label	δ _c /δ _н (ppm)	Assignment ^a
A _α (G)	70.9/4.70	C_{α} -H _a in β -O-4' substructures linked to G-unit
Aα(S)	71.8/4.82	C_{α} -H _a in β -O-4' substructures linked to S-unit
A _β (G)	83.5/4.25	C_{β} -H _{β} in β -O-4' substructures linked to G-unit
A _β (S)	85.9/4.09	C_{β} -H _{β} in β -O-4' substructures linked to S-unit
Cα	84.9/4.64	C_{α} -H _a in resinol substructures
Βα	86.9/5.42	C_{α} -H _a in phenylcoumaran substructures
T ₈	94.1/6.56	C ₈ -H ₈ in tricin
T ₆	98.8/6.20	C ₆ -H ₆ in tricin
Smod _{2,6}	103.5/6.97	C_2 -H ₂ and C_6 -H ₆ in S-unit derivative (t)
S _{2,6}	103.6/6.68	C ₂ -H ₂ and C ₆ -H ₆ in S-unit
T _{2'6'}	104.0/7.31	$C_{2'}$ - $H_{2'}$ and $C_{6'}$ - $H_{6'}$ in tricin
T ₃	104.6/6.99	C ₃ -H ₃ in tricin
Sox _{2,6}	106.4/7.32	C_2 -H ₂ and C_6 -H ₆ in C_a -oxidized (C_a =O) S-unit
Sox _{2,6}	106.5/7.18	C ₂ -H ₂ and C ₆ -H ₆ in C _a -oxidized (C _a OOH) S-unit
Sald _{2,6}	106.3/7.03	C_2 -H ₂ and C_6 -H ₆ in cinnamaldehyde end-group S-unit
G ₂	110.5/6.94	C ₂ -H ₂ in G-unit
FA ₂	110.9/7.32	C ₂ -H ₂ in ferulate
Goxl ₂	111.4/7.53	C ₂ -H ₂ in C _a -oxidized G-unit
GoxII ₂	112.4/7.42	C ₂ -H ₂ in C _a -oxidized G-unit (t)
Gmod ₂	112.7/6.76	C ₂ -H ₂ in G-unit derivative (t)
FA _β /pCA _β	113.9/6.51	C_{β} -H _{β} in ferulate/ <i>p</i> -coumarate
H _{3,5} /FA ₅	114.5/6.69	C ₃ -H ₃ and C ₅ -H ₅ in H-unit, C ₅ -H ₅ in FA
G5/G6/pCA3,5	115.1/6.94 and 115.3/6.72	C5-H5 and C6-H6 in G-unit, C3-H3 and C5-H5 of pCA
G ₅	118.9/6.77	C_5 -H $_5$ in G-unit
Goxl ₆	122.8/7.49	C ₆ -H ₆ in C _a -oxidized G-unit
FA ₆	123.1/7.12	C ₆ -H ₆ in ferulate
GoxII ₆	125.8/7.40	C ₂ -H ₂ in C _a -oxidized G-unit (t)
H _{2,6} /PHE _{3,5}	127.7/7.17	$C_2\text{-}H_2$ and $C_6\text{-}H_6$ in H-unit, $C_3\text{-}H_3$ and $C_5\text{-}H_5$ in phenylalanine
PHE _{2,6}	129.0/7.20	C ₂ -H ₂ and C ₆ -H ₆ in phenylalanine
pCA _{2,6}	130.1/7.48	C ₂ -H ₂ and C ₆ -H ₆ in <i>p</i> -coumarate
FAα/pCAα	145.0/7.56	C_{α} -H _a in ferulate/p-coumarate

Table S-3 Assignments of the lignin ¹³C-¹H correlation peaks in the HSQC spectra of control and fungal-treated wheat straw. (t) tentative assignment.

^a: assignment by comparison with literature (1-9).

References

1. Del Río JC, Rencoret J, Prinsen P, Martínez AT, Ralph J, Gutiérrez A. Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. J Agric Food Chem. 2012;60:5922-35.

2. Yuan T-Q, Sun S-N, Xu F, Sun R-C. Characterization of lignin structures and lignin–carbohydrate complex (LCC) linkages by quantitative ¹³C and 2D HSQC NMR spectroscopy. J Agric Food Chem. 2011;59:10604-14.

3. Ralph SA, Ralph J, Landucci L. NMR database of lignin and cell wall model compounds. 2009;Available at URL www.glbrc.org/databases and software/nmrdatabase/.

 Rencoret J, Gutiérrez A, Nieto L, Jiménez-Barbero J, Faulds CB, Kim H, et al. Lignin composition and structure in young versus adult *Eucalyptus globulus* plants. Plant Physiol. 2011;155:pp. 110.167254.
Rencoret J, Pereira A, del Río JC, Martínez ÁT, Gutiérrez A. Delignification and saccharification

enhancement of sugarcane byproducts by a laccase-based pretreatment. ACS Sustainable Chem Eng. 2017;5:7145-54.

6. Del Río JC, Lino AG, Colodette JL, Lima CF, Gutiérrez A, Martínez ÁT, et al. Differences in the chemical structure of the lignins from sugarcane bagasse and straw. Biomass Bioenergy. 2015;81:322-38.

7. Villaverde JJ, Li J, Ek M, Ligero P, de Vega A. Native lignin structure of *Miscanthus x giganteus* and its changes during acetic and formic acid fractionation. J Agric Food Chem. 2009;57:6262-70.

8. Das A, Rahimi A, Ulbrich A, Alherech M, Motagamwala AH, Bhalla A, et al. Lignin conversion to lowmolecular-weight aromatics via an aerobic oxidation-hydrolysis sequence: comparison of different lignin sources. ACS Sustainable Chem Eng. 2018;6:3367-74.

9. Kim H, Padmakshan D, Li \tilde{Y} , Rencoret J, Hatfield RD, Ralph J. Characterization and elimination of undesirable protein residues in plant cell wall materials for enhancing lignin analysis by solution-state nuclear magnetic resonance spectroscopy. Biomacromolecules. 2017;18(12):4184-95.