

Supplementary Information for

Fc α RI binding at the IgA1 C_H2-C_H3 interface induces long-range conformational changes that are transmitted to the hinge region

Monica T. Posgai, Sam Tonddast-Navaei, Manori Jayasinghe, George M. Ibrahim, George Stan, and Andrew B. Herr

Correspondence: George Stan Email: <u>george.stan@uc.edu</u> Correspondence: Andrew B. Herr Email: <u>andrew.herr@cchmc.org</u>

This PDF file includes:

Supplementary text Figs. S1 to S7 Tables S1 to S4 Captions for movies SM1 to SM15 References for SI reference citations

Other supplementary materials for this manuscript include the following:

Movies SM1 to SM15

Supplementary Methods

Circular Dichroism

Far-UV CD experiments were carried out at 25 °C in an Aviv 215 circular dichroism spectrometer using 0.5 mm quartz cuvettes. Wavelength scans were performed from 260-185 nm with 1 nm steps. Data were collected in triplicate on Fca wildtype and variant proteins, at concentrations ranging from 0.462 to 1.172 mg/mL, in buffer containing 0.02 M sodium phosphate, pH 7.4. Units were converted from millidegrees to mean residue ellipticity and spectra from 190-240 nm were deconvoluted using reference set 4 of the CDSSTR algorithm in the Dichroweb program (http://www.cryst.bbk.ac.uk) (1, 2). Average error values were converted to mean residue ellipticity as described (3).

IgA1 C_H3 cloning, expression, refolding, and purification

Using the Fca-pcDNA3 plasmid as a template, PCR was used to amplify residues Ser341-Lys450 encoding the $C_{\rm H}3$ domain of IgA1 (C α 3), and insert an upstream tobacco vein mottling virus cleavage site (ETVRFQG). The PCR product was cloned into the Gateway pDEST17 vector containing an N-terminal His-tag (Invitrogen, Carlsbad, CA). Correct sequence was confirmed by DNA sequencing. Tuner (DE3) pLysS cells were induced overnight with 1 mM IPTG for robust expression of Ca3 protein in inclusion bodies, confirmed by Western blot. Cells were lysed by sonication and inclusion body pellets were washed and solubilized overnight in buffer containing 6 M GdnHCl, 0.5 M NaCl, 0.02 M NaH₂PO₄, and 0.01 M imidazole. Following HisTrap purification under denaturing conditions, 10 mL of 1 mg/mL reduced denatured Ca3 was dialysis refolded in 500 mL of dialysate containing 0.5 M L-arginine HCl, 0.1 M Tris-HCl, pH 7.4, 0.001 M EDTA, 0.45% (w/v) Cyclofos-4, 0.005 M oxidized glutathione, 0.0005 M reduced glutathione). Over a period of 7 days, dialysate was changed to 0.02 M Tris-HCl, pH 7.4, 0.15 M NaCl by gradual decreases in urea, then arginine, followed by Cyclofos-4. Refolded Ca3 was purified by size chromatography using a Hi Load 26/60 Superdex 75 prep grade column (GE Healthcare). Protein purity was determined to be >95% by SDS-PAGE.

Analytical ultracentrifugation

To determine whether the purified refolded C α 3 protein formed homodimers in solution, analytical ultracentrifugation sedimentation velocity experiments were carried out at 20 °C using a Proteome Lab XL-I analytical ultracentrifuge (Beckman Coulter, Indianapolis, IN). Refolded C α 3 protein was sedimented at 48,000 rpm overnight. For sedimentation velocity experiments, 400 µL samples in 0.02 M Tris-HCl, pH 7.4, and 0.15 M NaCl were centrifuged overnight at 48,000 rpm at 20 °C in a Beckman XL-I using absorbance optics at 280 nm. The data were analyzed by the program Sedfit using the c(s) and c(m) models to determine differential sedimentation coefficient and apparent mass distributions, respectively. C α 3 sedimented primarily as a single peak, with a sedimentation coefficient of 2.28 S and an estimated molecular mass of 25.8 kDa, similar to that expected for a homodimer (28.6 kDa).

Biosensor Analysis

BIAcore CM5 chip surfaces were prepared for coupling by pre-conditioning to decrease noise and increase sensitivity (4) (2 sequential 50 μ L pulses at 100 μ L/min of: 0.05 M NaOH, 0.01 M HCl, 0.1% SDS, and 0.085% H₃PO₄), followed by signal normalization between flow cells. Fca variants were immobilized by standard random-amine chemistry. Ligands (wildtype or mutant Fca) in PBS were diluted to 5 μ g/mL in 10 mM sodium acetate buffer pH 5.0, injected at 5 μ L/min, and immobilized to ~200 response units (RU). We previously demonstrated that random-amine and oriented capturing produced equivalent binding data (5). The response of a mock-coupled flow cell was subtracted to correct for non-specific interaction of the analyte (soluble FcaRI ectodomain) with the chip surface, followed by subtraction of a buffer injection. Each chip also contained a control flow cell immobilized with wildtype Fca to monitor for variations among chips, confirm accurate analyte concentration, and allow for direct comparison of Fca mutants between chips.

For equilibrium binding experiments, binding curve alignment and buffer blank subtraction were performed with BIAeval 4.1 software (GE Healthcare). The program Scrubber 2.0 (BioLogic Software, Campbell, Australia) was used to generate initial binding isotherms by averaging the response over a 15-second window at equilibrium. Equilibrium data were fitted globally in the program Scientist 3.0 (Micromath, Saint Louis, MO) to a single-site or a bivalent ligand binding model to determine K_D 1 and K_D 2, the binding affinity of the first and second binding events. For the two Fc α mutants with the greatest decreases in affinity (L258A and F443A), binding isotherms did not approach saturation, requiring the plateau values to be fixed at levels corresponding to binding curves from other Fc α variants. The one-site and two-site binding model fits were statistically compared using F-ratio statistics (1),

(1)
$$F = \frac{(SS1 - SS2)/SS2}{(DF1 - DF2)/DF2}$$

where SS is the sum of the squared deviations of the fitted experimental data, and DF is the degrees of freedom (data points minus fitted parameters) of the binding model, with '1' and '2' indicating a one-site or two-site binding model, respectively. All calculated F-ratios were greater than 1 (between 6.13 and 275.29), signifying that the bivalent ligand binding model more accurately described the binding data.

For refolded Ca3, SPR assays were also carried out at 25 °C. The A59 antibody (BD-Pharmingen; No. 555685) that recognizes the D2 domain of FcaRI was diluted to 10 μ g/mL in 10 mM sodium acetate buffer, pH 4.5, injected at 5 μ L/min, and immobilized to ~3000 response units (RU) on a CM5 chip using standard random-amine chemistry. Baculovirus-expressed FcaRI ectodomain, diluted to 20 μ g/ml in 0.02 M Tris-HCl, pH 7.4, 0.15 M NaCl, was captured until 150-200 RU was achieved. For equilibrium binding experiments, 30 μ L aliquots of three-fold serial dilutions of Ca3 in degassed TBS-P (0.02 M Tris-HCl pH 7.4, 0.15 M NaCl, 0.005%)

Surfactant P20) were injected at 5 μ L/min at concentrations between 950 pM and 694.2 nM. Equilibrium binding curve alignment and subtraction of a buffer blank injection were performed with BIAeval 4.1 software (GE Healthcare).

Structure Alignment

Fc α C_H2 (C α 2) and C_H3 (C α 3) domains were defined as residues Cys242–Gly342 and residues Asn343–Lys450, respectively. The backbone of Fc α C α 3 (PDB ID: 10W0) (6) was aligned with Fc α C α 3 (PDB ID: 2QEJ) (7), and with chicken IgY-Fc C_H4 (C ν 4) residues Tyr459-Lys564 (PDB ID: 2W59) (8). Backbone alignments and figures were generated using the program PyMOL (DeLano Scientific, San Francisco, CA).

Supplementary Figures

Figure S1. Representative equilibrium SPR sensorgrams of soluble $Fc\alpha RI$ ectodomain binding to immobilized $Fc\alpha$ variants.

Figure S2. Far-UV CD wavelength spectra of Fcα variants.

Figure S3. A-B) Refolded purified C α 3 forms a non-covalent homodimer in solution, based on sedimentation velocity analytical ultracentrifugation. Panel A shows the sedimentation coefficient distribution, revealing a single species with the predicted mass of a dimer (panel B). C) C α 3 analyte exhibits very low binding levels to captured Fc α RI, indicating that the C α 2 is important in stable complex formation with Fc α RI.

Figure S4. Experimental and computational B-factors of Fcα heavy chains in the 2:1 FcαRI:Fcα complex: Computational (black) and experimental (red) B-factor profiles for each Fcα heavy chain in the 2:1 FcαRI:Fcα complex are shown in the upper and lower panel, respectively. Experimental B-factors were taken from PDB 10W0.

Figure S5. Directional correlation maps of Fc α amino acids in the five highest ranked PC modes for the A) Unliganded Fc α ; B) Fc α RI:Fc α 1:1 complex; C) Fc α RI:Fc α 2:1 complex.

Figure S6. Fca residue pairs that mediate ligand-induced long-distance communication.

A) Structural representation of intersubunit residue pairs which switch from weak directional correlation in the unliganded Fc α to strong correlation (blue spheres) or anticorrelation (red spheres) in the 1:1 and 2:1 Fc α RI:Fc α complexes. The five panels indicate the residue pairs for the five highest ranked PC modes. The detailed list of residue pairs is provided in Supplementary Table S3. B) Structural representation of intersubunit residue pairs which switch from strong correlation, shown using red spheres (or anticorrelation, shown using blue spheres) in unliganded Fc α to strong anticorrelation (correlation) in the 2:1 complex. Mode 4 does not include such residue pairs. The detailed list of residue pairs is provided in Supplementary Table S4.

Figure S7. Sensorgrams displaying HAA ligand binding to mIgA1 κ in the presence or absence of Fc α RI. A) SPR data collected at 5 μ l/minute. B) SPR data collected at 30 μ l/minute, with the bivalent analyte fits superimposed in black.

Supplementary Tables

Fcα	Helix	Sheet	Turns	Unordered	Total	r.m.s.d.	_
Wildtype	7%	41%	22%	28%	98%	0.032	-
L257A	6%	40%	22%	31%	99%	0.070	
L258A	6%	41%	23%	30%	100%	0.081	
R382A	5%	42%	22%	30%	99%	0.073	
S387A	5%	42%	22%	31%	100%	0.092	
E389A	7%	41%	21%	29%	98%	0.032	
M433A	7%	39%	22%	31%	99%	0.027	
E437A	6%	41%	21%	30%	98%	0.041	
L441A	5%	43%	22%	29%	99%	0.068	
F443A	7%	39%	23%	30%	99%	0.045	

Table S1. CDSSTR analysis of the secondary structure content of wildtype and mutant $Fc\alpha$ variants revealed that alanine mutations did not alter the secondary structure content.

Table S2. Binding interface properties of alanine-scanning Fc α mutants. Experimental $\Delta\Delta G$ values of energetic hotspot residues did not strongly correlate with the contribution to the binding surface or the percent buried surface area.

		% Binding	BSA		Experimental $\Delta\Delta G$
Fcα	Location	Surface ^a	$(\text{\AA}^2)^{\text{b}}$	% Buried ^b	(kcal/mol)
R382	C strand	1%	5.83	20%	0.18
E437	FG loop	2%	13.73	50%	0.19
S387	CC' loop	10%	68.76	70%	0.27
E389	CC' loop	5%	33.43	40%	1.09
L441	FG loop	12%	44.30	60%	1.21
L257	AB helix/loop	8%	55.22	100%	2.34
M433	G strand	6%	48.42	100%	2.49
F443	F strand	5%	35.89	90%	2.93
L258	AB helix/loop	10%	77.61	90%	3.44

^afrom CNS analysis of Fc α RI : Fc α complex (9) ^bfrom PISA analysis of Fc α RI : Fc α complex (10)

Table S3. Long-distance communication induced by receptor binding. Pairs of amino acids in distinct $Fc\alpha$ subunits, separated by at least 30 Å, which switch from weak directional correlation in the free $Fc\alpha$ to strong correlation in the 1:1 and 2:1 complexes (see Methods).

		Correlated	residue pairs			Anti-correlate	d residue pair	'S
Mode	residue	correlation in 2:1 complex	correlation in 1:1 complex	correlation in free Fcα	residue	correlation in 2:1 complex	correlation in 1:1 complex	correlation in free Fcα
1	292-413	0.9420	0.7180	0.0390	265-293	-0.9328	-0.6003	-0.1872
	294-413	0.9305	0.6367	-0.0363	265-294	-0.9716	-0.7050	-0.1666
	353-264	0.9326	0.7618	0.1684	265-302	-0.9666	-0.9085	0.0153
	353-290	0.9009	0.7670	0.1220	265-303	-0.9602	-0.9242	-0.1650
	353-291	0.9245	0.7697	0.1278	285-302	-0.9575	-0.7561	-0.1985
	353-307	0.9389	0.7988	0.1501	306-302	-0.9064	-0.7954	0.0017
	353-309	0.9447	0.8397	0.1054	308-302	-0.9409	-0.8992	0.0793
	353-310	0.9377	0.8119	0.0637	309-300	-0.9486	-0.7615	-0.1606
	354-252	0.9825	0.7588	0.1898	313-412	-0.9005	-0.6851	-0.1584
	359-252	0.9611	0.6169	0.0174	314-412	-0.9029	-0.7749	-0.0742
	362-252	0.9173	0.7103	0.1860	316-412	-0.9314	-0.7729	-0.0684
					317-412	-0.9249	-0.7713	-0.0386
					339-403	-0.9893	-0.8415	0.1715
					341-405	-0.9618	-0.6062	0.1660
					342-402	-0.9415	-0.6227	0.1444
					342-403	-0.9555	-0.7864	0.1245
					342-404	-0.9316	-0.6117	0.0155
					342-405	-0.9622	-0.6328	0.0700
					343-405	-0.9543	-0.6071	0.1185
					344-411	-0.9239	-0.6383	-0.0452
					345-411	-0.9553	-0.6427	-0.0455
					346-378	-0.9373	-0.7895	0.0725

					346-411	-0.9860	-0.6654	-0.1280
					375-377	-0.9542	-0.6713	0.0023
					408-402	-0.9746	-0.8540	-0.1975
					438-378	-0.9448	-0.7343	0.1973
					438-411	-0.9829	-0.6049	-0.0533
					440-412	-0.9647	-0.7193	-0.1635
					441-412	-0.9213	-0.6336	-0.1135
2	248-405	0.9816	0.7396	0.1806	248-367	-0.9450	-0.6570	-0.1335
	265-288	0.9699	0.6890	0.0090	248-385	-0.9190	-0.6695	-0.0100
	265-308	0.9492	0.7999	0.1491	248-386	-0.9455	-0.6893	-0.0003
	267-292	0.9986	0.9473	-0.1972	248-418	-0.9369	-0.6523	-0.0839
	267-305	0.9292	0.9251	-0.1709	248-419	-0.9670	-0.6941	-0.1070
	267-306	0.9159	0.9469	-0.1487	248-428	-0.9887	-0.7310	-0.1519
	268-293	0.9480	0.9053	-0.0541	248-429	-0.9852	-0.7161	-0.0568
	275-292	0.9094	0.8374	0.0645	248-430	-0.9688	-0.6707	0.0127
	275-294	0.9808	0.7621	0.0030	248-449	-0.9005	-0.6495	-0.1919
	275-295	0.9841	0.7216	-0.0859	249-246	-0.9992	-0.7601	-0.1437
	275-305	0.9910	0.8427	0.1357	249-247	-0.9598	-0.6438	0.1149
	279-287	0.9577	0.6784	0.1920	249-324	-0.9291	-0.6339	-0.0617
	292-265	0.9177	0.6387	0.0476	249-330	-0.9790	-0.8181	-0.1761
	304-291	0.9550	0.6719	-0.0288	249-331	-0.9882	-0.7598	-0.0969
	304-292	0.9537	0.7224	0.0472	249-332	-0.9894	-0.7092	-0.0392
	304-294	0.9413	0.6044	-0.0832	249-333	-0.9854	-0.6950	-0.0183
	304-304	0.9209	0.6022	0.0062	249-334	-0.9712	-0.6502	0.0493
	304-305	0.9908	0.6973	0.0207	249-353	-0.9584	-0.8143	0.0279
	304-306	0.9733	0.7401	0.0364	249-354	-0.9502	-0.8546	-0.1234
	305-290	0.9146	0.6910	0.0057	249-358	-0.9547	-0.8661	-0.1730
	344-341	0.9934	0.6037	0.1845	249-359	-0.9645	-0.8674	-0.0932
	346-321	0.9582	0.6075	0.1983	249-360	-0.9530	-0.8657	-0.1597
	374-340	0.9986	0.6588	0.1982	249-361	-0.9778	-0.8626	-0.0601
	375-434	0.9499	0.6847	0.1917	249-362	-0.9798	-0.8580	0.1200

401-282	0.9685	0.6573	0.1719	249-450	-0.9680	-0.8398	0.1696
406-281	0.9013	0.6059	0.1561	252-353	-0.9395	-0.8532	-0.1822
434-407	0.9753	0.7667	-0.0665	253-450	-0.9314	-0.8480	-0.1037
434-408	0.9629	0.7011	-0.1889	254-353	-0.9386	-0.9150	-0.0938
435-407	0.9614	0.9972	-0.0756	254-354	-0.9261	-0.8967	-0.0996
435-408	0.9769	0.9949	-0.1932	258-353	-0.9329	-0.9650	-0.1541
437-251	0.9255	0.7758	0.1551	258-354	-0.9345	-0.9650	-0.1914
437-253	0.9517	0.7830	0.1361	266-335	-0.9331	-0.8159	-0.1786
437-256	0.9251	0.7190	0.1188	266-336	-0.9107	-0.6616	0.0200
437-257	0.9111	0.7116	0.0934	267-250	-0.9133	-0.7725	-0.0973
437-285	0.9145	0.8378	0.1395	267-318	-0.9441	-0.9400	-0.0696
437-311	0.9001	0.7237	0.0944	267-319	-0.9285	-0.9305	-0.0522
437-312	0.9381	0.7698	0.1165	267-320	-0.9810	-0.9807	0.0554
437-313	0.9647	0.8398	0.1717	267-321	-0.9491	-0.9600	0.1337
437-344	0.9377	0.8358	0.1832	267-338	-0.9479	-0.9436	0.1340
437-345	0.9581	0.7889	0.1204	267-339	-0.9944	-0.9953	-0.0339
437-346	0.9530	0.7561	0.0524	267-340	-0.9847	-0.9707	-0.1284
437-347	0.9566	0.7951	0.0604	267-341	-0.9807	-0.9525	-0.1828
437-371	0.9646	0.8379	0.0186	268-283	-0.9460	-0.9565	0.0198
437-374	0.9466	0.7607	0.0081	268-318	-0.9557	-0.9100	-0.1711
437-375	0.9573	0.7522	0.0039	268-319	-0.9630	-0.9230	-0.1556
437-376	0.9785	0.8243	0.0760	268-320	-0.9503	-0.8311	0.1788
437-377	0.9880	0.8492	0.0768	268-340	-0.9424	-0.8619	-0.0940
437-411	0.9158	0.6942	-0.1597	268-341	-0.9201	-0.8523	-0.1707
437-438	0.9932	0.7800	0.0840	271-321	-0.9193	-0.8091	-0.1463
437-439	0.9945	0.7879	0.0994	273-321	-0.9027	-0.8104	-0.1554
437-440	0.9993	0.7822	0.1083	275-283	-0.9281	-0.8351	-0.1112
437-441	0.9967	0.8086	0.1674	275-320	-0.9414	-0.8824	-0.0743
438-250	0.9812	0.6258	0.0548	275-321	-0.9174	-0.8390	0.0248
438-317	0.9790	0.6344	0.0373	302-282	-0.9045	-0.6074	0.0304

438-318	0.9982	0.7440	0.1865	303-282	-0.9055	-0.6654	0.0057
438-340	0.9823	0.7431	0.1797	327-251	-0.9675	-0.6962	-0.1171
438-341	0.9825	0.6758	0.1032	327-253	-0.9551	-0.6946	-0.1865
439-320	0.9847	0.7164	0.0830	327-378	-0.9326	-0.6662	0.0067
439-321	0.9593	0.7429	0.1851	327-379	-0.9589	-0.6563	0.0321
439-339	0.9603	0.7164	0.0611	327-380	-0.9962	-0.7806	-0.1251
440-320	0.9923	0.7698	0.0619	327-381	-0.9953	-0.8130	-0.1654
440-321	0.9897	0.8001	0.1640	327-397	-0.9892	-0.8036	-0.1427
440-339	0.9536	0.7578	0.0425	327-398	-0.9250	-0.6862	-0.0167
				327-415	-0.9570	-0.8181	-0.1605
				327-434	-0.9904	-0.7000	-0.0766
				327-435	-0.9751	-0.6896	-0.0965
				327-443	-0.9701	-0.6625	-0.1121
				327-445	-0.9542	-0.7657	-0.1424
				328-315	-0.9004	-0.6432	0.1386
				328-378	-0.9292	-0.7136	-0.0967
				328-379	-0.9465	-0.6966	-0.0748
				328-398	-0.9040	-0.7152	-0.1296
				328-434	-0.9786	-0.7359	-0.1841
				328-436	-0.9268	-0.6464	-0.0721
				328-442	-0.9262	-0.6269	-0.1308
				347-293	-0.9284	-0.6896	-0.1822
				372-290	-0.9132	-0.6228	-0.1724
				372-291	-0.9234	-0.6262	-0.1545
				372-292	-0.9217	-0.6241	-0.1589
				381-279	-0.9019	-0.6209	-0.1977
				434-425	-0.9383	-0.8312	-0.1602
				435-243	-0.9571	-0.9592	0.1681
				435-245	-0.9095	-0.9239	0.1977
				435-425	-0.9498	-0.9770	-0.1524

Г

					435-450	-0.9643	-0.9743	-0.0515
					436-296	-0.9164	-0.9718	-0.1129
					436-297	-0.9362	-0.9674	-0.1604
					436-298	-0.9457	-0.9799	-0.1027
					436-299	-0.9414	-0.9977	0.1923
					436-302	-0.9707	-0.9993	0.1389
					436-303	-0.9792	-0.9979	0.0810
					436-304	-0.9641	-0.9955	0.0587
					437-270	-0.9139	-0.8363	-0.1006
					437-271	-0.9441	-0.8526	-0.1359
					437-272	-0.9587	-0.8586	-0.1398
					437-273	-0.9714	-0.8656	-0.1599
					437-278	-0.9308	-0.8371	-0.1365
					438-299	-0.9151	-0.6393	-0.0232
					438-302	-0.9171	-0.6634	-0.0912
					438-303	-0.9195	-0.7000	-0.1496
					438-304	-0.9458	-0.7240	-0.1743
					439-291	-0.9612	-0.6496	0.1013
					439-292	-0.9712	-0.6803	0.0688
					439-293	-0.9681	-0.7576	-0.1636
					439-294	-0.9923	-0.6114	0.0727
					439-295	-0.9869	-0.6285	0.0060
					440-291	-0.9227	-0.7252	0.1303
					440-292	-0.9413	-0.7482	0.0965
					440-293	-0.9818	-0.8293	-0.1339
					440-294	-0.9975	-0.6953	0.1023
					440-295	-0.9954	-0.7134	0.0364
					440-297	-0.9515	-0.6020	0.1753
					443-422	-0.9007	-0.6091	0.0553
3	249-365	0.9472	0.7900	0.1679	243-311	-0.9845	-0.8131	-0.1361

250-420	0.9509	0.6131	0.1313	244-311	-0.9716	-0.8663	-0.1666
250-421	0.9112	0.9273	-0.0265	245-311	-0.9799	-0.8060	-0.1565
271-425	0.9667	0.6561	-0.1618	246-311	-0.9669	-0.8349	-0.1552
272-425	0.9741	0.6719	-0.1251	247-311	-0.9660	-0.7559	-0.1864
273-425	0.9660	0.7166	-0.0227	265-311	-0.9276	-0.7740	-0.1565
274-425	0.9860	0.8026	0.0296	266-311	-0.9591	-0.8010	-0.0697
275-425	0.9844	0.8109	0.0294	267-311	-0.9675	-0.8304	-0.1136
276-425	0.9460	0.8474	0.1565	268-311	-0.9698	-0.8518	-0.0872
277-425	0.9544	0.8292	0.0856	269-311	-0.9737	-0.8505	-0.1262
278-425	0.9025	0.8633	0.1917	270-311	-0.9788	-0.8714	-0.1372
279-425	0.9122	0.8521	0.1227	271-311	-0.9696	-0.9165	-0.1319
291-425	0.9541	0.8681	0.0731	272-311	-0.9717	-0.9252	-0.1338
292-425	0.9718	0.8727	0.0245	273-311	-0.9544	-0.9459	-0.1175
293-425	0.9287	0.7094	-0.1708	273-314	-0.9033	-0.6534	-0.1587
294-425	0.9655	0.7413	-0.1364	274-311	-0.9595	-0.8755	0.0565
295-425	0.9397	0.7373	-0.1161	274-314	-0.9492	-0.7155	-0.1451
296-425	0.9518	0.7486	-0.0937	275-311	-0.9605	-0.8632	0.0734
299-425	0.9163	0.9000	0.1296	275-314	-0.9428	-0.7196	-0.1382
301-425	0.9684	0.7080	-0.1447	276-311	-0.9087	-0.8695	0.0777
302-425	0.9658	0.6625	-0.1897	277-311	-0.9226	-0.8530	0.0978
304-425	0.9567	0.7107	-0.1437	277-314	-0.9349	-0.7406	-0.1849
306-425	0.9449	0.7712	-0.0973	279-314	-0.9202	-0.7506	-0.1949
320-284	0.9384	0.8234	0.1653	285-367	-0.9959	-0.8891	-0.0403
323-425	0.9221	0.6731	-0.1708	291-311	-0.9472	-0.7769	0.1546
324-425	0.9071	0.7080	-0.0640	292-311	-0.9769	-0.7810	0.1412
325-425	0.9363	0.7269	-0.0475	293-311	-0.9668	-0.8499	-0.0152
326-425	0.9127	0.7475	0.0315	294-311	-0.9864	-0.8214	0.0322
327-425	0.9432	0.7510	0.0218	295-311	-0.9617	-0.8616	-0.0598
328-425	0.9285	0.7450	0.0605	296-311	-0.9651	-0.8724	-0.0882
329-425	0.9392	0.6971	-0.0241	297-311	-0.9028	-0.8989	-0.1842

—

	-							
	330-425	0.9308	0.6660	-0.0791	300-311	-0.9959	-0.8936	-0.1350
	331-425	0.9016	0.6712	-0.0204	301-311	-0.9740	-0.9054	-0.1612
	332-425	0.9163	0.6004	-0.1216	302-311	-0.9856	-0.9084	-0.1261
	333-425	0.9058	0.6527	-0.0844	303-311	-0.9762	-0.8767	-0.0966
	384-419	0.9210	0.6509	0.1906	304-311	-0.9704	-0.8721	-0.0423
	441-419	0.9871	0.7197	-0.0096	305-311	-0.9710	-0.8387	-0.0336
	441-420	0.9190	0.8571	0.1405	306-311	-0.9534	-0.8087	0.0619
					307-311	-0.9463	-0.7647	0.0352
					318-353	-0.9412	-0.9094	-0.0452
					319-352	-0.9431	-0.7806	0.1902
					323-311	-0.9001	-0.8101	0.0583
					325-311	-0.9048	-0.8646	0.0332
					325-313	-0.9104	-0.6046	-0.1301
					325-314	-0.9196	-0.6084	-0.0762
					326-314	-0.9225	-0.6494	-0.1586
					327-311	-0.9064	-0.9037	-0.0012
					327-314	-0.9355	-0.6624	-0.1596
					329-311	-0.9031	-0.9287	-0.0731
					329-314	-0.9308	-0.6105	-0.1408
					334-311	-0.9246	-0.8718	-0.0844
					335-311	-0.9075	-0.8460	-0.0689
					336-311	-0.9488	-0.7931	-0.1560
					337-311	-0.9190	-0.7303	-0.1674
					353-321	-0.9082	-0.8229	-0.0279
					427-311	-0.9384	-0.8010	-0.1878
					448-309	-0.9242	-0.7733	-0.1953
					449-307	-0.9439	-0.7157	-0.1882
					449-309	-0.9698	-0.6956	0.0312
					450-311	-0.9949	-0.7791	-0.0651
4	346-331	0.9721	0.9496	0.1647	387-314	-0.9172	-0.6968	-0.1889

	444-327	0.9569	0.9754	0.1559	387-316	-0.9463	-0.7049	-0.1993
	444-328	0.9156	0.9532	0.0591	387-317	-0.9255	-0.6657	-0.0931
	444-329	0.9343	0.9673	0.0639	439-343	-0.9070	-0.8652	0.1242
	444-330	0.9629	0.9906	0.1924	440-343	-0.9610	-0.9005	0.0389
	445-279	0.9080	0.9426	-0.0046	440-344	-0.9590	-0.9521	-0.1533
	445-325	0.9098	0.9089	-0.0078	441-343	-0.9680	-0.8954	0.1369
	445-326	0.9718	0.9546	-0.1456	441-344	-0.9560	-0.9558	-0.1033
	445-331	0.9779	0.9675	-0.1233	443-343	-0.9493	-0.8710	-0.1293
	445-332	0.9697	0.9162	0.0660	444-344	-0.9568	-0.9631	-0.0817
	446-332	0.9430	0.8245	-0.1588				
	446-333	0.9641	0.8628	0.0529				
	446-334	0.9054	0.8164	0.1068				
5					244-443	-0.9850	-0.7724	-0.0025
					245-443	-0.9968	-0.7747	-0.1528
					437-443	-0.9315	-0.8805	-0.1535

Table S4. Effect of receptor binding on long-distance communication in Fc α . Pairs of amino acids in distinct Fc α subunits, separated by at least 30 Å, that undergo changes from strong directional correlation (anticorrelation) to strong anticorrelation (correlation) upon Fc α RI binding.

	S	trong-negativ	e to strong-pos	sitive	S	trong-positive	to strong-neg	ative
Mode	residue	correlation in 2:1 complex	correlation in 1:1 complex	correlation in free Fc	residue	correlation in 2:1 complex	correlation in 1:1 complex	correlation in free Fc
1					398-316	-0.9210	0.5609	0.9794
2	276-291	0.9264	0.6142	-0.9984	249-447	-0.9329	-0.5001	0.9213
	276-292	0.9372	0.6736	-0.9989	266-351	-0.9334	-0.4825	0.9635
	276-293	0.9331	0.4956	-0.9606	268-281	-0.9623	-0.0786	0.9957
	276-294	0.9877	0.5373	-0.9948	271-281	-0.9286	0.1193	0.9260
	276-295	0.9875	0.4968	-0.9830	273-281	-0.9021	0.1474	0.9164
	276-303	0.9414	0.4797	-0.9453	276-250	-0.9197	-0.4196	0.9359
	276-304	0.9716	0.4955	-0.9533	276-283	-0.9108	-0.5905	0.9717
	276-305	0.9930	0.6246	-0.9932	276-317	-0.9699	-0.5462	0.9295
	277-291	0.9855	0.0832	-0.9778	276-318	-0.9883	-0.6824	0.9568
	277-292	0.9895	0.1606	-0.9743	276-319	-0.9836	-0.6589	0.9610
	277-294	0.9713	-0.0073	-0.9670	276-320	-0.9594	-0.7712	0.9155
	277-295	0.9608	-0.0240	-0.9397	276-340	-0.9659	-0.7587	0.9277
	277-305	0.9728	0.0387	-0.9922	276-341	-0.9876	-0.7496	0.9153
	277-306	0.9435	0.0927	-0.9949	277-250	-0.9055	0.2900	0.9885
	441-349	0.9842	-0.0872	-0.9439	277-317	-0.9045	0.1631	0.9857
	441-370	0.9915	-0.0679	-0.9561	277-318	-0.9646	-0.0457	0.9763
	441-371	0.9763	-0.2027	-0.9490	277-319	-0.9512	-0.0195	0.9762

441-377	0.9627	-0.2294	-0.9050	277-340	-0.9815	-0.1516	0.9439
441-400	0.9481	-0.2132	-0.9323	277-341	-0.9927	-0.1038	0.9489
441-413	0.9664	-0.1851	-0.9375	277-342	-0.9947	-0.1262	0.9123
441-436	0.9069	-0.2524	-0.9089	277-343	-0.9642	0.0220	0.9222
441-437	0.9197	-0.2899	-0.9143	277-344	-0.9634	0.1086	0.9226
441-438	0.9629	-0.2787	-0.9128	442-267	-0.9506	-0.7068	0.9007
441-439	0.9614	-0.2595	-0.9212	442-268	-0.9108	-0.5609	0.9855
441-440	0.9367	-0.3096	-0.9332	442-269	-0.9577	-0.6101	0.9612
441-441	0.9143	-0.3078	-0.9347	442-270	-0.9413	-0.5739	0.9809
441-444	0.9407	-0.1850	-0.9316	442-271	-0.9620	-0.5903	0.9709
442-313	0.9184	0.4338	-0.9822	442-272	-0.9703	-0.6009	0.9651
442-314	0.9459	0.5820	-0.9054	442-273	-0.9769	-0.6092	0.9590
442-347	0.9856	0.7299	-0.9180	442-274	-0.9945	-0.6559	0.9209
442-348	0.9154	0.6720	-0.9326	442-275	-0.9963	-0.6771	0.9052
442-349	0.9017	0.7529	-0.9660	442-276	-0.9981	-0.6528	0.9286
442-371	0.9932	0.6629	-0.9655	442-277	-0.9989	-0.6427	0.9385
442-372	0.9270	0.6319	-0.9012	442-278	-0.9784	-0.5733	0.9740
442-376	0.9983	0.6723	-0.9109	442-279	-0.9140	-0.5883	0.9770
442-377	0.9950	0.6330	-0.9344	442-301	-0.9794	-0.6412	0.9080
442-378	0.9186	0.4968	-0.9652	442-327	-0.9179	-0.4911	0.9850
442-400	0.9957	0.6337	-0.9584	442-328	-0.9132	-0.4801	0.9833
442-411	0.9781	0.6149	-0.9058	443-266	-0.9019	0.1972	0.9432
442-436	0.9199	0.5599	-0.9604	443-267	-0.9731	0.3897	0.9663
442-437	0.9463	0.5601	-0.9598	443-268	-0.9271	0.2733	0.9194
442-438	0.9873	0.6185	-0.9426	443-269	-0.9046	0.3519	0.9507
442-439	0.9802	0.6331	-0.9523	443-278	-0.9353	0.2552	0.9079
442-440	0.9828	0.5889	-0.9642	443-279	-0.9950	0.2311	0.9089

	442-441	0.9549	0.5792	-0.9731				
	442-442	0.9200	0.5335	-0.9769				
	442-444	0.9062	0.6388	-0.9753				
3	247-423	0.9076	-0.8170	-0.9439	424-285	-0.9992	0.5930	0.9150
	249-423	0.9193	-0.6611	-0.9800	424-286	-0.9919	0.6250	0.9545
	265-423	0.9109	-0.8756	-0.9286				
	423-254	0.9136	-0.9299	-0.9961				
	423-342	0.9031	-0.9378	-0.9888				
	423-344	0.9054	-0.9258	-0.9913				
	423-382	0.9098	-0.8725	-0.9887				
	423-383	0.9347	-0.8795	-0.9889				
	423-384	0.9635	-0.8791	-0.9769				
	423-385	0.9580	-0.8869	-0.9704				
	423-386	0.9772	-0.8750	-0.9163				
	423-387	0.9659	-0.8961	-0.9494				
	423-388	0.9608	-0.8720	-0.9798				
	423-389	0.9168	-0.9006	-0.9886				
	423-430	0.9595	-0.8475	-0.9136				
	423-431	0.9451	-0.8485	-0.9375				
	423-433	0.9315	-0.8903	-0.9853				
	423-434	0.9168	-0.8906	-0.9904				
	423-435	0.9112	-0.9051	-0.9937				
	423-436	0.9040	-0.9024	-0.9919				
	423-439	0.9019	-0.9303	-0.9980				
	423-441	0.9109	-0.9139	-0.9897				
	423-442	0.9070	-0.9257	-0.9956				
	423-443	0.9023	-0.9044	-0.9887				
5					243-442	-0.9390	-0.5455	0.9620
					244-442	-0.9017	-0.2047	0.9481
					270-442	-0.9858	-0.3553	0.9794

	271-442	-0.9285	0.3097	0.9606
	272-442	-0.9886	0.1247	0.9827
	273-442	-0.9324	0.6893	0.9765
	391-442	-0.9385	-0.5798	0.9154
	394-442	-0.9636	-0.6255	0.9018
	395-442	-0.9221	-0.6679	0.9130
	436-442	-0.9019	-0.9398	0.9615

Supplementary Movies

Note: As a guide to the eye, supplementary movies illustrating PC modes of 1:1 and 2:1 Fc α RI-Fc α indicate the X-ray configuration of receptor molecules (yellow).

- Movie SM1. Unliganded Fca mode motion in PC mode 1
- Movie SM2. 1:1 FcaRI-Fca mode motion in PC mode 1
- Movie SM3. 2:1 FcaRI-Fca mode motion in PC mode 1
- Movie SM4. Unliganded Fca mode motion in PC mode 2
- Movie SM5. 1:1 FcaRI-Fca mode motion in PC mode 2
- Movie SM6. 2:1 FcaRI-Fca mode motion in PC mode 2
- Movie SM7. Unliganded Fca mode motion in PC mode 3
- Movie SM8. 1:1 FcaRI-Fca mode motion in PC mode 3
- Movie SM9. 2:1 FcaRI-Fca mode motion in PC mode 3
- Movie SM10. Unliganded Fca mode motion in PC mode 4
- Movie SM11. 1:1 FcaRI-Fca mode motion in PC mode 4
- Movie SM12. 2:1 FcaRI-Fca mode motion in PC mode 4
- Movie SM13. Unliganded Fca mode motion in PC mode 5
- Movie SM14. 1:1 FcaRI-Fca mode motion in PC mode 5
- Movie SM15. 2:1 FcaRI-Fca mode motion in PC mode 5

Supplementary References

- 1. Whitmore L & Wallace BA (2004) DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. *Nucleic acids research* 32(Web Server issue):W668-673.
- 2. Sreerama N & Woody RW (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. *Analytical biochemistry* 287(2):252-260.
- 3. Conrady DG, *et al.* (2008) A zinc-dependent adhesion module is responsible for intercellular adhesion in staphylococcal biofilms. *Proc Natl Acad Sci U S A* 105(49):19456-19461.
- 4. Day YS, Baird CL, Rich RL, & Myszka DG (2002) Direct comparison of binding equilibrium, thermodynamic, and rate constants determined by surface- and solution-based biophysical methods. *Protein Sci* 11(5):1017-1025.
- 5. Herr AB, White CL, Milburn C, Wu C, & Bjorkman PJ (2003) Bivalent binding of IgA1 to FcalphaRI suggests a mechanism for cytokine activation of IgA phagocytosis. *J Mol Biol* 327(3):645-657.
- 6. Herr AB, Ballister ER, & Bjorkman PJ (2003) Insights into IgA-mediated immune responses from the crystal structures of human FcalphaRI and its complex with IgA1-Fc. *Nature* 423(6940):614-620.
- 7. Ramsland PA, *et al.* (2007) Structural basis for evasion of IgA immunity by Staphylococcus aureus revealed in the complex of SSL7 with Fc of human IgA1. *Proc Natl Acad Sci U S A* 104(38):15051-15056.
- 8. Taylor AI, Fabiane SM, Sutton BJ, & Calvert RA (2009) The crystal structure of an avian IgY-Fc fragment reveals conservation with both mammalian IgG and IgE. *Biochemistry* 48(3):558-562.
- 9. Brunger AT, *et al.* (1998) Crystallography & NMR system: A new software suite for macromolecular structure determination. *Acta Crystallogr D Biol Crystallogr* 54(Pt 5):905-921.
- 10. Krissinel E & Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372(3):774-797.