (F) treatment with DNase for 10 min.
	Fig. S4. In vitro activity of enzymes AmiN and AmiO. (A) Phosphorylation of Ami by kinase AmiN. (B) Dephosphorylation of the phosphorylated Ami by phosphatase AmiO. Ami is marked with blue; the phosphorylated Ami - with red. Ami-P stands for the phosphorylated Ami.
	Fig. S5. Composition of microbiota samples before and after cultivation in MDE microcompartments. (A) Venn diagram shows composite resemblance between isolated microbiota samples on the level of bacterial species. (B) Principal component analysis of microbiota samples before and after cultivation in droplets. Bear oral microbiota (B), human fecal microbiota from a patient with colitis (P), a healthy human donor (D), and human oral microbiota (hO). Subscripts indicate the samples selected after cultivation in droplets with various Ami concentrations (0, 10 and 100 µg/ml respectively).
	Fig. S6. Cultivation of the microbiota samples in droplets results in the fast-growing bacteria enrichment as well as depletion of particular slow-growing or unculturable population. The heat map indicates bacterial species that are culturable in MDE microcompartments (Culturable), partially depleted after cultivation in MDE (Slow-growing), or deplete below the level of less than 0.1% in overall population (Rare/unculturable).
	Fig. S7. Values of scores obtained from the shift of microbiota composition after single-cell cultivation in MDE compartments in the presence of Ami (left). Bars of the plot (right) represent confidential intervals (α = 0.05) of predicted MIC obtained according to the scores (left). Grey points indicate mean MIC obtained in vitro for particular bacterial strains, the vertical lanes show mean values of predicted MIC.
	Fig. S8. Comparison between microbiota of the patient with colitis (P) and a healthy donor (D). The heat maps indicate the portion of bacteria in each microbiota sample (left) and bacterial species that are overrepresented (red) or underrepresented (green) in P vs D (P/D).
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