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1 Introduction
In this supplementary material we start by introducing two different, yet related,
notions of representing one Hamiltonian with another. The first notion is
encoding. This is when a Hamiltonian of a certain form exactly represents one
of a different form; for example, representing a matrix with complex entries
by one with real entries by expressing each complex number as a pair of real
numbers. The second notion is simulation. This is when the low-energy part of
some Hamiltonian is close to an encoding of another Hamiltonian.

After drawing some consequences from our definitions, we go on to introduce
our key technique: the use of perturbative gadgets for Hamiltonian simulation.
We then show that a number of apparently simple Hamiltonians are universal
simulators: they can simulate any other Hamiltonian. Finally, we discuss some
corollaries of our results for quantum complexity theory and adiabatic quantum
computation.

2 Notation and terminology
As usual, B(H) denotes the set of linear operators acting on a Hilbert space
H. For conciseness, we sometimes also use the notation Mn for the set of all
n × n matrices with complex entries. Hermn denotes the subset of all n × n
Hermitian matrices. 1 denotes the identity matrix. For integer n, [n] denotes
the set {1, . . . , n}.

If R,R′ are rings, a ring homomorphism φ : R → R′ is a map that is
both additive and multiplicative: ∀a, b ∈ R : φ(ab) = φ(a)φ(b) and φ(a+ b) =
φ(a) + φ(b). Similarly, a ring anti-homomorphism is an additive map that is
anti-multiplicative: φ(ab) = φ(b)φ(a). If φ(1) = 1, we say the map is unital.

For a ring R, the corresponding Jordan ring Rj is the ring obtained from R
by replacing multiplication with Jordan multiplication {ab} := ab+ba. A Jordan
homomorphism φ on R is an additive map such that ∀a, b ∈ R : φ(ab + ba) =
φ(a)φ(b) + φ(b)φ(a). If R is not of characteristic 2, this is equivalent to the
constraint that ∀a ∈ R : φ(a2) = φ(a)2. Note that any ring homomorphism is a
Jordan homomorphism, but the converse is not necessarily true.

spec(A) denotes the spectrum of A ∈ Mn, i.e. the set of values λ ∈ C
such that A − λ1 is not invertible. (This of course coincides with the set of
eigenvalues, ignoring multiplicities.) We say that φ :Mn →Mm is invertibility-
preserving if φ(A) is invertible in Mm for all invertible A ∈Mn. We say that φ
is spectrum-preserving if spec(φ(A)) = spec(A) for all A ∈Mn.

For an arbitrary Hamiltonian H ∈ B(Cd), we let P≤∆(H) denote the orthog-
onal projector onto the subspace S≤∆(H) := span{|ψ〉 : H |ψ〉 = λ |ψ〉 , λ ≤ ∆}.
We also let H ′|≤∆(H) denote the restriction of some other arbitrary Hamiltonian
H ′ to S≤∆(H), and write H|≤∆ := H|≤∆(H) and H≤∆ := HP≤∆(H).

We say that a Hamiltonian H ∈ B((Cd)⊗n) is k-local if it can be written as
a sum of terms such that each hi acts non-trivially on at most k subsystems
of (Cd)⊗n. That is, hi ∈ B((Cd)⊗k) and H =

∑
i hi ⊗ 1 where the identity

in each term in the sum acts on the subsystems where that hi does not. An
operator on a composite Hilbert space “acts trivially” on the subsystems where
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it acts as identity, and “acts non-trivially” on the remaining subsystems. We
will often employ a standard abuse of notation, and implicitly exend operators
on subsystems to the full Hilbert without explicitly writing the tensor product
with identity, allowing us e.g. to write simply H =

∑
hi. We say that H is local

if it is k-local for some k that does not depend on n1.
We let X, Y , Z denote the Pauli matrices and often follow the condensed-

matter convention of writing XX for X ⊗X etc. For example, XX + Y Y +ZZ
is short for X ⊗X + Y ⊗ Y +Z ⊗Z and is known as the Heisenberg (exchange)
interaction. The XY interaction is XX + Y Y .

Let M be a k-qudit Hermitian matrix. We say that U ∈ SU(d) locally
diagonalises M if U⊗kM(U†)⊗k is diagonal. We say that a set S of Hermitian
matrices is simultaneously locally diagonalisable if there exists U ∈ SU(d) such
that U locally diagonalises M for all M ∈ S. Note that matrices in S may act
on different numbers of qudits, so can be of different sizes.

We will often be interested in families of Hamiltonians. For a subset S of
interactions (Hermitian matrices on a fixed number of qudits), we define the
family of S-Hamiltonians to be the set of Hamiltonians which can be written
as a sum of interaction terms where each term is either picked from S, with an
arbitrary positive or negative real weight, or is an arbitrarily weighted identity
term. For example, H is a {ZZ}-Hamiltonian if it can be written in the form
H = α1 +

∑
i<j βijZiZj for some α, βij ∈ R. A model is a (possibly infinite)

family of Hamiltonians. Typically the Hamiltonians in a model will be related in
some way, e.g. all Hamiltonians with nearest-neighbour Heisenberg interactions
on an arbitrarily large 2D lattice (the “2D Heisenberg model”).

3 Hamiltonian encodings
Any non-trivial simulation of one Hamiltonian with another will involve encoding
the first within the second in some way. Write H ′ = E(H) for some “encoding”
map E that encodes a Hamiltonian H into some Hamiltonian H ′. Any such
encoding should fulfil at least the following basic requirements. First, any
observable on the original system should correspond to an observable on the
simulator system. Second, the set of possible values of any encoded observable
should be the same as for the corresponding original observable. In particular,
the energy spectrum of the Hamiltonian should be preserved. Third, the encoding
of a probabilistic mixture of observables should be the same as a probabilistic
mixture of the encodings of the observables.

To see why this last requirement holds, imagine that we are asked to encode
observable A with probability p, and observable B with probability 1− p. Then,
for any state ρ on the simulator system, the expected value of the encoded
observable acting on ρ should be the same as the corresponding probabilistic
mixture of the expected values of the encoded observables A and B acting on
ρ. In order for this to hold for all states ρ, we need the mixture of observables
pA + (1 − p)B to be encoded as the corresponding probabilistic mixture of

1Technically, this makes sense only for families of Hamiltonians H, where we consider n to
be growing.
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encodings of A and B.
These operational requirements correspond to the following mathematical

requirements on the encoding map E :

1. E(A) = E(A)† for all A ∈ Hermn.

2. spec(E(A)) = spec(A) for all A ∈ Hermn.

3. E(pA + (1 − p)B) = pE(A) + (1 − p)E(B) for all A,B ∈ Hermn and all
p ∈ [0, 1].

Of course, there are many other desiderata that we would like E to satisfy,
such as preserving the partition function, measurement outcomes, time-evolution,
local errors, and others. For the Hamiltonian itself, we almost certainly want E
to not only be convex, but also real-linear: E(

∑
i αihi) =

∑
i αiE(hi), so that

a Hamiltonian expressed as a sum of terms can be encoded by encoding the
terms separately. However, we will see later that meeting just the above three
basic requirements necessarily implies also meeting all these other operational
requirements (which we will make precise).

It turns out there is a simple and elegant characterisation of what such
encodings have to look like. To prove this, we will need the following theorem
concerning Jordan ring homomorphisms.

Theorem 1 (follows from [JR52], Theorem 4 and [Mar67], Theorem 2)
For any n ≥ 2, any Jordan homomorphism of the Jordan ring Hermn can be
extended in one and only one way to a homomorphism of the matrix ring Mn.

Theorem 1 was shown by Jacobson and Rickart for n ≥ 3 [JR52], and by
Martindale for n = 2 [Mar67], in each case in a far more general setting than we
need here.

Lemma 2 Any unital, invertibility-preserving, real-linear map φ : Hermn →
Hermm is a Jordan homomorphism.

Proof The argument is standard (see e.g. [HŠ03]).
φ(H − λ1) = φ(H)− λ1, thus spec(φ(H)) ⊆ spec(H) since φ is invertibility-

preserving. In particular, spec(φ(P )) ∈ {0, 1} for every projector P . Since φ(P )
is also Hermitian, this implies φ(P ) is a projector.

By the spectral decomposition, any H ∈ Hermn can be decomposed as
H =

∑
i λiPi where Pi are mutually orthogonal projectors and λi ∈ R. For

i 6= j, Pi + Pj is a projector, thus φ(Pi + Pj) is a projector and (φ(Pi + Pj))
2 =

φ(Pi) + φ(Pj), so that φ(Pi)φ(Pj) + φ(Pi)φ(Pj) = 0. Therefore, φ(H)2 =∑
i λ

2
iφ(Pi)

2 +
∑
i6=j λiλjφ(Pi)φ(Pj) =

∑
i λ

2
iφ(Pi) = φ(H2). �

Theorem 3 (Encodings) For any map E : Hermn → Hermm, the following
are equivalent:

(i). For all A,B ∈ Hermn, and all p ∈ [0, 1]:

1. E(A) = E(A)†
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2. spec(E(A)) = spec(A)

3. E(pA+ (1− p)B) = pE(A) + (1− p)E(B).

(ii). There exists a unique extension E ′ :Mn →Mm such that E ′(H) = E(H)
for all H ∈ Hermn and, for all A,B ∈Mn and x ∈ R:

a. E ′(1) = 1

b. E ′(A†) = E ′(A)†

c. E ′(A+B) = E ′(A) + E ′(B)

d. E ′(AB) = E ′(A)E ′(B)

e. E ′(xA) = xE ′(A).

(iii). There exists a unique extension E ′ :Mn →Mm such that E ′(H) = E(H)
for all H ∈ Hermn with E ′ of the form

E ′(M) = U
(
M⊕p ⊕ M̄⊕q

)
U† (1)

for some non-negative integers p, q and unitary U ∈Mm, where M⊕p :=⊕p
i=1M and M̄ denotes complex conjugation.

We call a map E satisfying (i) to (iii) an encoding.

Note that (iii) is basis-independent, despite the occurrence of complex con-
jugation; taking the complex conjugation with respect to a different basis is
equivalent to modifying U , which just gives another encoding. Given that E ′
is unique, for the remainder of the paper we simply identify E ′ with E . In
particular, this allows us to assume that E is of the form specified in part (iii).
The characterisation (1) can equivalently be written as

E ′(M) = U
(
M ⊗ P + M̄ ⊗Q

)
U† (2)

for some orthogonal projectors P and Q such that P +Q = 1; this alternative
form will sometimes be useful below. We think of the system on which P and Q
act as an ancilla, and often label this “extra” subsystem by the letter E.

Proof (i) ⇒ (ii):
We first show that E is a Jordan homomorphism. Condition (i)1 states that E
preserves Hermn, and condition (i)2 implies that E is unital and invertibility-
preserving on Hermn, with E(0) = 0. We next check that E(0) = 0 together
with condition (i)3 are equivalent to real-linearity of E . For any λ < 0, setting
p = λ/(λ− 1), B = pA/(p− 1) and using condition (i)3 gives

0 = E(0) = pE(A) + (1− p)E(pA/(p− 1)) ⇔ λE(A) = E(λA). (3)

Apply (3) to λA to get E(λ2A) = λ2E(A), showing that E is homogeneous for
all real scalars. Additivity follows by combining condition (i)3 and homogeneity:
E(A+B) = E(2A)/2 + E(2B)/2 = E(A) + E(B). Therefore E is also real-linear
so by Lemma 2 E is a Jordan homomorphism.
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By Theorem 1, there exists a unique homomorphism E ′ :Mn →Mm such
that E ′(H) = E(H) for all H ∈ Hermn. As E ′ agrees with E on Hermn, it
satisfies (ii)a. As E ′ is a homomorphism, it satisfies (ii)c and (ii)d by definition;
this also implies that E ′(xA) = E ′(x1)E ′(A) = E(x1)E ′(A) = xE ′(A) for any
x ∈ R, so (ii)e holds.

We finally prove (ii)b. It is sufficient to show that E ′(i1)† = −E ′(i1), because
if this holds we can expand any matrix A ∈ Mn as A = B + iC for some
Hermitian matrices B and C to obtain

E ′(A†) = E ′(B − iC) = E ′(B)− E ′(C)E ′(i1) = E ′(B)† + E ′(C)†E ′(i1)† (4)

= E ′(B + iC)† = E ′(A)†. (5)

To show E ′(i1)† = −E ′(i1), we first write i1 as a linear combination of products
of Hermitian matrices. That this can be done is an immediate consequence of
the fact that Mn is the enveloping associative ring of Hermn. However, it can
also be seen explicitly by writing

i |j〉〈j| = |j〉〈j| (i |j〉〈k| − i |k〉〈j|)(|j〉〈k|+ |k〉〈j|) (6)

for any j, and some k 6= j; summing this product over j, we obtain i1. Thus
we can write i1 =

∑
j AjBjCj for Hermitian matrices Aj , Bj , Cj . By taking

adjoints on both sides, it follows that −i1 =
∑
j CjBjAj . So we have

E ′(i1)† = E ′
(∑

j

AjBjCj

)†
=
(∑

j

E(Aj)E(Bj)E(Cj)
)†

(7)

=
∑
j

E(Cj)E(Bj)E(Aj) = E ′
(∑

j

CjBjAj

)
(8)

= E ′(−i1) = −E ′(i1). (9)

(ii) ⇒ (iii):
Existence and uniqueness of E ′ were already shown in the previous part. In
the proof of the remaining claim, for readability we just use E to denote this
unique extension. First define the complex structure J := E(i1) ≡ E(i) (where
the latter notation is a convenient shorthand). We have

J2 = E(i)E(i) = E(i2) = E(−1) = −1, (10)

thus J has eigenvalues ±i. Furthermore,

J† = E(i)† = E(i†) = −E(i) = −J, (11)

so J is anti-Hermitian, hence diagonalisable by a unitary transformation.
For any A ∈ Hermn, we have

JE(A) = E(i)E(A) = E(iA) = E(Ai) = E(A)J, (12)
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so that [E(A), J ] = 0. Thus E(A) and J are simultaneously diagonalisable for all
A. H = H+ ⊕H− therefore decomposes into a direct sum of the ±i eigenspaces
of J , on which E(A) = A+ ⊕A− acts invariantly.

Now, restricting to either of these invariant subspaces,

E(A)|± = A± (13)

E(iA)|± = JA± = ±iA± (14)

E(AB)|± = E(A)E(B)|± = A±B± (15)

E(A†)|± = E(A)†|± = A†±. (16)

Thus E = E+ ⊕ E− decomposes into a direct sum of a *-representation E+(A) :=
E(A)|+ and an anti-*-representation1 E−(A) := E(A)|−. Since for any vector
|ψ〉 ∈ Cm, E±(1) |ψ〉 = 1 |ψ〉 = |ψ〉, these (anti-)*-representations are necessarily
non-degenerate.

By a standard result on the representations of finite-dimensional C*-algebras
[Dav91, Corollary III.1.2], any non-degenerate *-representation of Mn is uni-
tarily equivalent to a direct sum of identity representations. If φ is an anti-
*-homomorphism, let ϕ(A) := φ(A). Then ϕ(iA) = φ(iA) = −iφ(A) = iϕ(A),
ϕ(A + B) = ϕ(A) + ϕ(B), ϕ(A†) = ϕ(A)†, and ϕ(AB) = ϕ(A)ϕ(B). Thus
φ(A) = ϕ(A) where ϕ is a *-homomorphism. Therefore, any non-degenerate
anti-*-representation is unitarily equivalent to a direct sum of complex conjugates
of identity representations, which completes the argument.

(iii) ⇒ (i) can readily be verified directly. �

The above theorem characterises encodings of observables. This immediately
tells us how to encode physical systems themselves, expressed as Hamiltonians:
since the Hamiltonian itself is an observable, the encoding map must have the
same characterisation.

It is easy to see from the characterisation in part (iii) of the Theorem
that any encoding preserves all interesting physical properties of the original
Hamiltonian. For example, the set of eigenvalues is preserved, up to possibly
duplicating each eigenvalue the same number of times, implying preservation of
the partition function (up to an unimportant constant factor). It is also easy
to see that any encoding E properly encodes arbitrary quantum channels: if
{Ek :

∑
k E
†
kEk = 1} are the Kraus operators of the channel, then∑

k

E(Ek)†E(Ek) = 1. (17)

3.1 A map on states, Estate

We now show that, for any encoding E , there exists a corresponding map Estate

that encodes quantum states ρ such that encoded observables E(A) applied to
encoded states Estate(ρ) have correct expectation values.

1By “anti-*-representation” we mean an anti-linear algebra homomorphism, not a
*-antihomomorphism (which would be a linear map preserving adjoints that reverses the
order of multiplication).
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First, note that for any observable A and any state ρ′ on the simulator system,
we have

Tr(E(A)ρ′) = Tr[U(A⊗ P + Ā⊗Q)U†ρ′] (18)

= Tr[(A⊗ 1)(1⊗ P )U†ρ′U)] + Tr[(Ā⊗ 1)(1⊗Q)U†ρ′U ] (19)

= Tr[AF (ρ′)] + Tr[Ā B(ρ′))] = Tr(Aρ) (20)

where

F (ρ′) = TrE [(1⊗ P )U†ρ′U ], B(ρ′) = TrE [(1⊗Q)U†ρ′U ], (21)

ρ = F (ρ′) +B(ρ′) (22)

and we label the second subsystem E as discussed after (2). Note that F (ρ′)
and B(ρ′) are both positive but not necessarily normalised, but ρ is normalised.

Therefore any map Estate(ρ) on states ρ such that ρ = F (Estate(ρ))+B(Estate(ρ))
will preserve measurement outcomes appropriately. One natural choice is

Estate(ρ) =

{
U(ρ⊗ σ)U† for some σ such that Pσ = σ if P 6= 0

U(ρ̄⊗ σ)U† for some σ such that Qσ = σ otherwise.
(23)

Then in the former case F (Estate(ρ)) = ρ, B(Estate(ρ)) = 0; and in the latter case
the roles of F and B are reversed.

We now show that Estate simulates time-evolution correctly too. We have

F (e−iE(H)tρ′eiE(H)t) = e−iHtF (ρ′)eiHt, (24)

B(e−iE(H)tρ′eiE(H)t) = eiHtB(ρ′)e−iHt. (25)

This is why they are labelled with the letters F andB: the F part evolves forwards
in time while the B part evolves backwards in time. Taking ρ′ = Estate(ρ), we
have proven the following result.

Proposition 4 For any encoding E, the corresponding map Estate satisfies the
following:

(i). Tr (E(A)Estate(ρ)) = Tr(Aρ)

(ii). For any time t,

e−iE(H)tEstate(ρ)eiE(H)t =

{
Estate(e−iHtρeiHt) if p ≥ 1

Estate(eiHtρe−iHt) if p = 0.
(26)

It is worth highlighting the last point. We see that if p ≥ 1, evolving according
to E(H) for time t simulates evolving according to H for time t, as we would
expect; but that if p = 0, we simulate evolution according to H for time −t. That
is, if our encoding only includes copies of H̄, we simulate evolution backwards in
time. To avoid this issue, we define the concept of a standard encoding as one
where p ≥ 1, and hence which is able to simulate evolution forward in time.

Definition 5 (Standard encoding) An encoding E(M) = U(M⊕p⊕M̄⊕q)U†
is a standard encoding if p ≥ 1.
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3.1.1 Gibbs-preserving state mappings

The choice of Estate in (23) is convenient, as it allows us to use the same mapping
E for both the Hamiltonian and for observables. However, it does not map Gibbs
states e−βH/Tr(e−βH) of the original system to Gibbs states e−β

′H′/Tr(e−β
′H′)

of the simulator. If we have limited ability to manipulate or prepare states of the
simulator, it may be difficult to prepare a state of the form (23). At equilibrium,
the system will naturally be in a Gibbs state. From this perspective, it would be
more natural if the state mapping identified Gibbs states of the original system
with Gibbs states of the simulator.

An alternative choice of Estate does map Gibbs states to Gibbs states:

Estate(ρ) =
E(ρ)

Tr[E(ρ)]
=

1

p+ q
U(ρ⊗ P + ρ̄⊗Q)U† (27)

where p = Tr(P ) and q = Tr(Q). However, to obtain the correct measurement
outcome probabilities, we now need to choose a slightly different mapping for
observables:1

Emeas(A) =

{
p+q
p U(A⊗ P )U† if P 6= 0
p+q
q U(Ā⊗Q)U† otherwise.

(28)

For simplicity, in the remainder of the paper we will state and prove our
results for the choice of state mapping Estate from (23), so that both Hamiltonians
and observables are encoded by E . However, our results also go through with the
appropriate minor modifications for the choice of Gibbs-preserving Estate from
(27), where the simulator Hamiltonian is still constructed using E but observables
are encoded by the Emeas from (28).

Note that Emeas has been chosen so that measuring Emeas(A) will only pick
up the F (ρ′) part of a state ρ′ on the simulator. We therefore include results
concerning the behaviour of F , in order to cover the choice of Estate given in
(27), as well other mappings on states.

3.2 The complex-to-real encoding
The only nontrivial encoding (as opposed to simulation, q.v.) that we will need
to use is an encoding of complex Hamiltonians as real Hamiltonians.

Lemma 6 There exists an encoding ϕ such that for any Hamiltonian H ∈ B(Cd),
the encoded Hamiltonian H ′ = ϕ(H) ∈ B(R2d) is real.

Proof This follows from the canonical Hilbert space isomorphism Cd ' R2d

where the latter is endowed with a linear complex structure J .
Concretely, let

J :=

(
0 1d

−1d 0

)
= iY ⊗ 1d (29)

1The Hamiltonian is of course also an observable. With this choice of state mapping, to
construct the simulator Hamiltonian we must still use the mapping H′ = E(H). But if we
want to measure the Hamiltonian – i.e. carry out the measurement on the simulator that
corresponds to measuring the energy of the original system – we must measure Emeas(H).
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where where 1d is the d× d identity matrix, and define the mapping

ϕ : B(Cd) → B(R2d)

ϕ(M) = ReM ⊕ ReM + J ImM ⊕ ImM.
(30)

To see that ϕ is indeed a valid encoding, we can either verify directly that it
satisfies all the properties listed in part (i) of Theorem 3, or observe that

ϕ(M) = U(M ⊕ M̄)U† where U =
1√
2

(
1 1

i1 −i1

)
=

1√
2

(
1 1
i −i

)
⊗ 1,

(31)
which is manifestly of the form given in part (iii) of Theorem 3. The Lemma
follows by setting

H ′ = ϕ(H) = Re(H)⊕ Re(H) + J Im(H)⊕ Im(H). (32)

�

When applied to a Hamiltonian on a system of n qubits, the encoding of
Lemma 6 is local (see Section 3.3). Indeed, it produces a Hamiltonian H ′ on
n+ 1 qubits, given by

H ′ = |+y〉 〈+y| ⊗H + |−y〉 〈−y| ⊗ H̄ (33)

where |±y〉 = (|0〉 ± i |1〉)/
√

2 are the eigenstates of Y . It is easy to see that

H ′ is real since |+y〉 = |−y〉. Any complex k-local interaction is mapped to a
(k + 1)-local interaction involving the additional qubit.

This additional qubit therefore has a special significance in the construction,
which leads to two unwanted consequences. Firstly, the interaction graph of H ′

is in general more complicated than that of H. Any geometric locality or spatial
sparsity in the original Hamiltonian H is lost, as all complex local terms are
mapped to interactions in H ′ that involve this additional qubit. Secondly, an
error on this single additional qubit would mix the spaces where H and H̄ act.
This could lead to unusual errors when simulating the time evolution of ρ under
H with the simulator H ′.

In Lemma 21 below we give an alternative to this encoding that avoids these
problems.

3.3 Local encodings
So far, we have considered encodings of arbitrary Hamiltonians, with no addi-
tional structure. However, in Hamiltonian simulation, we are typically interested
in many-body Hamiltonians composed of local interactions between subsets of
particles. That is, Hamiltonians H ∈ B((Cd)⊗n) with H =

∑
i hSi , where the

local terms hSi ∈ B((Cd)⊗|Si|) act on subsets Si of the particles (implicitly
extended to B((Cd)⊗n) in the sum by tensoring with identity on the rest of the
space, as usual).

In this case, we typically want our encoding to be local, i.e. it should map
local observables to local observables, and consequently

E(hSi ⊗ 1) = h′S′i ⊗ 1 (34)

11



Qi

Q0

S′i

E0

E1

E2

E4

E3

h1 or h̄1

h2 or h̄2 h3 or h̄3

h4 or h̄4

Figure 1: Any local encoding can be decoupled into disjoint subsystems by local
unitaries on the Qi systems. Each subsystem encodes one of the qudits of the
original system. Here S′i denotes the subsystems encoding qudit i as a direct
sum of identity and conjugate representations. Ei denotes ancilla subsystems.

so that the simulation H ′ = E(H) =
∑
i h
′
S′i

is itself a local Hamiltonian.

Definition 7 (Local encoding) Let E : B(
⊗n

i=1Hi) → B(
⊗n′

i=1H′i) be an
encoding, and let {S′i}ni=1 be subsets of [n′]. We say that the encoding is local
with respect to {S′i} if for any operator A ∈ B(Hi), E(A⊗ 1) acts non-trivially
only on S′i.

Theorem 8 Let E : B(
⊗n

i=1Hi)→ B(
⊗n′

i=1H′i) be a local encoding with respect
to {S′i}. Denote Q0 =

⋃
i,j S

′
i ∩ S′j and Qi = S′i \Q0 (see Figure 1). Then there

exist decompositions HQ0 ' E0⊗(
⊗

iH
(in)
i ) and HQi ' Ei⊗H

(out)
i , together with

identifications Hi ' H(in)
i ⊗H(out)

i and a decomposition E0 =
⊕

α

(⊗n
i=0E

(α)
0.i

)
,

such that the encoding takes the form

E(M) =

UQ0

⊕
α

([⊗
i

U
(α)
(i)

](
M (α) ⊗ 1E1,...,En ⊗ 1E(α)

0.1 ,...,E
(α)
0.n

)[⊗
i

U
(α)
(i)

]†)
U†Q0

(35)

where UQ0
acts non-trivially only on HQ0

, each U
(α)

Q+
i

acts on H(α)

Q+
i

:= Hi ⊗Ei ⊗

E
(α)
0.i , and each M (α) = M or M̄ .

Theorem 8 implies that the locality structure of an encoding is fully determined
by how it maps 1-local operators. Note that any of the Hilbert spaces in the
decomposition could be one-dimensional.

The characterisation in Theorem 8 shows that the most general possible
encoding of local Hamiltonians looks very like the complex-to-real encoding from
Lemma 6. Up to local unitaries, local encodings are just direct sums of product
encodings, with a classical ancilla that determines whether to take the complex
conjugate of all the local interactions or not.

12



To prove Theorem 8, we will need the following (slightly generalised) lemma
from [AE11], which is itself a special case of a result from [BV05]:

Lemma 9 (Lemma 3.3 of [AE11]) Let H =
⊗n

i=0Hi be a Hilbert space and
let A0,k, k ∈ {1, . . . , n}, be sets of matrices which act non-trivially only on H0

and Hk, such that matrices from different sets all commute. Then there exists a
direct sum decomposition of H0

H0 =
⊕
α

H(α)
0 (36)

such that inside each subspace H(α)
0 there is a tensor product structure

H(α)
0 =

n⊗
i=0

H(α)
0.i , (37)

and any element A ∈ A0,k preserves the subspaces H(α) := H(α)
0 ⊗

⊗n
i=1Hi.

Moreover A|H(α) acts non-trivially only on H(α)
0.k ⊗Hk.

In [AE11] this lemma is stated only in terms of single operators H0,k rather than
sets of operators A0,k, but the proof from [AE11] or [BV05] can be easily seen
to generalise to this case.

Proof (of Theorem 8) Let Ai = 〈E(Ai ⊗ 1) : A ∈ B(Hi)〉 be the algebra
generated by the operators {E(Ai ⊗ 1)}. By assumption, Ai acts non-trivially
only on HQ0∪Qi . Multiplicativity of encodings (Theorem 3(ii)d) yields that, for
i 6= j and all A ∈ B(Hi), B ∈ B(Hj),

[E(Ai ⊗ 1), E(Bj ⊗ 1)] = E([Ai ⊗ 1, Bj ⊗ 1]) = 0. (38)

Thus the algebras Ai fulfil the hypothesis of Lemma 9 for the Hilbert spaces
H =

⊗n
i=1HQi . Applying Lemma 9, we obtain a decomposition

HQ0 =
⊕
α

[
n⊗
i=0

H(α)
0.i

]
(39)

such that Ai =
⊕

αA
(α)
i where A(α)

i acts non-trivially only on the factors

HQi ⊗H
(α)
0.i . Let U†Q0

: HQ0
→
⊕

α

⊗n
i=0H

(α)
0.i be the unitary change of basis

corresponding to this decomposition of HQ0
.

Now, from the general characterisation of encodings (1), we know Ai has the
form

Ai =
〈
W
(
(A⊗ 1)⊕p ⊕ (Ā⊗ 1)⊕q

)
W †
〉

=
〈
W (A⊕Dp ⊕ Ā⊕Dq)W †

〉
(40)

for some unitary W and p, q ∈ N. (D here is the dimension of the identity
operator which acts on all but the i’th qudit of the original system.) Thus
Ai is unitarily equivalent to a direct sum of identity and conjugated identity

13



representations of the full matrix algebra on Hi. Note that this decomposes Ai
into irreducible representations, as the full matrix algebra in any dimension is
irreducible.

Since Ai is simultaneously equivalent to
⊕

αA
(α)
i , each A(α)

i must itself be
unitarily equivalent to a direct sum of copies of identity and conjugated identity
representations. Thus, for arbitrary A ∈ B(Hi),

E(Ai ⊗ 1) = UQ0

(⊕
α

[
U

(α)

Q+
i

(
A⊕ni(α) ⊕ Ā⊕mi(α)

)
U

(α)

Q+
i

†
⊗ 1(α)

rest

])
U†Q0

(41)

for some ni(α), mi(α) ∈ N, where U
(α)

Q+
i

acts on H(α)

Q+
i

:= HQi ⊗H
(α)
0.i .

We will show that for each α, either ni(α) = 0 for all i, or mi(α) = 0 for
all i. Note that J = E(i1) = E ((i1j)⊗ 1k ⊗ 1rest) = E (1j ⊗ (i1k)⊗ 1rest) for
any qudits j, k of the original system. From (41),

(⊕
α

U
(α)

Q+
j

⊗ U (α)

Q+
k

)†
U†Q0

E((i1j)⊗ 1k ⊗ 1rest) UQ0

(⊕
α

U
(α)

Q+
j

⊗ U (α)

Q+
k

)
= i
⊕
α

[(
1
⊕nj(α) ⊕ (−1)⊕mj(α)

)
⊗ 1(α)

Q+
k

⊗ 1(α)
rest

]
. (42)

Equating this with U†Q0
E(1j ⊗ (i1k)⊗ 1rest)UQ0

and matching up factors in the
direct sum over α, we obtain(

1
⊕nj(α) ⊕ (−1)⊕mj(α)

)
⊗ 1(α)

Q+
k

= 1
(α)

Q+
j

⊗
(
1
⊕nk(α) ⊕ (−1)⊕mk(α)

)
, (43)

which is only possible if either nj(α) = nk(α) = 0 or mj(α) = mk(α) = 0. Since
this holds for any pair j, k, either ni(α) = 0 for all i, or mi(α) = 0 for all i, as
claimed. We write “n(α) = 0”, “m(α) = 0” as shorthand for each of these two
cases. Then

U†Q0
E(Ai ⊗ 1)UQ0 =

 ⊕
α:m(α)=0

U
(α)

Q+
i

(
A⊗ 1(α)

E+
i

)
U

(α)

Q+
i

†
⊗ 1(α)

rest


⊕

 ⊕
α:n(α)=0

U
(α)

Q+
i

(
Ā⊗ 1(α)

E+
i

)
U

(α)

Q+
i

†
⊗ 1(α)

rest

 (44)

where dim(1
(α)

E+
i

) = ni(α) +mi(α), so that Hi ⊗H(α)

E+
i

' H(α)

Q+
i

.

At this point, since U
(α)

Q+
i

acts on the whole of H(α)

Q+
i

, how we choose to factor

H(α)

Q+
i

to obtain (35) is arbitrary, as long as we choose the factorisation consistently

across all α. Recalling that H(α)

Q+
i

' HQi ⊗H
(α)
0.i ' Hi⊗H

(α)

E+
i

, one possible choice
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is to take

dimH(out)
i = gcd

{
dimHi,dimHQi

}
, (45)

dimH(in)
i = dimHi/dimH(out)

i , (46)

dimEi = dimHQi/ dimH(out)
i , (47)

dimE
(α)
0.i = dimH(α)

0.i / dimH
(in)
i . (48)

(Note that any of these spaces could turn out to be 1-dimensional.) This choice

manifestly satisfies dimHi = dim(H(out)
i ⊗H(in)

i ), dimHQi = dim(H(out)
i ⊗ Ei),

and dimH(α)
0.i = dim(H(in)

i ⊗ E(α)
0.i ).

To see that this choice is possible for all α, it remains to show that dimH(α)
0.i

is divisible by dimH(in)
i , so that dimE

(α)
0.i is well-defined. First, note that

dimH(in)
i and dimHQi are co-prime by (45) and (46). But dimH(in)

i divides

dimH(α)

Q+
i

= dimHQi · dimH(α)
0.i , so dimH(in)

i must divide dimH(α)
0.i .

Therefore, we can consistently factor

HQi ' H
(out)
i ⊗ Ei, (49)

H(α)
0.i ' H

(in)
i ⊗ E(α)

0.i , (50)

H(α)

Q+
i

' H(out)
i ⊗H(in)

i ⊗ Ei ⊗ E(α)
0.i . (51)

Recalling that H
(α)

Q+
i

' Hi ⊗H(α)

E+
i

, we can identify H
(α)

E+
i

' Ei ⊗ E(α)
0.i , allowing

us to rewrite (44) in the form

U†Q0
E(Ai ⊗ 1)UQ0

=

 ⊕
α:m(α)=0

U
(α)

Q+
i

(
A⊗ 1Ei ⊗ 1E(α)

0.i

)
U

(α)

Q+
i

†
⊗ 1(α)

rest


⊕

 ⊕
α:n(α)=0

U
(α)

Q+
i

(
Ā⊗ 1Ei ⊗ 1E(α)

0.i

)
U

(α)

Q+
i

†
⊗ 1(α)

rest


(52)

where A and Ā act on H(in)
i ⊗H(out)

i .
Finally, note that (52) holds for any single qudit operator Ai⊗1 on any qudit i.

For an arbitrary operator M on n qudits, Theorem 8 follows by expressing M as
a real-linear combination of products of single qudit terms, and using additivity,
real-linearity and multiplicativity of encodings from Theorem 3(ii). �

An alternative statement of the characterisation in Theorem 8 is given by
the following corollary:

Corollary 10 Let E : B(
⊗n

i=1Hi) → B(
⊗n′

i=1H′i) be a local encoding with
respect to {S′i}. Denote Q0 =

⋃
i,j S

′
i ∩ S′j and Qi = S′i \ Q0 (see Figure 1).
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Then there exist decompositions HQ0
' E0 ⊗ (

⊗
iH

(in)
i ) and HQi ' Ei ⊗H

(out)
i ,

together with identifications Hi ' H(in)
i ⊗H(out)

i , such that the encoding takes
the form:

E(M) = UQ0

(∏
i

U(i)

)(
M ⊗ 1 ⊗ PE0

+ M̄ ⊗ 1 ⊗ P⊥E0

)(∏
i

U(i)

)†
U†Q0

(53)

where each unitary U(i) acts non-trivially only on Hi⊗E0⊗Ei, and the following
commutators vanish for all i, j:

[U(i), U(j)] = 0 and [PE0
, U(i)] = 0. (54)

Proof This is immediate from Theorem 8 and the following definitions of PE0

and U(i):

PE0
=

⊕
α:m(α)=0

1
(α)
E0
, and U(i) =

⊕
α

[
U

(α)

Q+
i

⊗ 1(α)
rest

]
, (55)

where m(α) is defined as in the proof of Theorem 8. �

Theorem 8 characterises what encodings must look like if they are to map
local Hamiltonians to local Hamiltonians, and more generally local observables
on the original system to local observables on the simulator. We have seen
that, because encodings preserve commutators, observables on different qudits
of the original system are necessarily mapped to commuting observables on the
simulator system, so remain simultaneously measurable.

However, if the subsets S′i overlap, these observables on the simulator will in
general no longer be on disjoint subsets of qudits; tensor products of operators
on the original system are not necessarily mapped to tensor products on the
simulator. If we impose the additional requirement that tensor products are
mapped to tensor products, which is equivalent to requiring that all the subsets
S′i are disjoint, then there is no Q0 subsytem and the characterisation from
Theorem 8 simplifies substantially:

Corollary 11 (Product-preserving encodings)

Let E : B(
⊗n

i=1Hi) → B(
⊗n′

i=1H′i) be a local encoding with respect to {S′i},
where S′i are disjoint subsets. Then the encoding must take one of the following
forms, where S′i = {i} ∪ Ei:

E(M) =
(⊗

i

Ui,Ei

)(
M1,...,n ⊗ 1E1,E2,...En

)(⊗
i

U†i,Ei

)
(56)

or

E(M) =
(⊗

i

Ui,Ei

)(
M̄1,...,n ⊗ 1E1,E2,...En

)(⊗
i

U†i,Ei

)
. (57)
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Thus for tensor products to be mapped to tensor products under encoding,
the encoding must be rather trivial. Up to local unitaries, it either consists solely
of copies of H, or solely of copies of M̄ ; it cannot contain both M and M̄ . This
rules out for example the complex-to-real encoding of Lemma 6.

Corollary 11 applies to product-preserving encodings that map to the entire
Hilbert space of the simulator system. We will see shortly that things are
more interesting if the local encoding maps into a subspace of the simulator’s
Hilbert space; non-trivial tensor-product-preserving encodings into a subspace
are possible.

3.4 Encodings in a subspace
It may be the case that an encoding E(H) acts only within a subspace S of the
simulator system H′. That is, we say a map E : B(H)→ B(H′) is an encoding
into the subspace S if E(H) has support only on S and the map H 7→ E(H)|S
is an encoding. Later we may refer to a map of this form simply as a subspace
encoding or even just an encoding when the subspace is implicit. We call the
subspace SE onto which E maps the encoded subspace.

All the conclusions of the above section still hold, but now the target space SE
is embedded in a larger space H′, so the unitary U is replaced with an isometry
V . Any subspace encoding may therefore be written in the form

E(M) = V
(
M⊕p ⊕ M̄⊕q

)
V † = V

(
M ⊗ P + M̄ ⊗Q

)
V †. (58)

We remark that P and Q may be chosen to be any orthogonal projectors on the
ancilla system E with rank(P ) = p and rank(Q) = q, provided that the isometry
V is changed accordingly. Indeed, even the dimension of the ancilla system E
may be increased such that P and Q do not sum to the identity, as long as the
map V |supp(P+Q) is an isometry onto the subspace SE . This will be useful in
the simple characterisation of local subspace encodings given in the next section.
Note that E(1) is the projector onto the subspace SE .

3.5 Local encodings in a subspace
We can now consider encodings into a subspace that are local. Since all the
encodings we construct later will not only be local, but in fact will also satisfy the
stronger condition of mapping tensor products of operators to tensor products
on the simulator, we will restrict our attention here to tensor-product-preserving
encodings into a subspace. We therefore want to be able to decompose the
simulator system H′ into n subsystems H′ =

⊗n
i=1H′i such that H′i corresponds

to Hi operationally. The encoding of a local observable should then be equivalent
to a local observable, in terms of its action on the subspace SE into which the
encoding maps:

Definition 12 Let E : B (
⊗n

i=1Hj) → B
(⊗n

j=1H′j
)

be a subspace encoding.

We say that the encoding is local if for any Aj ∈ Herm(Hj), there exists A′j ∈
Herm(H′j) such that

E(Aj ⊗ 1) = (A′j ⊗ 1)E(1). (59)
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Note that for a simulation of n particles with m particles, this does not mean
we require m = n, but rather that the m particles can be partitioned into n
groups, each of which is labelled by H′j . First we show that local observables on
the original system correspond to local observables on the simulator system:

Proposition 13 Let E be a local encoding into the subspace SE . Let ρ′ be a
state in the encoded subspace such that E(1)ρ′ = ρ′. Let Aj be an observable on
qudit j of the original system. Then there exists an observable A′j on H′j such
that

Tr[(Aj ⊗ 1)ρ] = Tr[(A′j ⊗ 1)ρ′] (60)

where ρ = F (ρ′) +B(ρ′), for F and B defined as

F (ρ′) = TrE [V †ρ′V (1⊗ P )] and B(ρ′) = TrE [V †ρ′V (1⊗Q)] (61)

Proof This is an immediate consequence of Definition 12 and (20). �

It turns out that Definition 12 is equivalent to saying that E is a tensor
product of encodings acting on the the encoded space SE :

Lemma 14 An encoding E is local if and only if it can be written as a “tensor
product” of encodings ϕj : Herm(Hj)→ Herm(H′j) in the following way:

E

 n⊗
j=1

Aj

 =

 n⊗
j=1

ϕj(Aj)

 E(1) (62)

Proof If there exist encodings ϕj such that (62) holds, then E is local as for
any Aj ∈ B(Hj) one can take A′j = ϕj(Aj) ∈ B(H′j), and

E(Aj ⊗ 1) =

ϕj(Aj)⊗
⊗
k 6=j

ϕk(1)

 E(1) (63)

=

ϕj(Aj)ϕj(1)⊗

⊗
k 6=j

ϕk(1)

 E(1) (64)

=

[
(ϕj(Aj)⊗ 1)

(
n⊗
k=1

ϕk(1)

)]
E(1) (65)

= (A′j ⊗ 1)E(1). (66)

For the converse, we will first show that the map Aj 7→ A′j can be taken to be a
subspace encoding. Since A′j ∈ Herm(H′j) is Hermitian, we have

(A′j ⊗ 1)E(1) = E(Aj ⊗ 1) = E(Aj ⊗ 1)† = E(1)(A′j ⊗ 1), (67)

so A′j ⊗ 1 commutes with E(1).
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For a given j, consider the subspace Tj of H′j which is entirely annihilated
by E(1), defined by Tj = {|ψ〉 ∈ Hj : (|ψ〉〈ψ| ⊗ 1)E(1) = 0}. We will choose
to take ϕj(Aj) = ΠjA

′
jΠj where Πj is the projector onto T⊥j . We will show

that ϕj is a subspace encoding, by showing the requirements of Theorem 3(i)
hold in the subspace T⊥j : Hermiticity preservation, spectrum preservation and

real-linearity. First note that ϕj(Aj) is Hermitian and has support only on T⊥j .
The projector (1 − Πj) ⊗ 1 annihilates E(1) by definition of Tj , so (Πj ⊗

1)E(1) = E(1). Therefore

[ϕj(Aj)⊗ 1]E(1) = [ΠjA
′
jΠj ⊗ 1]E(1) = E(Aj ⊗ 1), (68)

where we have used the fact that E(1) commutes with A′j ⊗ 1. Thus ϕj(Aj) can

be used as a replacement for A′j in (59) which has support only on T⊥j .
We know that ϕj(Aj)⊗1 commutes with E(1) and is therefore block diagonal

with respect to the E(1),1−E(1) split. Furthermore since ϕj(Aj) has no support
on Tj , no eigenvalues of ϕj(Aj)⊗ 1 are completely annihilated when multiplied
by E(1). Therefore

spec(ϕj(Aj)|T⊥j ) = spec(E(Aj ⊗ 1)|SE ) = spec(Aj). (69)

Next we show that ϕj is real-linear, using the real-linearity of E . For any
λ, µ ∈ R, and Aj , Bj ∈ Herm(H),

[ϕj(λAj + µBj)⊗ 1]E(1) = E((λAj + µBj)⊗ 1) (70)

= λE(Aj ⊗ 1) + µE(Bj ⊗ 1) (71)

= [(λϕj(Aj) + µϕj(Bj))⊗ 1]E(1) (72)

⇔ [(λϕj(Aj) + µϕj(Bj)− ϕj(λAj + µBj))⊗ 1]E(1) = 0. (73)

For real-linearity of ϕj we need to show that M = λϕj(Aj)+µϕj(Bj)−ϕj(λAj+
µBj) vanishes. This follows because M ⊗ 1 commutes with and is annihilated
by E(1), but M has no support on Tj . Therefore ϕj is an encoding into the
subspace T⊥j .

It remains to show that E can be written in the form of (62). This follows
from the fact that E and ϕj are Jordan homomorphisms, and (Aj⊗1)(1⊗Bk) =
(1⊗Bk)(Aj ⊗ 1). So for example for a bipartite system with two subsystems
labelled a and b:

E(Aa ⊗Bb) = E(Aa ⊗ 1)E(1⊗Bb) (74)

= [ϕa(Aa)⊗ 1] E(1) [1⊗ ϕb(Bb)] E(1) (75)

= [ϕa(Aa)⊗ ϕb(Bb)] E(1). (76)

�

We remark that if E and ϕj are extended to homomorphisms on all matrices
as described in Theorem 8, then (62) holds for all matrices, not just Hermitian
ones. This is because the enveloping algebra for the Hermitian matrices includes
all matrices, so any matrix can be written as a product of Hermitian matrices.
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H1 H′1E1
V1

H2 H′2E2
V2

...
...

Hn H′nEn
Vn

Figure 2: Any local encoding within a subspace can be represented as a tensor
product of isometries, as illustrated here.

This extension to all matrices may seem problematic: for example, when
calculating E(i1) one could put the factor of i on any one of the subsystems Hj
before appplying (62). This just implies that the encodings ϕj must satisfy some
extra constraints, in order for the overall map to be an encoding.

In fact, we are able to use this condition to derive the following general form
of a local encoding (see Figure 2):

Theorem 15 A map E : B(
⊗n

j=1Hj)→ B(
⊗n

j=1H′j) is a local encoding if and
only if there exist n ancilla systems Ej such that E is of the form

E(M) = V (M ⊗ P + M̄ ⊗Q)V † (77)

where

• V is a local isometry: V =
⊗

j Vj for isometries Vj : Hj ⊗ Ej → H′j.

• P and Q are orthogonal projectors on E =
⊗

j Ej, and are locally distin-
guishable: for all j, there exist orthogonal projectors PEj and QEj acting
on Ej such that (PEj ⊗ 1)P = P and (QEj ⊗ 1)Q = Q.

Proof If E is of the form given above then by Theorem 3 it is an encoding into
the subspace E(1) = V (1⊗ (P +Q))V †. It is easy to check that E is local: for

Aj ∈ Herm(Hj), just take A′j = Vj(Aj ⊗ PEj + Āj ⊗QEj )V
†
j ∈ Herm(H′j) and

use the conditions of the theorem.
For the converse, note that since E is an encoding, it must be of the form

E(M) = W (M ⊗ P̃ + M̄ ⊗ Q̃)W †, where P̃ and Q̃ are projectors on an ancilla

system Ẽ and W : H ⊗ Ẽ → H′ is an isometry. By Lemma 14, there exist n
encodings ϕj such that E(Aj ⊗ 1) = (ϕj(Aj)⊗ 1)E(1) for any Aj ∈ Herm(H′j).
Since ϕj is an encoding, it must be of the form ϕj(Aj) = Vj(Aj ⊗ PEj +

Āj ⊗QEj )V
†
j where PEj and QEj are projectors on an ancilla system Ej and

Vj : Hj ⊗ Ej → H′j is an isometry.
Let E =

⊗
j Ej and define an isometry V =

⊗
j Vj : H⊗ E → H′. Then by
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Lemma 14, for any j and Aj ∈ B(Hj):

E(Aj ⊗ 1) = W (Aj ⊗ 1⊗ P̃ + Āj ⊗ 1⊗ Q̃)W † (78)

= V (Aj ⊗ PEj ⊗ 1 + Āj ⊗QEj ⊗ 1)V †W (1⊗ (P̃ + Q̃))W † (79)

Substituting in Aj = i1 in the above expression and matching up the +i and −i
eigenspaces implies that

V (PEj ⊗ 1)V †W (1⊗ P̃ )W † = W (1⊗ P̃ )W † (80)

V (QEj ⊗ 1)V †W (1⊗ Q̃)W † = W (1⊗ Q̃)W †. (81)

We can therefore multiply (78) by W (1⊗ P̃ )W † to obtain:

W (Aj ⊗ 1⊗ P̃ )W † = V (Aj ⊗ 1)V †W (1⊗ P̃ )W † (82)

implying
V †W (1⊗ P̃ )(Aj ⊗ 1) = (Aj ⊗ 1)V †W (1⊗ P̃ ) (83)

Let
∑
lBl ⊗ Cl be the operator Schmidt decomposition of V †W (1⊗ P̃ ), where

Bl ∈ B(Hj) and Cl :
(⊗

k 6=j Hk
)
⊗ Ẽ →

(⊗
k 6=j Hk

)
⊗ E. Then from (83) we

have ∑
l

[Bl, Aj ]⊗ Cl = 0 (84)

which implies [Bl, Aj ] = 0 for all l by linear independence of the Cl. This holds
for all matrices on Aj ∈ B(Hj). So by Schur’s lemma, each Bl, and hence also

V †W (1⊗ P̃ ), must act trivially (i.e. as a multiple of the identity) on Hj for all
j, and hence on H.

By the same argument V †W (1⊗ Q̃) acts trivially on all of H and so we can

conclude there must exist an isometry U : Ẽ → E such that

V †W (1⊗ P̃ ) = (1⊗ UP̃ ) and V †W (1⊗ Q̃) = (1⊗ UQ̃) (85)

Define P = UP̃U† and Q = UQ̃U†, and remember that E(M) must be in the
range of the isometry V by Lemma 14, so we have

E(M) = V V †E(M)V V † = V V †W (M ⊗ P̃ + M̄ ⊗ Q̃)W †V V † (86)

= V (M ⊗ P + M̄ ⊗Q)V † (87)

and note that (80) implies that (PEj ⊗ 1)P = P and (QEj ⊗ 1)Q = Q as
required. �

When E is a local encoding from n qudits to m qudits of the same local
dimension d, the space H′j is a group of kj qudits. As described at the end of
Section 3.4, the dimension of the ancilla Ej can be increased until it is of size
dkj−1 so that the dimensions of Hj ⊗ Ej and H′ match. If this is done for all j,
then all the Vj (and hence also V =

⊗
Vj) are unitaries.
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3.6 Composition and approximation of encodings
In this section, we collect some straightforward technical lemmas about en-
codings which we will need later: that encodings compose properly, and that
approximations to encodings behave as one would expect.

Lemma 16 If E1 and E2 are encodings, then their composition E1 ◦ E2 is also
an encoding. Furthermore, if E1 and E2 are both local, then their composition
E1 ◦ E2 is local.

Proof By the definition of encodings, we can write

E1(M) = V (M ⊗ P (1) + M̄ ⊗Q(1))V † (88)

E2(M) = W (M ⊗ P (2) + M̄ ⊗Q(2))W † (89)

for isometries V and W , and orthogonal pairs of projectors P (1), Q(1) and
P (2), Q(2) . Then

(E1 ◦ E2)(M) = V
[
W (M ⊗ P (2) + M̄ ⊗Q(2))W † ⊗ P (1) (90)

+W (M ⊗ P (2) + M̄ ⊗Q(2))W † ⊗Q(1)
]
V † (91)

= U
[
M ⊗

(
P (2) ⊗ P (1) + Q̄(2) ⊗Q(1)

)
(92)

+M̄ ⊗
(
Q(2) ⊗ P (1) + P̄ (2) ⊗Q(1)

)]
U† (93)

where U = V
(
W ⊗ P (1) + W̄ ⊗Q(1) + 1⊗ (1− P (1) −Q(1))

)
V † is an isometry.

Then observing that P = P (2)⊗P (1)+Q̄(2)⊗Q(1) andQ = Q(2)⊗P (1)+P̄ (2)⊗Q(1)

are orthogonal projectors, we conclude that E1 ◦ E2 is an encoding.
If E1 and E2 are both local then the projectors are locally distinguishable,

which means there exist projectors P
(a)

E
(a)
i

and Q
(a)

E
(a)
i

for a ∈ {1, 2} such that(
P

(a)

E
(a)
i

⊗ 1
)
P (a) = P (a) and

(
Q

(a)

E
(a)
i

⊗ 1
)
Q(a) = Q(a). (94)

We can show that P and Q are locally distinguishable by defining orthogonal

projectors on the systems Ei = E
(2)
i ⊗ E

(1)
i as follows:

PEi = P
(2)

E
(2)
i

⊗P (1)

E
(1)
i

+Q̄
(2)

E
(1)
i

⊗Q(1)

E
(1)
i

and QEi = Q
(2)

E
(2)
i

⊗P (1)

E
(1)
i

+P̄
(2)

E
(1)
i

⊗Q(1)

E
(1)
i

(95)

such that (PEi ⊗ 1)P = P and (QEi ⊗ 1)Q = Q.
Furthermore, since E1 and E2 are local, the isometries V and W are tensor

products V =
⊗

i Vi and W =
⊗

iWi, and we can define a local isometry

U ′ =
⊗
i

Vi

(
Wi ⊗ P (1)

E
(1)
i

+ W̄i ⊗Q(1)

E
(1)
i

+ 1⊗ (1− P (1)

E
(1)
i

−Q(1)

E
(1)
i

)

)
V †i (96)

such that (E1 ◦ E2)(M) = U ′(M ⊗ P + M̄ ⊗Q)U ′†. �
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Next we show that, unsurprisingly, if two encodings are close, the results
of applying the encodings to the same operator are also close; and similarly
that if two operators are close, the results of applying the same encoding to the
operators are close. We first prove a small technical lemma, which will be useful
both here and throughout the paper.

Lemma 17 Let A,B : H → H′ and C : H → H be linear maps. Let ‖ · ‖a be
the trace norm or operator norm. Then

‖ACA† −BCB†‖a ≤ (‖A‖+ ‖B‖)‖A−B‖‖C‖a. (97)

Proof The proof is a simple application of the triangle inequality followed by
submultiplicativity:

‖ACA† −BCB†‖a ≤ ‖ACA† −BCA†‖a + ‖BCA† −BCB†‖a (98)

≤ ‖A−B‖‖C‖a‖A†‖+ ‖B‖‖C‖a‖A† −B†‖ (99)

= (‖A‖+ ‖B‖)‖A−B‖‖C‖a (100)

where we have also used ‖A‖ = ‖A†‖. �

Lemma 18 Consider two encodings E and Ẽ defined by E(M) = V (M⊕p ⊕
M̄⊕q)V †, Ẽ(M) = Ṽ (M⊕p ⊕ M̄⊕q)Ṽ †, for some isometries V , Ṽ . Then, for

any operators M and M̃ :

(i). ‖E(M)− Ẽ(M)‖ ≤ 2‖V − Ṽ ‖‖M‖;

(ii). ‖Estate(M)− Ẽstate(M)‖1 ≤ 2‖V − Ṽ ‖‖M‖1;

(iii). ‖E(M)− E(M̃)‖ = ‖M − M̃‖.

Proof Write M ′ = M⊕p ⊕ M̄⊕q. Then, for the first part,

‖E(M)− Ẽ(M)‖ = ‖VM ′V † − Ṽ M ′Ṽ †‖ ≤ 2‖V − Ṽ ‖‖M‖ (101)

by Lemma 17, using ‖M ′‖ = ‖M‖. For the second part, recall that Estate(ρ) is
either defined as V (ρ⊗ σ)V † or V (ρ̄⊗ σ)V †, dependent on whether p ≥ 1, for
some fixed state σ. Then, writing M ′ = M ⊗ σ or M ′ = M̄ ⊗ σ and observing
that ‖M ′‖1 = ‖M‖1, the argument is the same as the first part (replacing the
operator norm with the trace norm appropriately).

The third part is essentially immediate:

‖E(M)− E(M̃)‖ = ‖V ((M − M̃)⊕p ⊕ (M̄ − ¯̃
M)⊕q)V †‖ = ‖M − M̃‖. (102)

�
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4 Hamiltonian simulation
4.1 Perfect simulation
We have seen that encodings capture the notion of one Hamiltonian exactly
reproducing all the physics of another. We will be interested in a less restrictive
notion, where this holds only for the low-energy part of the first Hamiltonian.
This concept can be captured by generalising the idea of encodings to simulations.
Let H ∈ B((Cd)⊗n) and H ′ ∈ B((Cd′)⊗m) for some m ≥ n. We usually think of
the local dimensions d, d′ as fixed, but the number of qudits n, m as growing.
Recall that S≤∆(H′) = span{|ψ〉 : H |ψ〉 = λ |ψ〉 , λ ≤ ∆} denotes the low energy
space of H ′ and P≤∆(H′) denotes the projector onto this space.

Definition 19 We say that H ′ perfectly simulates H below energy ∆ if there is
a local encoding E into the subspace SE such that:

(i). SE = S≤∆(H′) (or equivalently E(1) = P≤∆(H′));

(ii). H ′|≤∆ = E(H)|SE .

Note that condition (i) is crucial in order for it to make sense to compare
H ′|≤∆ and E(H)|SE . When condition (i) holds, condition (ii) is equivalent to
H ′≤∆ = E(H), where H ′≤∆ = H ′P≤∆(H′) is the low energy part of H ′.

To gain some intuition for the above definition, taking E to be the identity
map, we see that H perfectly simulates itself. Further, for any U ∈ U(d), we
see that U⊗nH(U†)⊗n is a perfect simulation of H. This freedom to apply
local unitaries allows us, for example, to relabel Pauli matrices in the Pauli
expansion of H. It also allows us to bring 2-qubit interactions into a canonical
form [CM16]. Imagine we have a Hamiltonian on n qubits which can be written
as a sum of 2-local terms, each proportional to some 2-qubit interaction H which
is symmetric under interchange of the qubits. Then it is not hard to show [CM16]
that there exists U ∈ SU(2) such that

U⊗2H(U†)⊗2 =
∑

s∈{x,y,z}

αsσs ⊗ σs +
∑

t∈{x,y,z}

βt(σt ⊗ 1 + 1⊗ σt) (103)

for some weights αs, βt ∈ R. Applying U⊗n to the whole Hamiltonian simulates
the H interactions with interactions of this potentially simpler form.

Both of these examples of perfect simulations are actually also encodings. As
an example of a perfect simulation which is not an encoding, we observe that
qubit Hamiltonians can simulate qudit Hamiltonians.

Lemma 20 Let H be a k-local qudit Hamiltonian on n qudits with local dimen-
sion d. Then, for any ∆ ≥ ‖H‖, there is a kdlog2 de-local qubit Hamiltonian H ′

which perfectly simulates H below energy ∆.

Proof We use a local encoding E(M) = VMV †, where V = W⊗n, and W :
Cd → (C2)⊗dlog2 de is an arbitrary isometry. Write P = 1 − WW † for the
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projector onto the subspace orthogonal to the image of W (if d is a power of 2,
P = 0). Then we define the Hamiltonian

H ′ = E(H) + ∆′
n∑
i=1

Pi, (104)

for some ∆′ > ∆. The nullspace of the positive semidefinite operator P :=∑n
i=1 Pi is precisely the image of V , and the smallest nonzero eigenvalue of P is

∆′. So, as ∆ < ∆′, E is an encoding into the subspace SE = S≤∆(H′); and as
∆ ≥ ‖H‖, H ′|≤∆ = E(H)|SE . Thus H ′ meets the requirements of Definition 19
and perfectly simulates H below energy ∆. �

Another case where we can achieve perfect simulation is the simulation
of complex Hamiltonians with real Hamiltonians, using an alternative to the
complex-to-real encoding of Lemma 6 where no single qubit corresponds to the
ancilla qubit of Lemma 6. This enables us to make the subspace encoding in the
simulation local.

Lemma 21 For any integer k, let H be a k-local qubit Hamiltonian. Then for
any ∆ ≥ 2‖H‖ there is a real 2k-local qubit Hamiltonian H ′ which simulates H
perfectly below energy ∆.

Proof Let H be a k-local qubit Hamiltonian, and let h =
⊗k

i=1 σsi with
si ∈ {x, y, z} be a k-local term in the Pauli decomposition of H. The complex-
to-real encoding ϕ from Lemma 6 maps individual Paulis as follows:

ϕ(1) = 1⊕ 1 (105)

ϕ(σx,z) = σx,z ⊕ σx,z = 1⊗ σx,z (106)

ϕ(σy) = J(σy ⊕ σy) = σy ⊗ σy. (107)

For each qubit j in the original Hamiltonian H, add an additional qubit labelled
j′ and apply the map ϕ separately to these pairs of qubits. This results in a
term h′ on 2k qubits of the following form:

h′ =

k⊗
j=1

(
|+y〉 〈+y|j′ ⊗ σsj + |−y〉 〈−y|j′ ⊗ σ̄sj

)
(108)

Restricted to the space S spanned by |+y〉⊗n and |−y〉⊗n on the ancilla qubits,
h is of the desired form. (Indeed, the restriction recovers the complex-to-real

encoding of Lemma 6.) Let H̃ be the total Hamiltonian formed by the sum of

the h′ terms. Then H̃ is real and

H̃|S = |+y〉 〈+y|⊗n ⊗H + |−y〉 〈−y|⊗n ⊗ H̄ (109)

We can add a term ∆′H0 where ∆′ > ∆ and H0 =
∑
i(Yi′Y(i+1)′ + 1) is zero on

S and is ≥ 1 on S⊥. The overall Hamiltonian H ′ = H̃ + ∆′H0 is therefore real
and, since ∆′ > ∆ ≥ 2‖H‖, S≤∆(H′) = S and H ′|≤∆ = H̃|S . �
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4.2 Approximate simulation
In general we may not be able to achieve perfect simulation, so it is natural
to generalise this concept to allow approximate simulations. If condition (i) in
Definition 19 no longer holds exactly for a map E(M) = V (M⊗P +M̄⊗Q)V †, it
is not immediately clear how to generalise condition (ii), as H ′≤∆ and E(H) now
have support on different spaces. However, if condition (i) holds approximately
such that ‖E(1) − P≤∆(H′)‖ ≤ η, then there exists an alternative encoding

Ẽ(M) = Ṽ (M ⊗ P + M̄ ⊗Q)Ṽ † such that ‖Ṽ − V ‖ ≤
√

2η and Ẽ(1) = P≤∆(H′)

(see Lemma 23 below); so we can compare H ′≤∆ and Ẽ(H).

Definition 22 We say that H ′ is a (∆, η, ε)-simulation of H if there exists a
local encoding E(M) = V (M ⊗ P + M̄ ⊗Q)V † such that:

(i). There exists an encoding Ẽ(M) = Ṽ (M ⊗ P + M̄ ⊗Q)Ṽ † such that SẼ =

S≤∆(H′) and ‖Ṽ − V ‖ ≤ η;

(ii). ‖H ′≤∆ − Ẽ(H)‖ ≤ ε.

We say that a family F ′ of Hamiltonians can simulate a family F of Hamiltonians
if, for any H ∈ F and any η, ε > 0 and ∆ ≥ ∆0 (for some ∆0 > 0), there exists
H ′ ∈ F ′ such that H ′ is a (∆, η, ε)-simulation of H. We say that the simulation
is efficient if, in addition, for H acting on n qudits, ‖H ′‖ = poly(n, 1/η, 1/ε,∆);
H ′ is efficiently computable given H, ∆, η and ε; and each local isometry Vi in
the decomposition of V from Theorem 15 is itself a tensor product of isometries
which map to O(1) qudits.

We usually think of ∆ as satisfying ∆ � ‖H‖. But we can also consider
smaller ∆ by only simulating H up to some energy cutoff. We may interpret
Definition 22 as stating that H ′≤∆ is close to an encoding Ẽ(H) of H, and that

the encoding map Ẽ is close to a local encoding E . However, we assume that E
is the map that we understand and have access to, whereas all we know about Ẽ
is that it exists.

A perfect simulation of H by H ′ below energy ∆ is a (∆, η, ε)-simulation of
H with η = ε = 0. Observe that every local encoding is a perfect simulation with
∆ = ∞. Reducing the inaccuracy η, ε of the simulation will typically require
expending more “effort”, e.g. by increasing the strength of the local interactions.

An alternative definition might try to compare H ′≤∆ and E(H) even though
they have different support. This would be essentially equivalent to our definition
because, from Lemma 18 and the reverse triangle inequality,∣∣∣‖H ′≤∆ − E(H)‖ − ‖H ′≤∆ − Ẽ(H)‖

∣∣∣ ≤ 2‖V − Ṽ ‖‖H⊕p⊕H̄⊕q‖ ≤ 2η‖H‖. (110)

Thus the two definitions are equivalent up to a O(η‖H‖) term. Our simulations
will in general assume that η = O(1/ poly(‖H‖)), making the difference negligible.
It is also worth noting that this alternative definition appears to result in worse
bounds in Lemma 24 and Corollary 29 below.
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We remark that our physically motivated definition of simulation is very
similar to one previously introduced by Bravyi and Hastings [BH17]. The main
differences are:

(i). The second part of the definition in [BH17] is stated as

‖H − Ṽ †H ′Ṽ ‖ ≤ ε. (111)

But we have ‖H− Ṽ †H ′Ṽ ‖ = ‖Ṽ HṼ †− Ṽ Ṽ †H ′Ṽ Ṽ †‖ = ‖Ṽ HṼ †−H ′≤∆‖,
which matches the term ‖H ′≤∆ − Ẽ(H)‖ in our definition, except that our

encoding Ẽ(H) may be of the more general form Ṽ (H⊕p ⊕ H̄⊕q)Ṽ †. As
discussed above, this is essential to enable e.g. complex Hamiltonians to
be encoded as real Hamiltonians.

(ii). We insist that E is local, whereas [BH17] deliberately does not impose any
restriction on the isometry V , other than to say it should be sufficiently
simple in practice. This enables us to find stronger implications of our
notion of simulation for error-tolerance and computational complexity.

We also remark that, although Definition 22 requires simulation in the low-
energy subspace, this can readily be generalised to other types of subspace, by
replacing P≤∆(H′) by a projector onto the subspace of interest. However, some of
the physical consequences of Definition 22 later in this section do depend on the
simulation being in the low-energy subspace. All the simulations we construct
will achieve this.

We now prove the previously promised claim that if the isometry V used
in an encoding approximately maps to the ground space of H ′, there exists an
isometry Ṽ close to V which maps exactly to this ground space. See [BH17] for
a similar result.

Lemma 23 Let E : B(H)→ B(H′) be a subspace encoding of the form E(M) =
V (M ⊗ P + M̄ ⊗Q)V †, and let Π be the projector onto a subspace S ⊆ H′. If

‖Π−E(1)‖ < 1, then there exists an isometry Ṽ : H → H′ such that ‖Ṽ − V ‖ ≤√
2‖Π− E(1)‖ and the corresponding encoding Ẽ(M) = Ṽ (M ⊗ P + M̄ ⊗Q)Ṽ †

satisfies Ẽ(1) = Π.

Proof Recall that E(1) is a projector. If ‖Π − E(1)‖ < 1, then rank(Π) =
rank(E(1)) and hence there exists a unitary U on H′ such that Π = UE(1)U†.
One can show using Jordan’s lemma that U can be chosen to obey the bound
‖U − 1‖ ≤

√
2‖Π − E(1)‖; the short argument is contained in the proof of

Lemma 3 in [BH17].

Defining Ṽ = UV , we have Ẽ(1) = UE(1)U† = Π and

‖Ṽ − V ‖ ≤ ‖U − 1‖‖V ‖ ≤
√

2‖Π− E(1)‖ (112)

as desired. �
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Importantly, the notion of simulation we use is transitive: if A simulates B,
and B simulates C, then A simulates C. We now formalise this as a lemma; a
very similar result to this was shown by Bravyi and Hastings [BH17], but as our
encodings are somewhat more general to those they consider we include a proof.

Lemma 24 Let A, B, C be Hamiltonians such that A is a (∆A, ηA, εA)-simulation
of B and B is a (∆B , ηB , εB)-simulation of C. Suppose εA, εB ≤ ‖C‖ and
∆B ≥ ‖C‖+2εA+εB. Then A is a (∆, η, ε)-simulation of C, where ∆ ≥ ∆B−εA,

η = ηA+ηB+O

(
εA

∆B − ‖C‖+ εB

)
and ε = εA+εB+O

(
εA‖C‖

∆B − ‖C‖+ εB

)
.

(113)

Note that any good simulation should satisfy ∆B � ‖C‖ (see Proposition 27
below for one reason why) in which case the condition on ∆B is easily satisfied
and we have η = ηA + ηB + o(1) and ε ≈ εA + εB .

Proof We closely follow the argument of [BH17, Lemma 3]. Let EA be the
local encoding corresponding to the simulation of B with A, and let EB be the
local encoding corresponding to the simulation of C with B. We will use the
composed map E = EA ◦ EB to simulate C with A. By Lemma 16, this map is
indeed a local encoding.

Let VA and VB be the isometries in the definition of EA and EB. Recall
from the definition of simulation that there exist isometries ṼA, ṼB such that
‖ṼA − VA‖ ≤ ηA, ‖ṼB − VB‖ ≤ ηB, ṼAṼ

†
A = P≤∆A(A), ṼBṼ

†
B = P≤∆B(B). We

define the encodings ẼA, ẼB to be the encodings obtained by replacing VA with
ṼA and VB with ṼB . Note that composing these maps to obtain ẼA ◦ ẼB makes
sense (ẼB maps C to the low-energy part of B, and ẼA maps all of B to the
low-energy part of A).

Let N be the dimension of S≤∆B(B). By Lemma 26, the Nth smallest
eigenvalue of B is bounded by λN (B) ≤ ‖C‖ + εB. Therefore the condition
∆B ≥ ‖C‖+ 2εA + εB allows us to put a lower bound on ∆G, the spectral gap
between the Nth and (N + 1)th eigenvalues of B:

∆G = λN+1(B)− λN (B) > ∆B − ‖C‖ − εB ≥ 2εA. (114)

Let ẼA(B) = ṼA(B⊕p ⊕ B̄⊕q)Ṽ †A. By Lemma 26, λN(p+q)(A) ≤ λN (B) + εA
and λN(p+q)+1(A) ≥ λN+1(B) − εA, so the condition ∆G > 2εA implies that
there exists ∆ such that λN(p+q)(A) < ∆ < λN(p+q)+1(A). Furthermore, since
λN(p+q)+1(A) ≥ λN+1(B)− εA > ∆B − εA, we can choose ∆ to be at least as
big as ∆B − εA.

Let B′ = B⊕p ⊕ B̄⊕q, so we can write ẼA(B) = ṼAB
′Ṽ †A. It is shown in the

proof of [BH17, Lemma 3] that there exists a unitary operator U such that

S≤∆(A) = UṼAS≤∆B(B′) (115)

and ‖U − 1‖ ≤ 2
√

2εA/∆G. That is, UṼA maps the low-energy subspace of B′

precisely onto the low-energy subspace of A. Note that the existence of such a
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U is nontrivial, as all we know in advance from the fact that A simulates B is
that ṼA maps all of B′ into the less low-energy subspace S≤∆A(A).

The composed approximate encoding in the simulation of C by A will be
Ẽ(M) = U ẼA(ẼB(M))U†. By (115), Ẽ maps the Hilbert space of C onto S≤∆(A).

The overall isometry Ṽ in the encoding ẼA ◦ ẼB is obtained from the isometry V
in the encoding E by replacing VA with ṼA and VB with ṼB. By the triangle
inequality and Lemma 16, ‖V − Ṽ ‖ ≤ ηA + ηB , so

η = ‖V − UṼ ‖ ≤ ηA + ηB +O(εA∆−1
G ). (116)

Therefore, E meets condition (i) from Definition 22 for simulation of C with A.

It remains to show condition (ii). We aim to bound ‖A≤∆−U ẼA(ẼB(C))U†‖,
which, by the triangle inequality, is upper-bounded by

‖A≤∆ − U ẼA(ẼB(C))U†‖

≤ ‖A≤∆ − U ẼA(B≤∆B
)U†‖+ ‖U ẼA(B≤∆B

)U† − U ẼA(ẼB(C))U†‖.
(117)

The second term in (117) is precisely equal to ‖B≤∆B
− ẼB(C)‖. By the

assumption of the present lemma that B is a (∆B , ηB , εB)-simulation of C, this
term is upper-bounded by εB . In order to deal with the first term in (117), we
rewrite it as

‖A≤∆UṼA − UṼAB′≤∆B
‖. (118)

We write U = 1 +M , so

A≤∆UṼA − UṼAB′≤∆B
= P≤∆(A)(A≤∆UṼA − UṼAB′≤∆B

)P≤∆B(B′) (119)

= P≤∆(A)(AṼA − ṼAB′)P≤∆B(B′) (120)

+A≤∆MṼAP≤∆B(B′) − P≤∆(A)MṼAB
′
≤∆B

.

(121)

For the first part,

‖P≤∆(A)(AṼA − ṼAB′)P≤∆B(B′)‖ ≤ ‖AṼA − ṼAB′‖ = ‖A≤∆A
− ṼAB′Ṽ †A‖ ≤ εA

(122)
by simulation of B with A. The second part is bounded by ‖M‖‖A≤∆‖ and
the third by ‖M‖‖B′≤∆B

‖. We have ‖M‖ = O(εA∆−1
G ) by (115). By simulation

of B with A and (115), ‖A≤∆‖ ≤ ‖B′≤∆B
‖ + εA; by simulation of C with B,

‖B′≤∆B
‖ = ‖B≤∆B

‖ ≤ ‖C‖+ εB. Combining all the terms, we get the overall
bound that

‖A≤∆ − U ẼA(ẼB(C))U†‖ ≤ εA + εB + 2
√

2εA∆−1
G (‖C‖+ εA + 2εB). (123)

Since εA, εB ≤ ‖C‖ and ∆B ≤ ∆G + ‖C‖+ εB , we have that the overall error ε
is

ε = εA + εB +O

(
εA‖C‖

∆B − ‖C‖+ εB

)
(124)

as claimed. �
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Later we will see that certain families of Hamiltonians are extremely powerful
simulators: they can simulate any other Hamiltonian.

Definition 25 We say that a family of Hamiltonians is a universal simulator,
or is universal, if any (finite-dimensional) Hamiltonian can be simulated by a
Hamiltonian from the family. We say that the universal simulator is efficient if
the simulation is efficient for all local Hamiltonians.

Although we restrict to finite-dimensional Hamiltonians in this definition, infinite-
dimensional cases can be treated via standard discretisation techniques. Indeed,
we will see one such example later. We restrict our notion of efficiency to local
Hamiltonians, as this is a natural class of Hamiltonians which have efficient
descriptions themselves.

First, however, we will show that the definition of simulation we have arrived
at has some interesting consequences.

4.3 Simulation and static properties
First we show that Hamiltonian simulation does indeed approximately preserve
important physical properties of the simulated Hamiltonian. Although this is
effectively immediate for perfect simulations from the definition of encodings,
for approximate simulations we need to check how the level of inaccuracy
in the simulation translates into a level of inaccuracy in the property under
consideration. We first do this for eigenvalues; essentially the same result was
shown in [BH17] but we include a proof for completeness.

Lemma 26 Let H act on (Cd)⊗n, let H ′ be a (∆, η, ε)-simulation of H, and
let λi(H) (resp. λi(H

′)) be the i’th smallest eigenvalue of H (resp. H ′). Then
for all 1 ≤ i ≤ dn and all j such that (i − 1)(p + q) + 1 ≤ j ≤ i(p + q),
|λi(H)− λj(H ′)| ≤ ε (where the integers p, q are those appearing in simulation’s
encoding).

Proof For any i, j satisfying the above conditions, λi(H) = λj(E(H)) by the
definition of an encoding. By condition (i) of Definition 22, the spectrum of

Ẽ(H) is the same as the spectrum of E(H). By condition (ii) of Definition 22

and Weyl’s inequality |λj(Ẽ(H))− λj(H ′)| ≤ ‖Ẽ(H)−H ′≤∆‖, each eigenvalue
differs from its counterpart by at most ε. �

Next we verify that simulation approximately preserves partition functions.

Proposition 27 Let H ′ on m d′-dimensional qudits be a (∆, η, ε)-simulation

of H on n d-dimensional qudits, with ‖H ′≤∆ − Ẽ(H)‖ ≤ ε for some encoding

Ẽ(H) = Ṽ (H⊕p ⊕ H̄⊕q)Ṽ †. Then the relative error in the simulated partition
function evaluated at β satisfies

|ZH′(β)− (p+ q)ZH(β)|
(p+ q)ZH(β)

≤ (d′)me−β∆

(p+ q)dne−β‖H‖
+ (eεβ − 1). (125)
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Proof Let S be the low-energy subspace of H ′, S = Im(Ṽ ). We have

(p+ q)ZH(β) = (p+ q) Tr(e−βH) = Tr(e−βẼ(H)|S) (126)

and hence

|ZH′(β)− (p+ q)ZH(β)|
(p+ q)ZH(β)

(127)

=
|Tr(e−βH

′
)− Tr(e−βẼ(H)|S)|

Tr(e−βẼ(H)|S)
(128)

≤ |Tr(e−βH
′
)− Tr(e−βH

′|≤∆)|
(p+ q) Tr(e−βH)

+
|Tr(e−βH

′|≤∆)− Tr(e−βẼ(H)|S )|
Tr(e−βẼ(H)|S)

. (129)

For the first term, the numerator is upper-bounded by (d′)me−β∆, whereas in
the denominator Tr(e−βH) is lower-bounded by dne−β‖H‖. For the second term,
we write λk for the k’th eigenvalue of H (in nonincreasing order), and λk + εk
for the k’th eigenvalue of H ′|≤∆ (in the same order), and have

|Tr(e−βH
′|≤∆)−Tr(e−βẼ(H)|S )| ≤

∑
k

|e−β(λk+εk)−e−βλk | =
∑
k

e−βλk |e−βεk−1|.

(130)
By Lemma 26, |εk| ≤ ε for all k, so we have |e−βεk − 1| ≤ eβε − 1, and thus the
relative error is upper-bounded by

(d′)me−β∆

(p+ q)dne−β‖H‖
+ (eεβ − 1) (131)

as claimed. �

We remark that if we choose ∆� ‖H‖+ (m log d′ − n log d− log(p+ q))/β and
ε� 1/β then this relative error tends to zero. All the simulations we construct
allow us to choose ∆� m− n, so these scalings are possible.

4.4 Simulation and time-evolution
We showed in Proposition 4 that encodings allow perfect simulation of time-
evolution. We now confirm that this holds for simulations too, up to a small
approximation error.

Proposition 28 Let H ′ be a (∆, η, ε)-simulation of H with corresponding en-
coding E = V (M⊗P +M̄⊗Q)V †. Then for any density matrix ρ′ in the encoded
subspace, so that E(1)ρ′ = ρ′,

‖e−iH
′tρ′eiH

′t − e−iE(H)tρ′eiE(H)t‖1 ≤ 2εt+ 4η (132)

Proof Recall that by the definition of simulation there exists an alternative
encoding Ẽ(M) = Ṽ (M ⊗ P + M̄ ⊗ Q)Ṽ † such that Ẽ(1) = P≤∆(H′) and
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‖Ṽ − V ‖ ≤ η. Let ρ̃ = Ṽ V †ρ′V Ṽ †. Then

‖e−iH
′tρ′eiH

′t − e−iE(H)tρ′eiE(H)t‖1 (133)

≤‖e−iH
′tρ′eiH

′t − e−iH
′tρ̃eiH

′t‖1 + ‖e−iH
′tρ̃eiH

′t − e−iẼ(H)tρ̃eiẼ(H)t‖1
+ ‖e−iẼ(H)tρ̃eiẼ(H)t − e−iE(H)tρ′eiE(H)t‖1

(134)

by the triangle inequality. Since ρ′ is in the encoded subspace, we know that
V V †ρ′V V † = ρ′. Therefore Lemma 17 lets us bound the first term by ‖ρ′−ρ̃‖1 ≤
2‖Ṽ V † − V V †‖ ≤ 2η. Similarly, noting that

e−iẼ(H)tρ̃eiẼ(H)t = Ṽ V †e−iE(H)tρ′eiE(H)tV Ṽ †, (135)

we use Lemma 17 to bound the third term by 2‖Ṽ V † − V V †‖ ≤ 2η. Finally, for

the second term, we note that P≤∆(H′)ρ̃ = ρ̃, so e−iH
′tρ̃eiH

′t = e−iH
′
≤∆tρ̃eiH

′
≤∆t,

and by Lemma 17 again this term is bounded by

2‖eiH
′
≤∆t − eiẼ(H)t‖ ≤ 2t‖H ′≤∆ − Ẽ(H)‖ ≤ 2εt (136)

where we have used the matrix inequality ‖eA−eB‖ ≤ ‖A−B‖‖eA‖‖eA−B‖ [HJ91,
Corollary 6.2.32]. �

Corollary 29 Suppose in addition to the conditions of Corollary 29 that E is
a standard encoding. Let Estate(ρ) = V (ρ ⊗ σ)V † for some state σ satisfying
Pσ = σ, and let F (ρ′) = TrE [(1⊗ P )V †ρ′V ] as defined in (21). Then

‖e−iH
′tEstate(ρ)eiH

′t − Estate(e−iHtρeiHt)‖1 ≤ 2εt+ 4η, (137)

‖F (e−iH
′tρ′eiH

′t)− e−iHtF (ρ′)eiHt‖1 ≤ 2εt+ 4η. (138)

Proof The first statement follows from setting ρ′ = Estate(ρ) in Proposition 28
and noting that e−iE(H)tEstate(ρ)eiE(H)t = Estate(e−iHtρeiHt). The second state-
ment follows from F (e−iE(H)tρ′eiE(H)t) = e−iHtF (ρ′)eiHt and the fact that F is
trace-nonincreasing. �

4.5 Errors and noise
An important question for any simulation technique is how errors affecting the
simulator relate to errors on the simulated system. Understanding this in full
detail will depend strongly on the physical noise model being considered and
the implementation details of the simulation. However, our notion of simulation
via local encodings enables us to make some general statements about errors.

First, we show that a local error on the simulator does not map between the
forward-evolving and backward-evolving parts of the simulator. This implies the
existence of a corresponding local error on the original system by using the F
map to extract the forward-evolving part. Second, we show that for the types
of encoding used in this paper, a stronger result holds: any local error on an
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encoded state is equal to the encoding of a local error on the original system.
Finally, we show that, under a reasonable physical assumption, any error on the
simulator is close to an error that acts only within the encoded subspace. This
allows us to continue to simulate time-evolution and measurement following an
error.

Theorem 30 Let E(M) = V (M ⊗ P + M̄ ⊗ Q)V † be a local encoding, where
M acts on n qudits, and let ρ′ be a state on the encoded subspace such that
E(1)ρ′ = ρ′. Let N ′ be a CP-map whose Kraus operators each act on at most
l < n qudits of the simulator system.

1. Let P ′ = V (1⊗ P )V † and Q′ = V (1⊗Q)V †. Then

P ′N ′(ρ′) = P ′N ′(P ′ρ′) and Q′N ′(ρ′) = Q′N ′(Q′ρ′). (139)

2. Let Estate(ρ) = V (ρ⊗σ)V † for a density matrix σ satisfying Pσ = σ. Then
the map defined by N (ρ) = F (N ′(Estate(ρ))) is a CP-map whose Kraus
operators act on at most l qudits of the original system.

Proof Let N ′(ρ′) =
∑
kN
′
kρ
′N ′†k . For a given k, the Kraus operator N ′k acts on

only l qudits of the simulator system. Therefore N ′k must act trivially on at least
one subsystem H′j . Recall from Theorem 15 that there exists a projector PEj
which acts only on the ancilla Ej such that (1⊗PEj )P = P and (1⊗PEj )Q = 0.

Defining P ′j = 1 ⊗ VjPEjV
†
j , we have P ′jP

′ = P ′ and P ′jQ
′ = 0. Note that P ′j

acts non-trivially only on H′j and so commutes with N ′k. Therefore

P ′N ′kE(1) = P ′P ′jN
′
kE(1) = P ′N ′kP

′
jE(1) = P ′N ′kP

′
j(P
′ +Q′) = P ′N ′kP

′.
(140)

So, remembering that ρ′ is in the encoded subspace and satisfies ρ′ = E(1)ρ′, we
have

P ′N (ρ′) =
∑
k

P ′N ′kE(1)ρ′N ′†k =
∑
k

P ′N ′kP
′ρ′N ′†k = P ′N ′(P ′ρ′). (141)

The statement for Q follows analogously.
We now prove the second part of the theorem. N (ρ) is clearly CP, since it is

defined by a composition of CP maps. Let the spectral decomposition of σ be
given by σ =

∑
j λj |ψj〉〈ψj |. Extend {|ψj〉}j to a basis for the subspace of the

ancilla E given by the support of P . Then

N (ρ) = F (N ′(Estate(ρ))) (142)

= TrE [(1⊗ P )
∑
k

V †N ′kV (ρ⊗ σ)V †N ′†k V (1⊗ P )] (143)

=
∑
i,j,k

(1⊗ 〈ψi|)V †N ′kV (ρ⊗ λj |ψj〉〈ψj |)V †N ′†k V (1⊗ |ψi〉) (144)

=
∑
k,i,j

Ni,j,kρN
†
i,j,k (145)
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where Ni,j,k =
√
λj(1 ⊗ 〈ψi|)V †N ′kV (1 ⊗ |ψj〉) are the Kraus operators of N .

Since E is a local encoding, the isometry V may be chosen to be local by
Theorem 15, so V †N ′kV acts non-trivially on at most l qudits of the original
system. Therefore the Kraus operators Ni,j,k act non-trivially on at most l
qudits, as claimed. �

For a general encoding with a corresponding map on states Estate(ρ) =
V (ρ⊗σ)V †, the error N ′ may entangle ρ and σ, so it is not possible in general to
show that N ′(Estate(ρ)) ≈ Estate(N (ρ)). However, if rank(P ) = 1 (as is the case
in all our simulations) then we are able to get a stronger result, which composes
more straightforwardly with our other results.

Corollary 31 Let E(M) = V (M ⊗ P + M̄ ⊗ Q)V † be a local encoding with
rank(P ) = 1 and let Estate(ρ) = V (ρ ⊗ P )V †. Let N ′ and N be the CP-maps
given in Theorem 30. Then

E(1)N ′(Estate(ρ))E(1) = Estate(N (ρ)). (146)

Proof Let the Kraus operators of N ′ be given by N ′k. Since rank(P ) = 1,
we must have P = |ψ〉〈ψ| for some state |ψ〉 on the ancilla system E. Since
Q′Estate(ρ) = 0 = Estate(ρ)Q

′, where Q′ is defined as in Theorem 30, part 1 of
that theorem shows that Q′N ′(Estate(ρ)) = 0 = N ′(Estate(ρ))Q

′. Then writing
E(1) = P ′ +Q′, we have

E(1)N ′(Estate(ρ))E(1) = P ′N ′(Estate(ρ))P ′ (147)

= V (1⊗ |ψ〉〈ψ|)V †
(∑

k

N ′kV (ρ⊗ |ψ〉〈ψ|)V †N ′†k

)
V (1⊗ |ψ〉〈ψ|)V † (148)

= V

(∑
k

NkρN
†
k ⊗ |ψ〉〈ψ|

)
V † = Estate(N (ρ)), (149)

where we recall from the proof of Theorem 30 that the Kraus operators of
N (ρ) are given by Nk = (1⊗ 〈ψ|)V †N ′kV (1⊗ |ψ〉) (the sum over i and j is not
necessary when rank(P ) = 1). �

Corollary 31 is the strongest general result relating errors on the simulator
and simulated systems that one could hope for: it states that any error (CP-map)
on the simulator system corresponds naturally to simulating an error (CP-map)
on the simulated system.

Even in the more general setting of Theorem 30, we interpret the map
N (ρ) = F (N ′Estate(ρ)) as the error on the original system corresponding to N ′.
This is because by part 1 of Theorem 30 we have B(Estate(ρ)) = 0, and therefore
by (20), for any observable A,

Tr[AN (ρ)] = Tr[E(A)N ′(Estate(ρ))]. (150)

Although N ′ may not map between the forwards and backwards parts of the
encoded space, it may take a state out of the encoded subspace. But in order

34



to implement a local measurement with Proposition 13 and time-evolve with
Corollary 29, we need ρ′ = N ′(Estate(ρ)) to be in the encoded subspace.

The map ρ′ 7→ E(1)N ′(ρ′)E(1) does map within the encoded subspace, and
has the same corresponding error N on the original system. Indeed, it is the
map that appears in Corollary 31. For this error map we can therefore apply
Proposition 13 and Corollary 29 as desired. We will make an extra physically-
motivated assumption on the form of the error map N ′, which guarantees that
the difference between this map and N ′ is negligible.

Let H ′ be a (∆, η, ε)-simulation of H with corresponding local encoding E .
We might reasonably assume that errors that take the state out of the low-
energy space of H ′ are unlikely due to the high energy required for such an
error. We can formalise this by considering only noise operations N ′ such that
Tr[P≤∆(H′)N ′(σ)] ≥ 1 − δ for any state σ supported only on S≤∆(H′), and
some δ.

Proposition 32 Let H ′ be a (∆, η, ε)-simulation of H with corresponding local
encoding E. Let N ′ be a quantum channel acting on the simulator system and
let ρ′ be a state in the encoded subspace, so that E(1)ρ′ = ρ′.

Then, if Tr[P≤∆(H′)N ′(σ)] ≥ 1−δ for all states σ supported only on S≤∆(H′),

‖N ′(ρ′)− E(1)N ′(ρ′)E(1)‖1 ≤
√
δ(4− 3δ) + 8η. (151)

Proof For readability, write P≤∆ := P≤∆(H′). Then three applications of the
triangle inequality give

‖N ′(ρ′)− E(1)N ′(ρ′)E(1)‖1 (152)

≤ ‖E(1)N ′(ρ′)E(1)− E(1)N ′(σ)E(1)‖1 (153)

+ ‖E(1)N ′(σ)E(1)− P≤∆N ′(σ)P≤∆‖1 (154)

+ ‖P≤∆N ′(σ)P≤∆ −N ′(σ)‖1 + ‖N ′(σ)−N ′(ρ′)‖1 (155)

where σ = Ṽ V †ρ′V Ṽ †. Since N ′ is a quantum channel and E(1) is a projector,
the first and fourth terms are both bounded by

‖ρ′ − σ‖1 = ‖ρ′ − Ṽ V †ρ′V Ṽ †‖1 ≤ 2‖V V † − Ṽ V †‖ ≤ 2η, (156)

where we have used Lemma 17. Similarly, we can bound the second term using
Lemma 17 twice:

‖E(1)N ′(σ)E(1)− P≤∆N ′(σ)P≤∆‖1 ≤ 2‖E(1)− P≤∆‖ ≤ 4η. (157)

It remains to bound the third term ‖P≤∆N ′(σ)P≤∆ − N ′(σ)‖ in terms of
δ using the condition assumed in the proposition. Given any state |ψ〉 such
that P≤∆ |ψ〉 6= |ψ〉, define the orthonormal states |φ0〉 = P≤∆ |ψ〉 /

√
1− x and

|φ1〉 = (1 − P≤∆) |ψ〉 /
√
x where x = 1 − 〈ψ|P≤∆ |ψ〉. The operator |ψ〉〈ψ| −

P≤∆ |ψ〉〈ψ|P≤∆ is a rank 2 operator which acts non-trivially only on the space
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spanned by {|φ0〉 , |φ1〉} as the following matrix:(
0

√
x(1− x)√

x(1− x) x

)
with eigenvalues λ± =

x

2
±
√
x(1− x) +

x2

4
.

(158)
Therefore ‖|ψ〉〈ψ| − P≤∆ |ψ〉〈ψ|P≤∆‖1 = |λ+| + |λ−| =

√
x(4− 3x). This

equality also holds trivially in the case P≤∆ |ψ〉 = |ψ〉.
Using the spectral decomposition, we can write N ′(σ) =

∑
j λj |ψj〉〈ψj | and

use the triangle inequality to show that the third term in (155) is bounded by

‖N ′(σ)− P≤∆N ′(σ)P≤∆‖1 (159)

≤
∑
j

λj‖|ψj〉〈ψj | − P≤∆ |ψj〉〈ψj |P≤∆‖1 (160)

=
∑
j

λj

√
xj(4− 3xj) =

∑
j

√
λjxj

√
λj(4− 3xj) (161)

≤

√√√√√
∑

j

λjxj

(4− 3
∑
k

λkxk)

)
(162)

where xj = 1− 〈ψj |P≤∆ |ψj〉 and we have used the Cauchy-Schwarz inequality
in the last step. The result follows from

∑
j λjxj = 1− Tr(P≤∆N ′(σ)) = δ. �

By setting ρ′ = Estate(ρ) in Proposition 32, and using Corollary 31, we have

Corollary 33 Let H ′ be a (∆, η, ε)-simulation of H with corresponding local
encoding E(M) = V (M ⊗P + M̄ ⊗Q)V † such that rank(P ) = 1. Let Estate(ρ) =
V (ρ⊗ P )V † and let N ′ be a quantum channel whose Kraus operators act on at
most l < n qudits of the simulator system.

Then, if Tr[P≤∆(H′)N ′(Estate(ρ))] ≥ 1− δ, there exists a CP-map N whose
Kraus operators act on at most l qudits of the original system such that

‖N ′(Estate(ρ))− Estate(N (ρ))‖1 ≤
√
δ(4− 3δ) + 8η. (163)

5 Universal Hamiltonian simulation
Having drawn some consequences from the notion of simulation, we will now
move on to prove that certain types of Hamiltonians are universal simulators,
first introducing the key technique we use: perturbative reductions [KKR06;
BH17; OT08; BDL11].

5.1 Techniques
Let Hsim be a Hilbert space decomposed as Hsim = H+⊕H−, and let Π± denote
the projector onto H±. For any linear operator O on Hsim, write

O−− = Π−OΠ−, O−+ = Π−OΠ+, O+− = Π+OΠ−, O++ = Π+OΠ+.
(164)
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Let H0 be a Hamiltonian such that H0 is block-diagonal with respect to the
split H+ ⊕H−, (H0)−− = 0, and λmin((H0)++) ≥ 1.

Slight variants of the following lemmas were shown in [BH17], building on
previous work [OT08; BDL11]:

Lemma 34 (First-order simulation [BH17]) Let H0 and H1 be Hamiltoni-
ans acting on the same space. Suppose there exists a local isometry V such that
Im(V ) = H− and

‖V HtargetV
† − (H1)−−‖ ≤ ε/2. (165)

Then Hsim = ∆H0 + H1 (∆/2, η, ε)-simulates Htarget, provided that the bound
∆ ≥ O(‖H1‖2/ε+ ‖H‖1/η) holds.

Lemma 35 (Second-order simulation [BH17]) Let H0, H1, H2 be Hamil-
tonians acting on the same space, such that: max{‖H1‖, ‖H2‖} ≤ Λ; H1 is
block-diagonal with respect to the split H+ ⊕ H−; and (H2)−− = 0. Suppose
there exists a local isometry V such that Im(V ) = H− and

‖V HtargetV
† − (H1)−− + (H2)−+H

−1
0 (H2)+−‖ ≤ ε/2. (166)

Then Hsim = ∆H0 + ∆1/2H2 + H1 (∆/2, η, ε)-simulates Htarget, provided that
∆ ≥ O(Λ6/ε2 + Λ2/η2).

Lemma 36 (Third-order simulation [BH17]) Let H0, H1, H ′1, H2 be Hamil-
tonians acting on the same space, such that: max{‖H1‖, ‖H ′1‖, ‖H2‖} ≤ Λ; H1

and H ′1 are block-diagonal with respect to the split H+ ⊕ H−; (H2)−− = 0.
Suppose there exists a local isometry V such that Im(V ) = H− and

‖V HtargetV
† − (H1)−− − (H2)−+H

−1
0 (H2)++H

−1
0 (H2)+−‖ ≤ ε/2 (167)

and also that
(H ′1)−− = (H2)−+H

−1
0 (H2)+−. (168)

Then Hsim = ∆H0+∆2/3H2+∆1/3H ′1+H1 (∆/2, η, ε)-simulates Htarget, provided
that ∆ ≥ O(Λ12/ε3 + Λ3/η3).

In fact, whenever we use Lemmas 34 and 35 we will be able to replace
the approximate equalities up to ε/2 with exact equalities. We do not invoke
Lemma 36 explicitly in this work; however, we state it for completeness because
it can be used to show that a QMA-completeness result of [OT08] (Theorem 39
below) actually implies a simulation result. The scaling of ∆ assumed in these
lemmas is sufficient to ensure that ∆/2 separates the high- and low-energy parts
of the simulator Hamiltonian Hsim. The main difference between these lemmas
and their equivalents in [BH17] is that here we insist on locality of the isometry
V , corresponding to our local notion of simulation. The correctness proofs
of [BH17] go through without change.

We remark that, in order to use the above lemmas, it will often be convenient
to add a multiple of the identity to the simulator or target Hamiltonians,
corresponding to an overall energy shift. The families of Hamiltonians which we
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consider will always contain the identity, so we are free to do this with impunity.
For readability, we often omit this implicit freely added identity term when we
state the form of restricted types of Hamiltonians below.

In the Hamiltonian complexity literature, many constructions, known as
“gadgets”, have been developed to prove that special cases of the Local Hamil-
tonian problem1 are QMA-complete, by reducing more complex cases to the
more specialised cases (e.g. [KKR06; OT08; CM16; PM17]). These reductions
often use perturbation theory and can be interpreted as instances of Lemma 34
or Lemma 35. Thus, rather than being merely reductions, they are simulations
in our terminology. Two types of gadget are commonly used:

• Mediator qubits. Imagine we have two qubits a and b and would like to
implement some effective interaction across them. One way to achieve this
is to attach an ancilla, “mediator” qubit c, and apply a heavily-weighted
local term H0 to c, and a less heavily-weighted term H2 = Hac + Hbc.
If we insist that qubit c is in the ground state of H0, this produces an
effective interaction across qubits a and b, together with some additional
local terms on a and b which we can cancel out by adding an extra term
H1. This puts us in the setting of Lemma 35. The isometry V is the
map which acts as the identity on qubits a and b, and attaches a qubit c
in the ground state of H0. This type of gadget is used in [OT08; CM16;
SV09] and elsewhere in the literature. Whenever such gadgets are used
and analysed using second-order perturbation theory, the preconditions of
Lemma 35 hold, so we obtain that the physical Hamiltonian constructed
simulates the desired logical Hamiltonian.

• Subspace encodings. This type of gadget encodes a logical qubit within
` = O(1) physical qubits. A Hamiltonian H on ` qubits is chosen whose
ground space is 2-dimensional. Then an overall Hamiltonian is produced
using a sum of heavily-weighted H terms, one on each `-tuple of physical
qubits. Within the ground space of the whole Hamiltonian, each `-tuple
corresponds to a qubit. Less heavily-weighted interactions across `-tuples
produce interactions across logical qubits. Lemma 34 and Lemma 35 can
be used to show that the simulator Hamiltonian does indeed simulate
the target Hamiltonian. Now the isometry V is a tensor product of n
isometries, each of which maps a qubit to the ground space of H within
the space of ` qubits. By choosing the right isometry, corresponding to a
choice of basis for this ground space, we obtain desired new interactions
across logical qubits.

This type of gadget is used in [CM16]. However, note that two of the
reductions in that work (simulating an arbitrary 2-local qubit Hamiltonian
with a Hamiltonian made up of interactions of Heisenberg or XY type)
were more complicated. In these reductions H acts on 3 qubits and has
a 4-dimensional ground space, corresponding to two logical qubits. Then

1The problem of computing the ground-state energy of a k-local Hamiltonian on n qubits,
up to 1/poly(n) precision [KSV02; KKR06].

38



additional heavily weighted terms are used to effectively project one qubit
in each logical pair into a fixed, and highly entangled, state of n qubits.
This technique would not comply with our notion of simulation, as the state
attached by the corresponding isometry V would be far from a product
state. Here we no longer need to use this type of reduction as we have a
genuinely local simulation (Theorem 40 below).

In this work we will use both of these kinds of simulation. For readability,
we will not fully repeat the correctness proofs of the simulations from previous
work, instead sketching the arguments and deferring to the original papers for
technical details. However, we stress that replacing the analysis of these gadgets
in previous work with the use of Lemmas 34 and 35 is sufficient to obtain fully
rigorous proofs of correctness.

In addition, to gain some intuition, we now describe more formally how one
of the simpler gadgets from [OT08] can be analysed using Lemma 35, and verify
that it fits the constraints. The gadget, which is called the subdivision gadget
and is an example of a mediator qubit gadget, allows a k-local Hamiltonian
to be simulated by a (dk/2e + 1)-local Hamiltonian. Consider an interaction
of the form Htarget = AaBb, where A acts on a subset of qubits a, and B acts
on a disjoint subset of qubits b. A mediator qubit c is introduced and we take
Hamiltonians

H0 = |1〉〈1|c , H2 =
1√
2

(AaXc −XcBb). (169)

Then (H2)−+ = (H2)†+− = 1√
2
|0〉〈1|c (Aa −Bb), so

(H2)−+H
−1
0 (H2)+− =

1

2
|0〉〈0|c (Aa −Bb)2 = |0〉〈0|c (

1

2
A2
a −AaBb +

1

2
B2
b ).

(170)
In addition, (H2)−− = 0. We choose H1 = 1

2 (A2
a + B2

b ), so (H1)−− =
1
2 |0〉〈0|c (A2

a + B2
b ). Consider the isometry defined by V |ψ〉ab = |ψ〉ab |0〉c.

Then it is easy to verify that

V HtargetV
† = (H1)−− − (H2)−+H

−1
0 (H2)+−. (171)

It follows from Lemma 35 that, for sufficiently high ∆, Hsim = ∆H0+
√

∆H2+H1

(∆, η, ε)-simulates Htarget. Observe that Hsim contains interactions on only at
most max{|a|+ 1, |b|+ 1} qubits. This idea can be used to reduce the locality
of the whole Hamiltonian simultaneously, by writing each k-local interaction
term in the original Hamiltonian as a sum of tensor product interactions, and
adding a new mediator qubit for each such interaction to simulate it with a
(dk/2e+ 1)-local interaction. The corresponding isometry simply attaches a state
of poly(n) qubits, each in the state |0〉, so is local.

Since each term of H2 acts on at most one mediator qubit, there is no
interference between gadgets and the total effective Hamiltonian is simply the
sum of the effective interactions of each gadget. We say that the gadgets are
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applied in parallel. For a detailed discussion of the parallel application of mediator
qubit gadgets, see [PM17]. We formalise this discussion in the following lemma,
with the addition of a corresponding result for subspace encoding gadgets.

Lemma 37 Let the Hamiltonian H0 =
∑
iH

(i)
0 be a sum of terms H

(i)
0 each

with ground space energy 0 and acting non-trivially only on disjoint subsets of

qudits Si. Let the ground space projection operator for H
(i)
0 be given by P

(i)
− so

the overall ground space projection operator for H0 is given by P− =
∏
i P

(i)
− .

• If H1 can be expressed as a sum of terms, H1 =
∑
αH

(α)
1 , the first order

perturbation satisfies

(H1)−− =
∑
α

(H
(α)
1 )−−. (172)

• Mediator gadgets. Let H2 =
∑
iH

(i)
2 , where H

(i)
2 acts trivially on all qu-

dits in ∪j 6=iSj . Suppose that all first order terms vanish, i.e. P
(i)
− H

(i)
2 P

(i)
− =

0 for all i. Then the second and third order terms are given by

−(H2H
−1
0 H2)−− = −

∑
i

P−H
(i)
2 (H

(i)
0 )−1H

(i)
2 P− (173)

−(H2H
−1
0 H2H

−1
0 H2)−− = −

∑
i

P−H
(i)
2 (H

(i)
0 )−1H

(i)
2 (H

(i)
0 )−1H

(i)
2 P−.

(174)

• Subspace gadgets. Let H2 =
∑

(i,j)H
(i,j)
2 for ordered pairs (i, j), where

H
(i,j)
2 acts non-trivially only on Si and Sj and raises both sets of qudits

completely out of their ground spaces such that P
(i)
− H

(i,j)
2 P− = 0 and

P
(j)
− H

(i,j)
2 P− = 0. Then the second order perturbation is given by

−(H2H
−1
0 H2)−− = −

∑
(i,j)

P−H
(i,j)
2

(
H

(i)
0 +H

(j)
0

)−1

H
(i,j)
2 P−. (175)

Before providing a proof, we remark why different results are needed for
mediator and subspace gadgets. In the mediator gadget case, the qudits of

Si are in a one dimensional ground space of H
(i)
0 for all i, and the effective

Hamiltonian acts non-trivially on the remaining qudits in ∪jSj . Therefore
interesting interactions can be effected, even when each perturbative term acts
on only one of the sets Si. Whereas for subspace gadgets, the ith logical qudit

lives in the groundspace of H
(i)
0 on the physical qudits Si, so we need perturbative

terms to act between different Si in order to make 2-local interactions.

Proof The first claim is trivial. For mediator qudit gadgets, define a projection

operator P
(i)
− =

∏
k 6=i P

(k)
− and note that it acts trivially on Si, so commutes
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with H
(i)
2 . Since the ground state energy for each H

(k)
0 is zero, H

(k)
0 P

(k)
− = 0

and so H
(k)
0 P

(i)
− = 0 for all k 6= i. Therefore,

(H0)−1P
(i)
− =

(∑
k

H
(k)
0

)−1

P
(i)
− = (H

(i)
0 )−1P

(i)
− . (176)

Since P− = P
(i)
− P−, the second order term is given by

−(H2H
−1
0 H2)−− = −

∑
i

P−H2H
−1
0 H

(i)
2 P− (177)

= −
∑
i

P−H2H
−1
0 P

(i)
− H

(i)
2 P− (178)

= −
∑
i

P−H2P
(i)
− (H

(i)
0 )−1H

(i)
2 P− (179)

= −
∑
i

P−H
(i)
2 (H

(i)
0 )−1H

(i)
2 P− (180)

where the final equality holds because P
(j)
− H

(k)
2 P

(j)
− = 0 for all j 6= k, and so

P−H2P
(i)
− = P−H

(i)
2 .

Using the same techniques, we can show that the third order term is equal
to

−
∑
i,j,k

P−H
(j)
2 (H

(j)
0 )−1P

(j)
− H

(k)
2 P

(i)
− (H

(i)
0 )−1H

(i)
2 P−. (181)

If k 6= i, j, then P
(k)
− appears in the product expression for both P

(i)
− and P

(j)
−

and so P
(j)
− H

(k)
2 P

(i)
− = 0. We may therefore assume k = j (the proof for k = i

proceeds analogously), in which case we have

−
∑
i,j

P−H
(j)
2 (H

(j)
0 )−1P

(j)
− H

(j)
2 P

(i)
− (H

(i)
0 )−1H

(i)
2 P−. (182)

The operator P
(j)
− commutes with H

(j)
2 and P

(i)
− , and so, remembering that

P
(j)
− (H

(i)
0 )−1 = 0 for i 6= j, we must have i = j, giving the desired result.

The proof is very similar for subspace gadgets, but we instead define a

projection operator P
(i,j)
− =

∏
k 6=i,j P

(k)
− for ordered pairs (i, j), noting that

it acts trivially on Si and Sj , so commutes with H
(i,j)
2 . As before, we have

H
(k)
0 P

(i,j)
− = 0 for all k 6= i, j, so (H0)−1P

(i,j)
− = (H

(i)
0 +H

(j)
0 )−1P

(i,j)
− . Therefore
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the second order term is given by

−(H2H
−1
0 H2)−− = −

∑
(i,j)

P−H2H
−1
0 H

(i,j)
2 P− (183)

= −
∑
(i,j)

P−H2H
−1
0 P

(i,j)
− H

(i,j)
2 P− (184)

= −
∑
(i,j)

P−H2P
(i,j)
−

(
H

(i)
0 +H

(j)
0

)−1

H
(i,j)
2 P− (185)

= −
∑
(i,j)

P−H
(i,j)
2

(
H

(i)
0 +H

(j)
0

)−1

H
(i,j)
2 P− (186)

where the final equality holds since by the form of H
(i,j)
2 assumed in the lemma,

P−H
(i′,j′)
2 P

(i,j)
− = 0 unless (i′, j′) = (i, j), so P−H2P

(i,j)
− = P−H

(i,j)
2 P

(i,j)
− . �

5.2 Universal simulators
We are now ready to prove universality of a variety of classes of Hamiltonians.
The overall structure of the argument is illustrated in Figure 3; the eventual
result is that each of the classes of qudit Hamiltonians illustrated in the diagram
is universal. For brevity, when we state and prove simulation results, rather
than writing “The family of A-Hamiltonians can simulate the family of B-
Hamiltonians” for some A and B, we simply write “A-Hamiltonians can simulate
B-Hamiltonians”. We stress that such a statement is nevertheless rigorous and
should be understood in the sense of Definition 22.

We have already proven some of the simulation results required (Lemmas 20
and 21). We now complete the programme of Figure 3 by showing that every
remaining type of qudit Hamiltonian in the diagram is universal. The simulation
of Lemma 21 may produce terms which include even numbers of Y components.
First we show that such terms are not necessary. Note that it was already known
that Hamiltonians without any Y components can be QMA-complete [BL08];
what we show here is that such Hamiltonians can in fact be universal simulators.

Lemma 38 Real k-local qubit Hamiltonians can be simulated by real (k+1)-local
qubit Hamiltonians whose Pauli decomposition does not contain any Y terms.

Proof Let H be a real k-local qubit Hamiltonian. For each k′-local interaction
h in the Pauli decomposition of H (k′ ≤ k), add an additional mediator qubit
a. Since H is real, there must be an even number of Y terms in h. We may
assume, by reordering qubits if necessary, that h = Y ⊗2m ⊗ A where A is a
tensor product of X and Z terms on k′ − 2m qubits.

We use second-order perturbation theory (Lemma 34) to effectively generate h
from an interaction containing only X and Z terms. Consider a heavy interaction
term H0 acting only on the mediator qubit, H0 = (1 + Za)/2 = |0〉 〈0|a, with
groundstate |1〉a, and a perturbative term H2 = Xa(X⊗2m⊗1+(−1)m+1Z⊗2m⊗
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Any non-2SLD set of 2-qubit interactions

{XX + αY Y + βZZ +A1 + 1A} {XZ − ZX +A1− 1A}

{XX + αY Y + βZZ}

{XX + αY Y }

{XX + Y Y + ZZ} {XX + Y Y }

2-local Pauli interactions with no Y ’s

{XZ − ZX}

Arbitrary (2k + 1)-local terms with no Y ’s

Arbitrary real 2k-local qubit Hamiltonian

Arbitrary k-local qubit Hamiltonian

Arbitrary k′-local qudit Hamiltonian
with local dimension d

Bosons Fermions

,otherwise

,Theorem 40 ,Theorem 40

,Theorem 39, [OT08]

,If α = β = 1

,Lemma 38

,Lemma 21

, Theorem 41,
[CM16; PM17]

,Lemma 20

Figure 3: Sequence of simulations used in this work. An arrow from one
box to another indicates that a Hamiltonian of the first type can simulate a
Hamiltonian of the second type. Where two arrows leave a box, this indicates
that a Hamiltonian of this type can simulate one of the two target Hamiltonians,
but not necessarily both. “2SLD” is short for “the 2-local parts of all interactions
in the set are simultaneously locally diagonalisable”, and k, k′ ≥ 2 are arbitrary
integers such that k ≥ dk′ log2 de.
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A). H2 acts as a switch between the ground space and the excited space. It is
clear that the first-order term Π−H2Π− vanishes. The second-order term is, up
to a multiple of the identity, of the desired form:

−Π−H2(H−1
0 )++H2Π− = − |0〉 〈0|a (X⊗2m ⊗ 1 + (−1)m+1Z⊗2m ⊗A)2 (187)

= 2 |0〉 〈0|a
(
Y ⊗2m ⊗A+ 1

)
. (188)

It follows from Lemma 34 that, for sufficiently large ∆, H ′ = ∆H0 + ∆1/2H2 is a
(∆, η, ε)-simulation of the interaction h. This can be used to simulate the whole
Hamiltonian H by applying separate mediator qubit gadgets for each term h in
parallel; by Lemma 37, different terms do not interfere with each other. �

It may be tempting to think that a similar second-order mediator qubit gadget
could be used to simulate a 1-local Y interaction, since ZX = iY . However the
same trick would not work if we took H2 = Xa(X1 + Z1), for example, because
the anticommutator {X,Z} vanishes and so (X + Z)2 = 21. Of course, this
should not be surprising, as the perturbative expansion of any real Hamiltonian
can only result in real Hamiltonian terms.

Next we use a result of Oliveira and Terhal [OT08] to further specialise the
class of Hamiltonians proven universal in Lemma 38.

Theorem 39 (essentially [OT08]) k-local qubit Hamiltonians whose Pauli
decomposition does not contain any Y terms can be simulated by 2-local Hamil-
tonians of the form

∑
i>j αijAij +

∑
k(βkXk + γkZk), where Aij is one of the

interactions XiXj , XiZj , ZiXj or ZiZj and αij , βk, γk ∈ R.

We sketch the proof of Theorem 39; see [OT08] for more technical details.

Proof (sketch) The claim is trivial for k ≤ 2, so assume k ≥ 3. We first note
that, for each k-tuple of qubits, one can decompose any interaction across that
k-tuple as a weighted sum of interactions which are each tensor products of Pauli
matrices. These can be thought of as separate hyperedges in the hypergraph of
interactions in H, and henceforth treated separately.

Then, to effectively produce each of these Pauli interactions, the subdivision
gadgets described in [OT08] can be used. There are two of these gadgets. One
gadget simulates an arbitrary k-wise interaction of the form A⊗B across sets
of qubits a and b by using a mediator qubit c, and dk/2e-wise interactions of
the form AaXc + XcBb. This gadget was discussed in detail near the start
of Section 5.1. Repeated use of this procedure enables k-local interactions to
be simulated using 3-local interactions. The second gadget simulates a 3-local
Hamiltonian with a 2-local Hamiltonian. The gadget generates interactions of
the form AaBbCc by introducing a mediator qubit d and a Hamiltonian whose
terms are proportional to AaXd, BbXd and Cc |1〉〈1|d, and using third-order
perturbation theory to generate effective 3-local terms from these [BH17; OT08].
This leads to unwanted 2-local and 1-local terms being generated too, which
can be effectively deleted using compensating terms of the form XZ, X, Z. By
Lemma 37, these third order mediator qubit gadgets do not interfere. Note that
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2 3

1

4
2’ 3’

1’

4’

+H11′

+H33′−2H22′

Figure 4: One logical qubit is encoded within a quadruple of physical qubits
(1–4 and 1′–4′). 2-local interactions are implemented using interactions across
the quadruples. The figure illustrates the Hamiltonian for simulating XLXL, up
to 1-local terms.

the analysis of [OT08] can be replaced with the use of Lemma 36 to show that
this gadget indeed gives a simulation in our terminology.

Finally, observe that these gadgets do not introduce any Y terms if they were
not present already. �

Next we show that the Heisenberg and XY interactions are sufficient to
simulate any Hamiltonian of the form of Theorem 39. This is the most technically
involved simulation in this paper. Unlike the argument used in [CM16], here the
encoding used is local.

Theorem 40 Let F be the family of qubit Hamiltonians of the form H =∑
i>j αijAij +

∑
k(βkXk + γkZk), where Aij is one of the interactions XiXj,

XiZj , ZiXj or ZiZj and αij , βk, γk ∈ R. Then {XX+Y Y +ZZ}-Hamiltonians
and {XX + Y Y }-Hamiltonians can simulate F .

Proof We prove the claim for the Heisenberg interaction XX + Y Y + ZZ; the
argument is completely analogous for the XY interaction XX + Y Y . We use a
subspace encoding gadget to encode a logical qubit in the ground space of the
Hamiltonian of the complete graph on 4 qubits, as illustrated in Figure 4.

The overall heavy interaction used is

H0 := H12 +H23 +H34 +H14 +H24 +H13 + 61, (189)

where we write Hij = XiXj + YiYj + ZiZj . The identity term is present to
ensure that the ground space of H0 corresponds to eigenvalue zero. H0 has a
two dimensional ground space S given in terms of singlet states |Ψ−〉 by

S = span
{
|Ψ−〉12 |Ψ

−〉34 , |Ψ
−〉13 |Ψ

−〉24

}
where |Ψ−〉 =

|01〉 − |10〉√
2

. (190)
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(i, j) Π−XiXjΠ−
(1, 3)
(2, 4)

− 2
3ZL −

1
31

(1, 2)
(3, 4)

− 1√
3
XL + 1

3ZL −
1
31

(1, 4)
(2, 3)

1√
3
XL + 1

3ZL −
1
31

(193)

Table 1: Effective interactions produced by physical interaction acting on different
choices of qubits.

We choose the following orthonormal basis for our logical qubit:

|0L〉 = |Ψ−〉13 |Ψ
−〉24 |1L〉 = 2√

3
|Ψ−〉12 |Ψ

−〉34 −
1√
3
|Ψ−〉13 |Ψ

−〉24 (191)

First-order perturbations We can simulate 1-local interactions XL and ZL
using first-order perturbation theory. By Lemma 34, given a perturbation term
H1, the first-order perturbation is given by Π−H1Π−, where Π− is the projector
into the ground space. Note that the ground space is defined in terms of singlet
states which have the same form in any local basis, and so

Π−XiXjΠ− = Π−YiYjΠ− = Π−ZiZjΠ− (192)

which we can also check explicitly. Although the heavy Hamiltonian H0 is
invariant under permutations of the physical qubits, this symmetry is lost when
we fix the basis, and so Π−XiXjΠ− does depend on (i, j) – the values are given
in Table 1.

Therefore, we can simulate any real 1-local interaction up to an irrelevant
identity term; by Lemma 34, choosing H1 = α√

3
H14 + 1

2 ( α√
3
−β)H13 will simulate

the interaction Π−H1Π− = αXL + βZL + 1
2 (β −

√
3α)1.

Second-order perturbations In order to make an effective interaction be-
tween two logical qubits we need to use physical interactions that act between two
of these 4-qubit gadgets. We label the four physical qubits of one logical qubit as
1, 2, 3, 4, and the qubits of a second logical qubit with a dash 1′, 2′, 3′, 4′ and con-
sider a perturbation term of the form H2 =

∑
αijHij′ . All first-order perturba-

tion terms vanish as it is easy to show that Π−XiΠ− = Π−YiΠ− = Π−ZiΠ− = 0
for all i ∈ {1, 2, 3, 4}.

Let Htot
0 = H0 ⊗ 1 + 1 ⊗ H0 be the total heavy Hamiltonian on these 8

qubits, and let Πtot
− project onto the groundspace of Htot

0 .
We note that Z1 |Ψ−〉12 |Ψ−〉34 = |Ψ+〉12 |Ψ−〉34 is an eigenvector of H0

with eigenvalue 4, where |Ψ+〉 = (|01〉+ |10〉)/
√

2. Since the other eigenvector
spanning the ground space of H0, |Ψ−〉12 |Ψ−〉34, is of a similar form, it is clear
that Z1 maps the ground space of H0 into the eigenspace of eigenvalue 4. By
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H2 2-local part of effective interaction
H11′ ∓H33′ ±ZLZL

H13′ −H11′ ±H32′ ±ZLXL

H11′ − 2H22′ +H33′ XLXL

35H11′ + 5H22′ − 3H33′ + 5H44′ −XLXL

Table 2: Effective 2-local interactions produced from different choices of H2

terms, up to a non-negative scaling factor.

unitary invariance of the Heisenberg interaction, and the symmetry between
qubits 1, 2, 3, 4, we can say the same for any Xi, Yi or Zi. This allows us to
simplify the calculation of the second-order perturbation term,

−Πtot
− H2Π+(Htot

0 )−1Π+H2Πtot
− (194)

= −Πtot
− H2Π+

1
4+4Π+H2Πtot

− = − 1
8Πtot
− H2

2 Πtot
− (195)

= − 1
8 (Π− ⊗Π−)

 4∑
i,j,k,l=1

αijαklHij′Hkl′

 (Π− ⊗Π−) (196)

= − 1
8

4∑
i,j,k,l=1

αijαkl
[
(Π−XiXkΠ−)⊗ (Π−Xj′Xl′Π−) (197)

+ (Π−XiYkΠ−)⊗ (Π−Xj′Yl′Π−) + . . .
]
. (198)

Next, one can check that Π−XiYkΠ− = Π−XiZkΠ− = Π−YiZkΠ− = 0 for any
pair (i, k), so many of these terms vanish. Remembering also that Π−XiXkΠ− =
Π−YiYkΠ− = Π−ZiZkΠ−, this expression simplifies to

− 1
8Π−H

2
2 Π− = − 1

8

4∑
i,j,k,l=1

3αijαkl(Π−XiXkΠ−)⊗ (Π−Xj′Xl′Π−), (199)

where the effective interactions produced by Π−XiXkΠ− can be read off again
from Table 1.

By Lemma 35, for any ε > 0 and sufficiently large ∆ = poly(‖H‖, 1/η, 1/ε),
∆H0 + ∆

1
2H2 +H1 (∆, η, ε)-simulates the interaction Π−H1Π− − 1

8Πtot
− H2

2 Πtot
− .

Choosing H1 as above we can cancel out any 1-local part of 1
8Πtot
− H2

2 Πtot
− , so

we are interested only in the 2-local part. Table 2 shows some choices of H2

with integer coefficients that generate effective interactions whose 2-local part is
proportional to ±ZZ, ±ZX, ±XX.

By Lemma 37, we can apply this simulation to each interaction in H in
parallel. Letting H ′ denote the overall simulator Hamiltonian, we finally obtain
that, for any ε > 0 and sufficiently large ∆ = poly(‖H‖, 1/η, 1/ε), H ′ is a
(∆, η, ε)-simulation of H.
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Simulator interaction H Simulated interaction H ′ Gadget
XX + αY Y XX + Y Y Hab +Hbc

XX + αY Y + βZZ XX + α′Y Y Hab −Hbc

XZ − ZX XX + Y Y Hab +Hbc +Hca

Table 3: Subspace encodings used in Theorem 41. In each case a qubit is encoded
within the ground space of H acting on three qubits labelled a–c. Here α, β, α′

are fixed nonzero real numbers.

Everything follows through in exactly the same way for the XY interaction.
If we set Hij = XiXj + YiYj and use the same gadget, the ground space is left
unchanged. So the only thing to check is that Xi, Yi, Zi all map the ground
space into an eigenspace of H0 again (which they do!). Then the simulated
interactions will be the same up to a constant factor of 2/3. �

Finally, we show that every remaining class of qudit Hamiltonians in Figure 3
can simulate either XY interactions or Heisenberg interactions, implying that
they are all universal too.

Theorem 41 Let S be a set of interactions on at most 2 qubits. Assume that
there does not exist U ∈ SU(2) such that, for each 2-qubit matrix Hi ∈ S,
U⊗2Hi(U

†)⊗2 = αiZ
⊗2 + Ai ⊗ 1 + 1 ⊗ Bi, where αi ∈ R and Ai, Bi are

arbitrary single-qubit Hamiltonians. Then S-Hamiltonians can simulate either
{XX + Y Y + ZZ}-Hamiltonians or {XX + Y Y }-Hamiltonians. Furthermore,
if the interaction graph of the target Hamiltonian is a 2D square lattice, then the
simulator Hamiltonian may also be chosen to be on a 2D square lattice.

Observe that the assumption in the theorem is equivalent to assuming that
the set formed by extracting the 2-local parts of each interaction in S is not
simultaneously locally diagonalisable. Theorem 41 was first proven in [CM16],
with the restriction to 2D square lattices shown in [PM17]. These proofs use
different terminology (e.g. they prove “reductions” rather than “simulations”).
However, all the gadgets used are examples of mediator qubit gadgets or first order
subspace encoding gadgets which, as described in Section 5.1, give simulations in
our terminology. We therefore restrict ourselves here to sketching the arguments
of [CM16; PM17]. See [CM16; PM17] for a full proof of correctness and technical
details.

Proof (sketch) The claim follows by chaining together various simulations
from [CM16] in the same order as used in that work; the sequence of simulations
used is illustrated in Figure 3. To prove the final part of the theorem, each
of the gadgets used in [CM16] can be replaced with a gadget from [PM17]
which fits onto a square lattice. Most of the steps of the argument show that,
given access to one interaction H, we can effectively produce another interaction
H ′. Three of these are listed in Table 3. These are all simulations of the
subspace encoding type, where we encode one logical qubit within the ground
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space of a Hamiltonian on 3 physical qubits. The simulations can be analysed
using Lemma 34 and, as they are subspace encodings, satisfy the definition of
simulation. By applying the right interactions across qubit triples, we obtain new
effective interactions between logical qubits. The effective interactions produced
are calculated in [CM16]. Alternatively the mediator qubit gadgets of Figure
8 and Figure 11 of [PM17] may be used to perform the same simulations on a
square lattice.

A somewhat different case is the interaction H = XX +αY Y + βZZ +A1+
1A, where at least one of α and β is nonzero. Here the available interaction
corresponds to one which was considered in Table 3, but with an additional 1-local
term of some form. The simulation deletes these 1-local terms by introducing 4
ancilla qubits for each logical qubit a. Labelling these qubits a–d, it turns out
that the ground state of H0 = Hab +Hcd −Hac −Hbd is unique and maximally-
entangled across the (a− c : d) split. If these four qubits are forced to be in this
state, applying a −H interaction between 4 and a corresponds to a −A term
applied to a. This allows the local A terms to be effectively deleted for each
H interaction used. The corresponding isometry V attaches 4 ancilla qubits
for each of the original qubits, in the ground state of H0. The interaction
H = XZ − ZX + A1− 1A is similar; here the local part of H can be deleted
using H0 = Hab + Hbc + Hcd + Hda. Section 4.6 of [PM17] shows how these
gadget constructions may be adjusted slightly such that they fit onto a 2D square
lattice.

Now that these special cases have been dealt with, to complete the argument
we need to consider an arbitrary set S of 2-qubit interactions where there is
no U ∈ SU(2) such that, for each 2-qubit matrix Hi ∈ S, U⊗2Hi(U

†)⊗2 =
αiZ

⊗2 +Ai1 + 1Bi. We sketch the argument and defer to [CM16] for details.
Any 2-qubit interaction Hi can be decomposed in terms of parts which are

symmetric and antisymmetric under interchange of the qubits on which it acts,
and each of these parts can be extracted by taking linear combinations of Hi

and the interaction obtained by swapping the two qubits; so we can assume that
all the interactions in S are either symmetric or antisymmetric. The 2-local part

of any symmetric interaction Hi can be written as
∑
s,t∈{x,y,z}M

(i)
st σs ⊗ σt for

some symmetric 3× 3 matrix M (i). Define the Pauli rank of Hi to be the rank
of M (i). If there exists Hi ∈ S with Pauli rank 2, we consider Hamiltonians
produced only using Hi interactions. As discussed in Section 4, by applying
local unitaries and up to rescaling and relabelling Pauli matrices, we can replace
Hi with XX + αY Y + βZZ + A1 + 1A for some A, and some α, β ∈ R such
that at least one of them is nonzero. This is the special case we just considered.

Otherwise, all Hi ∈ S have Pauli rank 1; we also know that there must exist
Hi, Hj ∈ S such that the 2-local parts of Hi and Hj do not commute, by the
assumptions of the theorem. This implies that there must exist some linear
combination of Hi and Hj which has Pauli rank at least 2. Considering this
linear combination, we are back in the same special case as before. Finally,
the case where S contains an antisymmetric interaction can be dealt with in a
similar way, by using local unitaries to put that interaction into the previously
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considered canonical form XZ − ZX +A1− 1A. �

We finally observe that it was shown in [PM17] that certain interactions
remain universal even if they are only permitted to occur with non-negative
weights. Indeed, that work showed that the class of qubit Hamiltonians whose
interactions are of the form αXX+βY Y +γZZ, where {α+β, α+γ, β+γ} > 0,
can simulate qubit Hamiltonians with arbitrarily positively or negatively weighted
interactions of the form α′XX + β′Y Y + γ′ZZ, for some α′, β′, γ′ such that
at least two of α′, β′, γ′ are nonzero. This implies, for example, that the
antiferromagnetic Heisenberg interaction is universal.

5.3 Indistinguishable particles
Throughout this work so far, we have only considered Hamiltonians on distin-
guishable particles with finite-dimensional Hilbert spaces. As stated, our results
– and even the definitions of Hamiltonian encoding and simulation – do not apply
to indistinguishable particles or infinite-dimensional Hilbert spaces. Extending
these definitions to arbitrary self-adjoint operators on infinite-dimensional Hilbert
spaces is beyond the scope of the present article.1

However, as bosonic and fermionic systems are ubiquitous in many-body
physics, and our main focus is to show that there exist simple, universal quantum
models that are able to simulate the physics of any other physical system, we will
address the question of whether universal spin models such as the Heisenberg-
and XY-models can simulate indistinguishable particles. In fact, the required
simulations follow from standard techniques for mapping fermionic and bosonic
operators to spin operators, so we only sketch the arguments here.

5.3.1 Fermions

The canonical anti-commutation relation (CAR) algebra describing fermions

is generated by fermionic creation and annihilation operators ci, c
†
i satisfying

{ci, cj} = 0 and {ci, c†j} = δij (where the subscript indexes different fermionic
modes). This algebra is finite-dimensional (as long as the single-particle Hilbert
space is). It is well known that this algebra can be embedded into an operator
algebra acting on a many-qubit system, e.g. by the well-known Jordan-Wigner
transformation: ci = −

⊗
j≤i Zi ⊗

Xi+iYi
2 , where we define some arbitrary total-

ordering on the qubits. However, this is not sufficient for our purposes. It
transforms individual fermionic creation or annihilation operators into operators
that act non-trivially on all qubits in the system, so does not give a local
encoding.

The mapping introduced by Bravyi and Kitaev [BK02] improves this to log n-
local operators (where n is the total number of qubits)2. However, simulating
these log n-local interactions using a universal model with two-body interactions,

1As the definition and characterisation of encodings in particular is very C∗-algebraic in
character, it does not seem too difficult to generalise.

2Very recent independent work has given an analysis and comparison of different fermion-
to-qubit mappings [HTW17].
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such as the Heisenberg- or XY-model, will require local interactions whose norms
scale super-polynomially in n. Whilst this gives a simulation with polynomial
overhead in terms of the system size, it is not strictly speaking efficient according
to our definition due to this super-polynomial scaling of the local interaction
strengths.

Both of these mappings produce qubit Hamiltonians with the same number
of qubits as fermionic modes. This is much stronger than required for an efficient
simulation in the the spirit of Definition 22, which allows a polynomial overhead
in the simulator system size. The fermion-to-spin mappings studied in [VC05;
Bal05; FS14; WHT16] preserve locality by adding additional auxiliary fermionic
modes before mapping to qubits, at the expense of a polynomial system-size
overhead. The auxiliary fermions must be restricted to the appropriate subspace,
which can be done by adding strong local terms to the Hamiltonian (see [Bal05;
VC05]). (These strong local terms mutually commute, and when transformed to
spin operators become products of Paulis. So these terms in fact form a stabilizer
Hamiltonian.) Together with these strong local terms, this mapping gives a spin
Hamiltonian that exactly reproduces the original fermionic Hamiltonian in its
low-energy subspace. The resulting spin Hamiltonian is local if the simulated
fermionic system is a regular lattice Hamiltonian containing only even products
of fermionic creation and annihilation operators [VC05]. Simulating the resulting
spin Hamiltonian using any universal model then gives an efficient simulation
for this important class of fermionic Hamiltonians.

5.3.2 Bosons

In the case of bosons, the canonical commutation relation (CCR) algebra, gener-

ated by bosonic creation and annihilation operators ai, a
†
i satisfying [ai, aj ] = 0

and [ai, a
†
j ] = δij , is infinite-dimensional. To simulate bosons with spins, one

must necessarily restrict to some finite-dimensional subspace of the full Hilbert
space, and only simulate the system within that subspace. The appropriate
choice of subspace will depend on the particular bosonic system, and which
physics one wishes to simulate, so one cannot give a completely general result
here.

However, a natural choice will often be to limit the maximum number of
bosons to some finite value N , i.e. to restrict to the finite-dimensional subspace
spanned by eigenstates of the total number operator

∑
i a
†
iai with eigenvalue

≤ N . For systems containing multiple bosonic modes, we can alternatively limit
the maximum number of bosons in each mode separately, i.e. restrict to the
subspace spanned by eigenvectors with eigenvalue ≤ N for each a†iai individually.

(Since [a†iai, a
†
jaj ] = 0, this subspace also contains the subspace with maximum

total number of bosons N .)
In this way, each bosonic mode is restricted individually to a finite-dimensional

subspace that can be represented by the Hilbert space of a qudit. The original
bosonic Hamiltonian restricted to this subspace is clearly equivalent to some
Hamiltonian on these qudits. Furthermore, since [ai, aj ] = [ai, a

†
j ] = [a†i , a

†
j ] = 0

for i 6= j, k-particle bosonic interactions become k-local interactions on the
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qudits. The resulting k-local qudit Hamiltonian can then be simulated by the
universal model, as shown in previous sections.

In fact, restricting the bosonic creation and annihilation operators to the
finite-particle-number subspace in this way is a well-known procedure. The
equivalent qudit operators S±i are given by the (exact) Holstein-Primakov trans-
formation [HP40]:

S+
i =

√
d− 1

√
1− a†iai

d− 1
ai, S−i =

√
d− 1a†i

√
1− a†iai

d− 1
. (200)

5.4 Universal stoquastic simulators
It was previously shown by Bravyi and Hastings [BH17] that the Ising model with
transverse fields acts as a universal simulator for the class of stoquastic 2-local
Hamiltonians. The transverse Ising model (TIM) corresponds to Hamiltonians
which can be written as a weighted sum of terms picked from the set S = {XX,Z}.
A Hamiltonian is said to be stoquastic if its off-diagonal matrix entries are all
nonpositive in the computational basis [Bra+08]. Bravyi and Hastings used a
slightly different notion of simulation to the one we define here; as discussed in
Section 4, the most important difference is that in our notion of simulation, the
encoding operation must be local.

In [BH17], a sequence of 5 encodings is used to map 2-local stoquastic
Hamiltonians to the transverse Ising model. We check each of the encodings
in turn to see that the encodings are indeed local, so the overall result goes
through with our definitions. The encodings proceed through a succession of
other physical models, which we avoid defining here; see [BH17] for the details.

The encodings used are:

• TIM simulates HCD on a triangle-free graph: the encoding is the identity
map.

• HCD on a triangle-free graph simulates HCB2: the encoding attaches one
additional qubit v′ to each vertex v, and a qubit for each edge in the
interaction graph. Each of the edge qubits is in the state |0〉, and for each
vertex v, |0〉v is encoded as |0〉v |0〉v′ , |1〉v is encoded as |1〉v |1〉v′ . This is
clearly a local encoding.

• HCB2 simulates HCB1: the encoding attaches poly(n) additional qubits,
each in the state |0〉.

• HCB1 simulates HCB∗1: the encoding is the identity map.

• HCB∗1 simulates 2-local stoquastic Hamiltonians: the encoding maps each
qubit to a subspace of two qubits in a “dual rail” encoding, and attaches
some additional “mediator” qubits in a state which is a product of states
of O(1) qubits.

As these encodings are all local, we obtain that the transverse Ising model is a
universal simulator for the class of 2-local stoquastic Hamiltonians.

52



To extend this simulation to k-local stoquastic Hamiltonians for k > 2, one
can use a result from [Bra+08]. This work gave (in our terminology) a simulation
of k-local termwise-stoquastic Hamiltonians with 2-local stoquastic Hamiltoni-
ans. The simulation is efficient for k = O(1). A termwise-stoquastic k-local
Hamiltonian H is one for which the matrices HS occurring in the decomposition
H =

∑
S HS , where each subset S of subsystems on which HS acts is of size at

most k, can be taken to be stoquastic. Although all stoquastic Hamiltonians on
n qubits are clearly termwise-stoquastic when viewed as n-local Hamiltonians,
not all stoquastic k-local Hamiltonians are termwise-stoquastic when viewed as
k-local [Bra+08]. Thus, using the simulation of [Bra+08], we obtain that the
transverse Ising model is a universal simulator for stoquastic Hamiltonians, but
the simulation is only efficient for termwise-stoquastic Hamiltonians.

It is shown in [CM16], using similar techniques to the proof of Theorem 41,
that any family of Hamiltonians built from interactions of the form H = αZ⊗2 +
A⊗ 1 + 1⊗B, where A or B is not diagonal, can simulate TIM Hamiltonians.
Thus any family of Hamiltonians of this form is also a universal stoquastic
Hamiltonian simulator.

5.5 Classification of two-qubit interactions
We can complete the universality picture for two-qubit interactions by classifying
the interactions into universality families. Combining the result of the previous
section with Theorem 41 and a previous classification of universal classical
Hamiltonians [CC16], we obtain a full classification of universality classes:

Theorem 42 Let S be any fixed set of two-qubit and one-qubit interactions such
that S contains at least one interaction which is not 1-local. Then:

• If there exists U ∈ SU(2) such that U locally diagonalises S, then S-Hamiltonians
are universal classical Hamiltonian simulators [CC16];

• Otherwise, if there exists U ∈ SU(2) such that, for each 2-qubit matrix
Hi ∈ S, U⊗2Hi(U

†)⊗2 = αiZ
⊗2 + Ai ⊗ 1 + 1 ⊗ Bi, where αi ∈ R and

Ai, Bi are arbitrary single-qubit Hamiltonians, then S-Hamiltonians are
universal stoquastic Hamiltonian simulators [BH17; CM16];

• Otherwise, S-Hamiltonians are universal quantum Hamiltonian simulators.

We remark that the definition of universal classical simulation used in [CC16]
does not quite match up with our notion of universal quantum simulation.
Similarly to ours, that work associates a small number of physical qubits with
each logical qubit in the simulation. However, in [CC16] the sets of physical
qubits associated with distinct logical qubits are allowed to overlap. Also note
that, as discussed in Section 5.4, the second (stoquastic) class of universal
simulators is only efficient for termwise-stoquastic Hamiltonians.

Since the two-qubit interactions that are not universal must satisfy a non-
trivial set of algebraic constraints, this classification immediately implies that
generic two-qubit interactions are universal, an implication that can be formalised
as follows:
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Corollary 43 Given any measure on the set of two-qubit Hamiltonians with
full support, the subset of universal Hamiltonians has full measure.

5.6 Spatial sparsity and simulation on a square lattice
Up to this point, we have not assumed anything about the spatial locality of the
Hamiltonians we are simulating, nor the simulator Hamiltonians. Indeed, even if
the target Hamiltonian has a rather simple spatial structure – for example, is
a lattice Hamiltonian – this structure need not be preserved in the simulator
Hamiltonian. We now show that in certain cases we can find universal simulators
where all interactions take place on a square lattice. The price paid for simulating
general Hamiltonians in this way (for example, those with long-range interactions)
is an exponential increase in the weights required in the simulator. However,
when the target Hamiltonian is spatially sparse (a class which encompasses all
2D lattice Hamiltonians), this exponential increase can be avoided.

Definition 44 (Spatial sparsity [OT08]) A spatially sparse interaction graph
G on n vertices is defined as a graph in which (i). every vertex participates in
O(1) edges, (ii). there is a straight-line drawing in the plane such that every edge
overlaps with O(1) other edges and the length of every edge is O(1).

Lemma 45 Let S be either {XX + Y Y + ZZ}, {XX + Y Y } or {XX,Z}.
Then any S-Hamiltonian H on n qubits can be simulated by a S-Hamiltonian on
a square lattice of poly(n) qubits using weights of O(nΛ0(1/ε + 1/η))poly(n)

size, where Λ0 is the size of the largest weight in H. Furthermore if the
target Hamiltonian is spatially sparse, then the weights need only be of size
O(poly(nΛ0(1/ε+ 1/η))).

Proof The final part of the statement concerning spatially sparse Hamiltonians
was originally shown in [OT08] for {XX,Z}-Hamiltonians. The proof used three
gadgets called fork, crossing and subdivision gadgets pictured in Figure 5, which
we briefly describe here.

The subdivision gadget simulates an XX interaction between two non-
interacting qubits a, b using a mediator qubit e, as pictured in Figure 5a. This
can be used O(log k) times in series to simulate an interaction between two qubits
separated by k qubits. The fork gadget simulates the interactions XaXb +XaXc

using only one interaction involving qubit a, as pictured in Figure 5b. This can
be used multiple times in parallel to reduce the degree of the vertex a in the
interaction graph. The crossing gadget is used to simulate XaXc +XbXd, for 4
qubits a, b, c, d arranged as shown in Figure 5c, via an interaction graph that
has no crossings.

These gadgets can be used to simulate a spatially sparse Hamiltonian on a
square lattice using only O(1) rounds of perturbation theory; we defer to [OT08]
for the technical details. The gadgets were generalised for the interactions
XX+Y Y +ZZ and XX+Y Y in [PM17], where the mediator qubit e is replaced
with a pair of mediator qubits, in order to prove the result for {XX+Y Y +ZZ}-
Hamiltonians and {XX + Y Y }-Hamiltonians in the same way.
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(a) Subdivision gadget
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(c) Crossing gadget

Figure 5: Subdivision, fork and crossing gadgets. In each case the top interaction
pattern is simulated using the gadget underneath. White vertices denote mediator
qubits with heavy 1-local terms applied.

Here we show how, if we allow more than O(1) rounds of perturbation theory,
the same gadgets can be used to simulate a 2-local Hamiltonian whose interaction
pattern is the complete graph on n qubits, via a simulator Hamiltonian on a
square lattice of size O(n2)×O(n2). Any interaction graph which is a subgraph
of the complete graph can easily be simulated using the same construction,
simply by setting some weights to zero.

First, lay out the n qubits in a line. Each vertex in the interaction graph has
n− 1 incoming edges. Subdivide each edge just once to isolate these high degree
vertices to obtain an interaction graph as shown in Figure 6a. Then using the
fork gadget O(log n) times in series allows us to replace these with binary trees
of depth O(log n), which can be placed directly onto a square lattice as shown
in Figure 6b. The long range interactions in this graph (which are of length
at most O(n2)), can be fitted to the edges of the square lattice using O(log n)
applications of the subdivision gadget.

At each crossing, we also need to use a crossing gadget – note that the
interactions XaXb, XbXc, XcXd, and XdXa in Figure 5c may be subdivided
using a subdivision gadget so that the crossing gadget fits on the square lattice.
If there is not enough space to put two crossing gadgets next to each other, then
the lattice spacing can be made twice as narrow to make space. This only makes
a constant factor difference to the number of qubits used and the number of
rounds of perturbation theory required.

The whole procedure therefore requires a total of O(log n) rounds of pertur-
bation theory. By Lemma 35, second-order perturbation theory requires the
weights of the simulator Hamiltonian to be of size O(Λ6/ε2 + Λ2/η2), where Λ
is the size of the terms H1 and H2. Given the simple nature of the gadgets
used here, Λ = O(poly(n)Λ0) where Λ0 is the size of the largest weight in H.
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(a) First subdivide each edge to isolate each of the high degree vertices.

O(log n)

O(n2)

O(n2)

(b) Use the fork gadget O(logn) times at each of the high degree vertices, and lay
out the resulting interaction pattern on a 2D lattice as shown above. Finally use the
subdivision and crossing gadgets until the Hamiltonian is on the 2D square lattice.

Figure 6: How to simulate a Hamiltonian whose interaction pattern is the
complete graph on n = 5 qubits with a Hamiltonian on a 2D square lattice.
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Therefore r rounds of perturbation theory requires weights of size

Λsim = O

(
poly(n)Λ0

(
1

ε
+

1

η

))6r

(201)

Simulating the complete graph as described above requires r = O(log n),
so the weights of the simulator system are Λsim = (nΛ0(1/ε + 1/η))poly(n).
However, for a spatially sparse Hamiltonian simulated using only r = O(1)
rounds of perturbation theory as described in [OT08] the weights scale as
Λsim = poly(nΛ0(1/ε+ 1/η)). �

6 Consequences of universality
We finally discuss some implications of our results for quantum computation.

6.1 QMA-completeness
Oliveira and Terhal showed in [OT08] that the local Hamiltonian problem for
spatially sparse qubit Hamiltonians is QMA-complete. It is observed in [CM16]
that this spatially sparse Hamiltonian may be assumed to not contain any Y
terms in its Pauli decomposition, by combining the work of [OT08] with a
result of [BL08]. Notice that the simulations in Theorem 39 and Theorem 40
result in a spatially sparse simulator Hamiltonian if the target Hamiltonian
is spatially sparse. Combined with Lemma 45, these results show that the
Heisenberg interaction on a square lattice can efficiently simulate any spatially
sparse qubit Hamiltonian with no Y terms, and is therefore QMA-complete. This
was previously shown by Schuch and Verstraete [SV09] in the case where arbitrary
1-local terms are allowed at every site; the novelty here is that QMA-completeness
still holds even if these terms are not present.

This removes the caveat of Theorem 3 in [PM17], which can now be fully
stated as:

Theorem 46 Let S be a set of interactions on at most 2 qubits. Assume that
there does not exist U ∈ SU(2) such that, for each 2-qubit matrix Hi ∈ S,
U⊗2Hi(U

†)⊗2 = αiZ
⊗2 + Ai ⊗ 1 + 1 ⊗ Bi, where αi ∈ R and Ai, Bi are

arbitrary single-qubit Hamiltonians. Then the local Hamiltonian problem for
S-Hamiltonians is QMA-complete even if the interactions are restricted to the
edges of a 2D square lattice.

Using further gadget constructions from [PM17], one can even show that the
antiferromagnetic Heisenberg interaction is QMA-complete on a triangular lattice.

6.2 Quantum computation by simulation
We can connect universal quantum Hamiltonians to universality for quantum
computation. Many constructions are now known (e.g. [JW05; Llo08; Nag12;
CGW13; Tho+16; Sei+16]) which show that Hamiltonian simulation is sufficient
to perform universal quantum computation. Indeed, this was already shown for
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universal classical computation by Feynman [Fey85], and his construction can
easily be extended to quantum computation. See [Nag08] for much more on this
“Hamiltonian quantum computer” model, and many further references.

One representative example is a result of Nagaj [Nag12], who showed that
for any polynomial-time quantum computation on n qubits there is a 2-local
HamiltonianH on poly(n) qubits with ‖H‖ = O(poly(n)), a time t = O(poly(n)),
and an easily constructed product state |φ0〉, such that the output of the
computation can be determined (with high probability) by applying e−iHt to
|φ0〉 and measuring the resulting state |φt〉 in the computational basis. The
description of H can be constructed in polynomial time.

Because of the strong consequences of universality, we can use any class
of universal Hamiltonians to simulate an encoded version of H. Let F be an
efficiently universal family of qubit Hamiltonians. Our definition of efficient
simulation implies that, for any polynomial-time quantum computation on n
qubits, there is a protocol of the following form to obtain the output of the
computation:

(i). Prepare a pure state U |φ0〉 |0〉⊗m of poly(n) qubits, for some encoding
map U such that U is a product of unitaries, each of which acts on O(1)
qubits.

(ii). Apply e−iH
′t for some Hamiltonian H ′ ∈ F such that ‖H ′‖ = poly(n),

and some time t = poly(n).

(iii). Decode the output by applying U†.

(iv). Measure the resulting state in the computational basis.

Observe that the first and third steps can be implemented by quantum circuits of
depth O(1). By universality of F , there exists H ′ ∈ F such that H ′ is a (∆, η, ε)-
simulation of H for arbitrary ε > 0. By Corollary 29, if we take η, ε = 1/ poly(n)
and evolve according to H ′ for time t = poly(n), the resulting state |ψ〉 is distance
1/ poly(n) from an encoded version of e−iHt |φ0〉; call that state Estate(φt). By
Proposition 4, the expectation of any encoded measurement operator E(A)
applied to Estate(φt) is the same as that of A applied to φt. Thus applying U†

to E(φt) in order to undo E , and then measuring in the computational basis,
would result in the same distribution on measurement outcomes as measuring φt
in the computational basis. So the distribution obtained by measuring in step
(iv) is close (i.e. at total variation distance 1/ poly(n)) to the distribution that
would have been obtained from the measurement at the end of the simulated
computation.

Thus our results show that these steps, together with time-evolution according
to apparently rather simple interactions are sufficient to perform arbitrary
quantum computations. For example, time-independent Heisenberg interactions
with a carefully crafted pattern of coupling strengths, but no additional types of
interaction, are sufficient for universal quantum computation; the same holds
for XY interactions. Note that a similar statement was already known for the
case of time-dependent Heisenberg interactions [DiV+00; Kem+00]: the proof
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of universality there was also based on encoding, though made substantially
simpler by the additional freedom afforded by time-dependence. Also note that,
though not stated explicitly there, universality of the Heisenberg interaction on
arbitrary graphs for quantum computation should follow from the techniques
in [CGW13]. Universality of the XY interaction for quantum computation,
when augmented by some additional restricted types of interactions, was shown
in [CGW13; Tho+16; Sei+16].

We also showed that any universal set of 2-qubit interactions can efficiently
simulate any spatially sparse Hamiltonian, even if all interactions in the simulator
Hamiltonian occur on a square lattice. As there exist families of spatially sparse
Hamiltonians which are universal for quantum computation (e.g. [NW08; OT08])
this implies that these interactions remain universal for quantum computation on
a square lattice. For example, Heisenberg interactions are universal for quantum
computation even when restricted to a 2D square lattice; as are XY interactions.

The converse perspective on this is that these Hamiltonians are more compli-
cated to simulate than one might have previously thought. Following Lloyd’s
original quantum simulation algorithm [Llo96], a number of works have developed
more efficient algorithms for quantum simulation, whether of general Hamiltoni-
ans [Ber+07; BCK15] or Hamiltonians specific to particular physical systems,
such as those important to quantum chemistry [Has+15; Pou+15]. However,
although these algorithms use very different techniques, one property which
they share is that they are highly sequential; to simulate a Hamiltonian on n
qubits for time t, each of the algorithms requires a quantum circuit of depth
poly(n, t). Quantum simulation is predicted to be one of the earliest applications
of quantum computers, yet maintaining coherence for long times is technically
challenging. So it would be highly desirable for there to exist a Hamiltonian
simulation algorithm with low depth; for example, an algorithm whose quantum
part consisted of a quantum circuit of depth poly(log(n)).

Our results give some evidence that such a simulation algorithm is unlikely
to exist, even for apparently very simple Hamiltonians such as the Heisenberg
model. If there existed a Hamiltonian simulation algorithm for simulating
a Heisenberg Hamiltonian on n qubits for time t, whose quantum part were
depth poly(log(n, t)), then the quantum part of any polynomial-time quantum
computation on n qubits could be compressed to depth poly(log(n)). This can be
seen as a complexity-theoretic analogue of a query complexity argument [Ber+07]
that lower-bounds the time to simulate an arbitrary sparse Hamiltonian. Unlilke
the query complexity approach, using computational complexity theory gives
evidence for hardness of simulating explicitly given local Hamiltonians. In
complexity-theoretic terms, our results show that, roughly speaking1, simulating

1This statement is only approximately true, for several reasons. The Hamiltonian simulation
problem as we have defined it is intrinsically quantum: the task is to produce the state e−iHt |ψ〉,
given an input state |ψ〉. To formalise this complexity-theoretic claim, one would have to
define a suitable notion of quantum reductions which encompassed such “state transformation”
problems. And technically, the hardness result we prove is that the Hamiltonian simulation
problem is at least as hard as PromiseBQP, the complexity class corresponding to determining
whether measuring the first qubit of the output of a quantum computation is likely to return 0
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any universal class of Hamiltonians is BQP-complete under QNC0 reductions,
where BQP is the complexity class corresponding to polynomial-time quantum
computation, and QNC0 is the class of depth-O(1) quantum circuits.

6.3 Adiabatic quantum computation
The model of adiabatic quantum computation allows arbitrary polynomial-time
quantum computations to be performed in the ground state of a family of
Hamiltonians [Aha+08]. A continuously varying family of Hamiltonians H(t) is
used, where 0 ≤ t ≤ 1. H(0) and H(1) are chosen such that the ground state
of H(0) is easily prepared, while the ground state of H(1) encodes the solution
to some computational problem. For example, it could be the computational
history state [KSV02] encoding the entirety of a polynomial-length quantum
computation. At time t = 0, the system starts in the ground state of H(0). If
the rate of change of t is slow enough, the system remains in its ground state
throughout, and at time t = 1 the solution can be read out from the state
by measuring in the computational basis. In order to perform the adiabatic
computation in time poly(n), it is sufficient that the spectral gap of H(t) is at
least δ for all t, for some δ ≥ 1/poly(n), and that ‖H(t)‖ and ‖ ddtH(t)‖ are
upper-bounded by poly(n) for all t [JRS07].

It was shown in [KKR06] that universal adiabatic quantum computation
can be achieved using 2-local Hamiltonians. Here we argue, following a sim-
ilar argument for stoquastic Hamiltonians [BH17], that any of the classes of
universal Hamiltonian we have considered here can perform adiabatic quantum
computation, given the ability to perform local encoding and decoding unitary
operations before and after the adiabatic evolution.

Let H(t) be a family of Hamiltonians used to implement an adiabatic quantum
computation. For each t we define H ′(t) to be a (∆, η, ε)-simulation of H(t)
using one of the previously discussed classes of universal simulators, where
η, ε ≤ n−c for a sufficiently small constant c, and let V (t) be the corresponding
local isometry. From the definition of universal simulation, and the fact that the
simulations increase the norm of the simulated Hamiltonian by at most a poly(n)
factor, H ′(t) has spectral gap at least δ − 1/ poly(n) and ‖H ′(t)‖ = O(poly(n)).
The ground state of H ′(0) can be prepared efficiently by applying V (0) to the
ground state of H(0), and the ground state of H ′(1) can be read off efficiently
by applying V †(1) and measuring in the computational basis.

It remains to show that ‖ ddtH
′(t)‖ = O(poly(n)). The map H(t) 7→ H ′(t)

could in principle introduce singularities, as implementing an effective interaction
of weight α using a second-order perturbative reduction requires weights whose
scaling with α is α1/2, so for α→ 0 the derivative becomes infinite; a similar issue
applies to third-order reductions. This can be avoided, for example, by choosing
a cutoff αmin, and forming a Hamiltonian H̃ by replacing each weight α in the
original Hamiltonian H with α̃ = sgn(α)

√
α2 + α2

min. If αmin is sufficiently

small (yet still inverse-polynomial in n), ‖H̃−H‖ ≤ n−c′ for an arbitrarily small

or 1, given that one of these is the case. We choose to omit a discussion of these technical
issues.
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constant c′, and also ‖ ddtH̃
′(t)‖ = O(poly(n)).
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