

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Increased risk of aortic aneurysm and dissection in patients with Sjögren's syndrome: a nationwide population-based cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-022326
Article Type:	Research
Date Submitted by the Author:	15-Feb-2018
Complete List of Authors:	Tsai, Yi-Da; Tri-Service General Hospital, National Defensive Medical Center, Department of Emergency medicine Chien, Wu-Chien; Tri-Service General Hospital, National Defense Medical Center, School of Public Health Tsai, Shih-Hung; Tri-Service General Hospital, National Defense Medical Center, Department of Emergency Medicine Chung, Chi-Hsiang; Tri-Service General Hospital, National Defense Medical Center, Department of Medical Research; National Defense Medical Center, Department of Medical Research; National Defense Medical Center, Department of Medical Research; National Defense Medical Center, School of Public Health Chu, Shi-Jye ; Tri-Service General Hospital, National Defense Medical Center, Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine Chen, Sy-Jou ; Tri-Service General Hospital, National Defense Medical Center, Department of Emergency Medicine Liao, Wen-I; Tri-Service General Hospital, National Defense Medical Center, Department of Emergency Medicine Liao, Wen-I; Tri-Service General Hospital, National Defense Medical Center, Emergency Medicine Yang, Chih-Jen; Tri-Service General Hospital, National Defensive Medical Center, Emergency Medicine Liao, Min-Tser ; Taoyuan Armed Forces General Hospital, Department of Pediatrics Wang, Jen-Chun; Tri-Service General Hospital, National Defensive Medical Center, department of Emergency Medicine, Emergency Department
Keywords:	Sjögren's syndrome, aortic dissection, aortic aneurysm

SCHOLARONE[™] Manuscripts

BMJ Open

Increased risk of aortic aneurysm and dissection in patients with Sjögren's syndrome: a nationwide population-based cohort study

Yi-Da Tsai MD¹, Wu-Chien Chien PhD^{2,3}, Shih-Hung Tsai MD, PhD¹, Chi-Hsiang

Chung PhD^{2,3,4}, Shi-Jye Chu MD⁵, Sy-Jou Chen MD, MS^{1,6}, Wen-I Liao MD¹,

Chih-Jen Yang MD¹, Min-Tser Liao, MD⁷, Jen-Chun Wang MD^{1,8,*}

¹ Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan

² Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center

³ School of Public Health, National Defense Medical Center, Taipei, Taiwan

⁴ Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan

⁵ Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine,

Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan

⁶ Graduate Institute of Injury Prevention and Control, College of Public Health and

Nutrition, Taipei Medical University, Taipei, Taiwan

⁷ Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan

⁸ Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan

*Corresponding authors:

Dr. Jen-Chun Wang

Department of Emergency Medicine,

Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan

No. 325, Sec. 2, Cheng-Kung Road, Neihu Dist., Taipei City 11490, Taiwan

Tel.: + 886-2-87923311-16877;

Fax: + 886-2-87927034

E-mail: royalflushwang@gmail.com

Funding

This study was supported by grants from Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (TSGH-C105-058); Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (TSGH-C105-173); Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan (10514); and the Ministry of Science and Technology (MOST 106-2314-B-016 -008 -MY3).

Revie

Abstract

Objectives

Sjögren's syndrome (SS) is a systemic autoimmune disorder. Several molecular pathways and the activation of matrix metalloproteinases associated with the pathogenesis of SS participate in the initiation and progression of aortic aneurysm (AA) and aortic dissection (AD). In this study, we aimed to evaluate whether patients with SS exhibit an increased risk of AA and AD.

Methods

We conducted a retrospective cohort study using a database extracted from Taiwan's National Health Insurance Research Database (NHIRD). All medical conditions for each case and control were categorized using the International Classification of Diseases, 9th Revision (ICD-9). Odds ratios (ORs) and 95% confidence intervals (CIs) for associations between SS and AA/AD were estimated using Cox regression and adjusted for co-morbidities.

Results

Our analyses included 10,941 SS cases and 43,764 propensity score-matched controls. Compared with the controls, the patients with SS exhibited a significantly increased risk of developing an AA and AD (adjusted OR = 3.642, P<0.001). The subgroup analysis revealed that patients with primary and secondary SS both

exhibited a significantly increased risk of developing AA and AD compared with patients without SS (adjusted hazard ratio (HR) = 1.753, P = 0.042; adjusted HR = 3.693, P < 0.001).

Conclusion

Patients with SS exhibit increased risks of developing AA and AD, and healthcare professionals should be aware of this risk when treating patients with SS. Increased aortic surveillance may be required in patients with SS syndrome.

Keywords: Sjögren's syndrome, aortic dissection, aortic aneurysm

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50	
51 52	
52 53	
54 55	
55 56	
50 57	
57 58	
20	

60

Strengths and limitations of this study

- The strength of our study is its population-based cohort design. We excluded confounding factors, including comorbidities, from our study.
- We intended to control for potential disease-associated confounders to the utmost extent possible, unmeasured or unknown confounders may have existed in our

findings.

- This was a retrospective cohort study.
- NHIRD can not provide detailed information regarding the laboratory results or lifestyle factors of the patients.
- Our results are limited to human data. It required both mechanistic and animal

studies for further clarification.

Introduction

Sjögren's syndrome (SS) is a systemic autoimmune disorder commonly presenting with dry eyes and mouth. The prevalence of SS is between 0.1% and 4.8% in various populations when strictly defined according to the American-European Consensus Criteria, and it is one of the most common autoimmune diseases $\frac{1}{2}$. SS may affect patients at any age, but more cases occur in the fourth decade of life, and there is a female predominance. The female-male ratio is approximately $9:1^{\frac{2}{2}}$. Aortic aneurysms (AAs) are often diagnosed inadvertently and are a common cause of sudden death. Enlarged aneurysms can result in rupture. Aortic dissection (AD) is one of the most deadly complications of thoracic aortic disease. The incidence of AD ranges from 6 cases per 100,000 to 9.1 per 100,000 in women and 16.3 per 100,000 in men annually based on studies in England and Sweden $\frac{34}{2}$. Regarding the Asian population, the average annual incidence of AD was 5.6 per 100,000 persons in Taiwan, and the prevalence was 19.9 per 100,000 persons, with a predominance noted among men 50 to 54 years of age (27.3 per 100.000 persons per year) $\frac{5}{2}$.

Previous studies have demonstrated that AA is more prevalent in patients with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) compared with the general population ⁶⁷. Compared with age- and sex-matched healthy controls, primary SS (PSS) patients exhibited a 2-fold increased prevalence of hypertension and hypertriglyceridemia. Furthermore, hypertension is underdiagnosed and suboptimally

treated in PSS ⁸. SS with positive autoantibodies is associated with a low ankle-brachial index, which may indicate an increased risk of early atherosclerosis ⁹. Nonetheless, previous population-based studies indicated that SS is not associated with an increased risk of subsequent acute myocardial infarction (AMI) and ischaemic stroke ¹⁰¹¹.

Several molecular mechanisms, including JNK, NF-κB and TGF-β signalling pathways, and matrix metalloproteinase (MMP) activation are associated with the pathogenesis of SS ^{12,13}. These molecular mechanisms also actively participate in the initiation and progression of AA and AD ^{14,15}. Taken together, we hypothesized that patients with SS may have an increased risk of AA and AD due to SS-related cardiovascular risks and shared molecular mechanisms. However, the association between SS and AA or AD has not been thoroughly evaluated in large-scale studies. Therefore, we aimed to determine whether SS patients exhibit an increased risk of AA and AD using a nationwide healthcare insurance claim database.

Methods

Data source

The data described herein were acquired from the Longitudinal Health Insurance Database 2005 (LHID 2005), a subgroup database of the Taiwan National Health

Insurance Research Database (NHIRD) used for the nationwide population-based retrospective cohort study. The National Health Insurance programme in Taiwan provides health care for 99% of the population (greater than 23 million people) and was implemented in 1995. The LHID 2005 provides information on medical service utilization using a randomly selected sample of approximately one million people receiving benefits, representing approximately 5% of Taiwan's population in 2005. The information was obtained from the NHIRD between 2000 and 2010. The accuracy of the diagnoses in the NHIRD, particularly the diagnoses of major diseases (e.g., acute coronary syndrome and stroke), has been corroborated $\frac{1617}{10}$. The LHID is composed of "de-identified" secondary data that are available to the public via open access for research. ICD-9-CM (International Classification of Diseases, 9th Revision, Clinical Modification) diagnostic and procedure codes (up to five each), genders, birthdays, patient identification numbers, dates of admission and discharge, and outcomes are coded. In addition, information regarding the medical institutions that served patients was obtained. Individual information was protected using encoded personal identification to prevent ethical violations related to the data. Our study conformed to the Declaration of Helsinki and relevant guidelines. This Institutional Review Board of the Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, permitted this study (TSGH IRB No.2-105-05-082).

BMJ Open

Sampled patients

This study utilized study and comparison cohorts. Using the LHID 2005, we selected adult patients aged >20 years who were newly diagnosed with SS (ICD-9-CM 710.2) and were followed-up between 2000 and 2010. We excluded patients who were diagnosed with SS, AA and AD (ICD-9-CM 441.0-441.9); Turner syndrome (ICD-9-CM 758.6); aortic coarctation (ICD-9-CM 747.10); bicuspid aortic valve (ICD-9-CM 746.4); Marfan syndrome (ICD-9-CM 759.82); and Ehler-Danlos syndrome (ICD-9-CM 756.83). Patients had a tracking time < 6 months. The date of SS diagnosis was used as the index date. Control candidate sampling comparisons were selected from individuals in the LHID 2005 who lacked a history of SS. The patients and control cohorts were selected by 1:4 matching according to the following baseline variables: age; sex; co-morbidities, including hypertension (ICD-9-CM 401-405), diabetes mellitus (DM) (ICD-9-CM 250), hyperlipidaemia (ICD-9-CM 272.0-272.4), Behcet's disease (ICD-9-CM 136.1), giant cell arteritis (ICD-9-CM 446.5), RA and other inflammatory polyarthropathies (ICD-9-CM 714), relapsing polychondritis (ICD-9-CM 733.99), Takayasu's arteritis (ICD-9-CM 446.7) and chronic obstructive pulmonary disease (COPD) (ICD-9-CM 490-496); and medication history, including β -blocker, calcium channel blocker, angiotensin-converting enzyme

inhibitor, angiotensin receptor blocker, diuretic and steroid history. We also divided SS patients into primary SS and secondary SS (SSS) patients and performed a subgroup analysis. SS in patients was previously diagnosed as SLE (ICD-9-CM 710.0), RA (ICD-9-CM 714), systemic sclerosis (ICD-9-CM 701.1), or primary biliary cirrhosis (ICD-9-CM 571.6), which was defined as SSS. The index dates for control patients were the same as the corresponding dates for patients with AA/AD. The study outcome was a diagnosis of AA/AD during the 10-year follow-up period. AA/AD was identified using ICD-9 codes. The end point of the follow-up period was 2010-12-31 or the time at which AA/AD events occurred or the patient died.

Statistical analysis

Categorical variables, which are presented as percentages, were compared using the chi-square or Fisher's exact tests. Continuous variables, which are presented as the means and standard deviations, were compared using a t-test. The primary goal of the study was to determine whether SS patients exhibit an increased risk for developing AA/AD. The association between those outcomes (prognoses) and clinical characteristics was investigated using Cox regression. The results are presented as adjusted hazard ratios (HRs) with corresponding 95% confidence intervals (CIs). The threshold for statistical significance was P < 0.05. All data analyses were conducted

using SPSS software version 22 (SPSS Inc., Chicago, IL, USA).

Results

A flow diagram of our patient enrolment scheme is presented in Figure 1. A total of 10,941 patients diagnosed with SS were identified in the NHIRD, which contains a total of 986,713 individuals. An additional 43,764 age-, gender-, comorbidity-, and medication-matched patients were designated controls. As shown in Table 1, no significant differences in gender, age or co-morbidities, including DM, hypertension, hyperlipidaemia, Behcet's disease, giant cell arteritis, RA, relapsing polychondritis, Takayasu's arteritis, COPD, and medications, were noted between the two groups after matching. Patients with SS exhibited a significantly increased cumulative risk of developing AA/AD in subsequent years compared with patients without SS (log rank test < 0.001, Figure 2). Table 2 presents the incidences of AA and AD during the ten-year follow-up period. At the end of the follow-up period, SS patients exhibited significantly increased incidences of AA/AAD (0.43% vs. 0.37%, P = 0.045) but lower incidences of DM (7.73% vs. 15.44%, P < 0.001) and COPD (5.96% vs. 6.72%, P = 0.004). In addition, patients with SS were younger and exhibited an increased CCI compared with patients without SS. Regarding the use of Cox regression independent of the effects of gender, age, co-morbidities and medication, patients with SS also

exhibited a significantly increased risk of developing AA/AD compared with patients without SS (adjusted HR = 3.642, 95% CI = 2.527-5.250, P < 0.001, Table 3). The subgroup analysis revealed that patients with PSS or SSS both exhibited significantly increased risks for developing AA/AD compared with patients without SS (adjusted HR = 1.753, 95% CI = 1.108-9.382, P = 0.042; adjusted HR = 3.693, 95% CI =

2.520-5.411, P < 0.001, Table 4).

Discussion

Our study is a retrospective cohort study that enrolled 10,941 patients with SS and 43,764 patients without SS matched by age, sex, year of index date of SS diagnosis, co-morbidities and medication from a large-scale nationwide population-based database. During follow-up, SS was associated with an increased incidence of the development of AA/AD compared with the comparison cohort.

SS patients exhibit an increased prevalence of developing traditional cardiovascular risk factors, such as hypertension and dyslipidaemia, which predispose patients to endothelial dysfunction and premature atherosclerosis. However, the disease-specific mechanisms associated with premature atherosclerosis in SS are not fully understood ¹⁸. In a recent review article, cardiovascular disease was reported to be one of the primary causes of mortality in SS patients ¹⁹. Primary SS shares clinical

and serological features with RA and SLE, and these two diseases are associated with acceleration of atherosclerosis $\frac{20}{2}$. However, the pathophysiology between SS and AA/AD remains unclear, although several possible mechanisms have been proposed. Previous studies have demonstrated that both SS and AA/AD are induced by chronic inflammation.²¹⁻²⁴ Recent studies have provided convincing evidence indicating that several signalling pathways are involved in both AA and SS, including the MAPK, TGF- β , and MMP signalling pathways ¹²⁻¹⁵. Activation of the innate immune system and the production of interferons (IFNs) could be the first stages of primary SS pathogenesis²⁵. IFNs and IL-21 could induce B-cell-activating factor (BAFF) and further activate B cell activity. In human salivary gland cells, interferon-y modulates and increases MMP-2 and MMP-9 expression $\frac{26}{2}$. The circulating levels of MMP-9 were increased in patients with definite SS compared with patients with possible SS $\frac{27}{2}$. Furthermore, MMP-2 and MMP-9 also display a critical role in AAA formation $\frac{28}{2}$. MMPs play roles in tissue destruction and the weakening of the matrix, as noted in liver cirrhosis, fibrotic lung disease, otosclerosis, atherosclerosis, and multiple sclerosis ²⁹.

As a downstream effector molecule of CD40, the JNK cascade is activated in salivary infiltrating T cells and mononucleated cells in patients with SS $\frac{12 \ 13}{12}$. JNK plays a pivotal role in IL-1 β -mediated inhibition of lacrimal gland secretion and

subsequent dry eye ³⁰. JNK is not only involved in T cell infiltration in salivary glands but is also associated with subsequent NF- κ B activation, MMP activation and reactive oxygen species (ROS) production ^{21,31}. Increased TGF- β signalling was observed in salivary glands with increased Smad2 phosphorylation and concomitant increases in extracellular matrix deposition. In a mouse study of SS, aberrant TGF- β overexpression caused salivary gland hypofunction ³². In addition, TGFBR1 and TGFBR2 mutations result in up-regulation of TGF- β signalling and lead to extracellular matrix deposition and matrix degradation, which represent critical steps in AA or AD ³³.

Low-dose steroids, such as prednisone, may be used to treat SS-induced joint and muscle pain. Prolonged or high-dose corticosteroid treatment likely causes disintegration of connective tissue of the media possibly together with primary aortic wall involvement and/or vascular damage in patients with autoimmune disorders, which can result in aortic aneurysmal enlargement and AD ^{29 34}. In this study, the medical condition of steroids was matched. Therefore, the effect of steroids was mitigated. The strength of our study involves its population-based database design. We accounted for several aneurysm-related confounding factors. Although we adjusted the results extensively using multivariate logistic regression models, there were several limitations and unmeasured confounders in our study. The NHIRD registry is

BMJ Open

not able to provide detailed information on laboratory results, family histories and health-related lifestyle factors, such as alcohol consumption and tobacco use, which can increase the risk of AA/AD and were potential confounding factors in this study. In our study, we also considered COPD incidence as a proxy variable for tobacco use to eliminate its potential confounding effect ³⁵. Although our study identified the association between SS and AA/AD, the cohort study design did not enable determination of the cause-effect relationship. Further prospective follow-up studies, mechanistic studies and animal experiments should be performed.

Conclusion

Patients with SS exhibit an increased risk for developing AA and AD, and healthcare professionals should be aware of this risk when treating patients with SS. Increased aortic surveillance may be required in patients with SS.

Author contributions

Y-DT, J-CW, and S-HT conceived and designed the study.

W-CC provided the materials for the study. C-HC and S-JC analysed the data. C-JY

and M-TL contributed reagents, materials and analysis tools. Y-DT, J-CW, W-IL and

S-HT wrote the manuscript. All the authors approved the manuscript.

Competing interests

None declared.

Data sharing statement

No additional data sharing available.

Acknowledgements

This study was supported by grants from Tri-Service General Hospital, National

Defense Medical Center, Taipei, Taiwan (TSGH-C105-058); Tri-Service General

Hospital, National Defense Medical Center, Taipei, Taiwan (TSGH-C105-173);

Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan (10514); and the Ministry

of Science and Technology (MOST 106-2314-B-016 -008 -MY3).

1	
2	
3	Legends to tables and figures
4	Legends to tables and lightes
5 6	
7	Table 1. Characteristics of the study participants at baseline
8	
9	
10	Table 2. Incidences of aortic aneurysm and dissection and other characteristics during
11	
12	the ten-year follow-up period
13	the ten year follow up period
14	
15	Table 3. Factors associated with aortic aneurysm and dissection according to Cox
16	
17	
18	regression
19	
20	Table 4. Factors associated with aortic aneurysm and dissection stratified by
21 22	
22	
23	primary/secondary SS using Cox regression
25	
26	Figure 1. Detionst collection flowshort
27	Figure 1. Patient selection flowchart
28	
29	Figure 2. Kaplan-Meier curve of the cumulative risk of aortic aneurysm and
30	
31	dissection due to Sjögren's syndrome
32	dissection due to Sjögren's syndrome
33	
34	
35	
36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50 51	
51	
52	
55	
55	
56	
57	
58	17
59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

References

 Vitali C, Bombardieri S, Jonsson R, et al. Classification criteria for Sjogren's syndrome: a revised version of the European criteria proposed by the American-European Consensus Group. *Annals of the rheumatic diseases* 2002;61(6):554-8.
 Mavragani CP, Moutsopoulos HM. The geoepidemiology of Sjogren's syndrome. *Autoimmun Rev* 2010;9(5):A305-10. doi: 10.1016/j.autrev.2009.11.004
 Howard DP, Banerjee A, Fairhead JF, et al. Population-based study of incidence

and outcome of acute aortic dissection and premorbid risk factor control:

10-year results from the Oxford Vascular Study. Circulation

2013;127(20):2031-7. doi: 10.1161/CIRCULATIONAHA.112.000483

4. Olsson C, Thelin S, Stahle E, et al. Thoracic aortic aneurysm and dissection: increasing prevalence and improved outcomes reported in a nationwide population-based study of more than 14,000 cases from 1987 to 2002. *Circulation* 2006;114(24):2611-8. doi:

10.1161/CIRCULATIONAHA.106.630400

5. Yeh TY, Chen CY, Huang JW, et al. Epidemiology and medication utilization pattern of aortic dissection in Taiwan: A population-based study. *Medicine* (*Baltimore*) 2015;94(36):e1522. doi: 10.1097/MD.000000000001522

3 4	6. Shovman O, Tiosano S, Comaneshter D, et al. Aortic aneurysm associated with	
5 6 7	rheumatoid arthritis: a population-based cross-sectional study. Clinical	
8 9 10	rheumatology 2016;35(11):2657-61. doi: 10.1007/s10067-016-3372-0	
11 12 13	[published Online First: 2016/08/10]	
14 15	7. Guy A, Tiosano S, Comaneshter D, et al. Aortic aneurysm association with SLE -	a
16 17 18	case-control study. Lupus 2016;25(9):959-63. doi:	
19 20 21	10.1177/0961203316628999 [published Online First: 2016/01/27]	
22 23 24	8. Juarez M, Toms TE, de Pablo P, et al. Cardiovascular risk factors in women with	
25 26	primary Sjogren's syndrome: United Kingdom primary Sjogren's syndrome	
27 28 29	registry results. Arthritis care & research 2014;66(5):757-64. [published	
30 31 32	Online First: 2014/05/31]	
33 34 35	9. Garcia AB, Dardin LP, Minali PA, et al. Asymptomatic Atherosclerosis in Primary	7
36 37	Sjogren Syndrome: Correlation Between Low Ankle Brachial Index and	
38 39 40	Autoantibodies Positivity. Journal of clinical rheumatology : practical report	ts
41 42 43	on rheumatic & musculoskeletal diseases 2016;22(6):295-8. doi:	~
44 45 46	10.1097/rhu.0000000000000413 [published Online First: 2016/08/25]	
47 48	10. Chiang CH, Liu CJ, Chen PJ, et al. Primary Sjogren's syndrome and risk of	
49 50 51		7
52 53 54	ischemic stroke: a nationwide study. <i>Clinical rheumatology</i> 2014;33(7):931-7	'.
55 56 57	doi: 10.1007/s10067-014-2573-7 [published Online First: 2014/03/22]	
58 59		19

11. Chiang CH, Liu CJ, Chen PJ, et al. Primary Sjogren's Syndrome and the Risk of
Acute Myocardial Infarction: A Nationwide Study. Acta Cardiologica Sinica
2013;29(2):124-31. [published Online First: 2013/03/01]
12. Soejima K, Nakamura H, Tamai M, et al. Activation of MKK4 (SEK1), JNK, and
c-Jun in labial salivary infiltrating T cells in patients with Sjogren's syndrome.
Rheumatology international 2007;27(4):329-33. doi:
10.1007/s00296-006-0229-x [published Online First: 2006/09/30]
13. Nakamura H, Kawakami A, Yamasaki S, et al. Expression of mitogen activated
protein kinases in labial salivary glands of patients with Sjogren's syndrome.
Annals of the rheumatic diseases 1999;58(6):382-5. [published Online First:
1999/05/26]
14. Ito S, Ozawa K, Zhao J, et al. Olmesartan inhibits cultured rat aortic smooth
muscle cell death induced by cyclic mechanical stretch through the inhibition
muscle cell death induced by cyclic mechanical stretch through the inhibition of the c-Jun N-terminal kinase and p38 signaling pathways. <i>Journal of</i>
of the c-Jun N-terminal kinase and p38 signaling pathways. Journal of
of the c-Jun N-terminal kinase and p38 signaling pathways. <i>Journal of pharmacological sciences</i> 2015;127(1):69-74. doi: 10.1016/j.jphs.2014.11.002
of the c-Jun N-terminal kinase and p38 signaling pathways. <i>Journal of</i> <i>pharmacological sciences</i> 2015;127(1):69-74. doi: 10.1016/j.jphs.2014.11.002 15. Zhang Y, Naggar JC, Welzig CM, et al. Simvastatin inhibits angiotensin
of the c-Jun N-terminal kinase and p38 signaling pathways. <i>Journal of</i> <i>pharmacological sciences</i> 2015;127(1):69-74. doi: 10.1016/j.jphs.2014.11.002 15. Zhang Y, Naggar JC, Welzig CM, et al. Simvastatin inhibits angiotensin II-induced abdominal aortic aneurysm formation in apolipoprotein E-knockout

2	
3	
4	16. Cheng CL, Kao YH, Lin SJ, et al. Validation of the National Health Insurance
5	
6	
7	Research Database with ischemic stroke cases in Taiwan.
8	
9	
10	Pharmacoepidemiology and drug safety 2011;20(3):236-42. doi:
11	
12	
13	10.1002/pds.2087 [published Online First: 2011/02/26]
14	
15	17 Mag CT Tasi ML Wang CV at al Outcomes and characteristics of nationts
16	17. Mao CT, Tsai ML, Wang CY, et al. Outcomes and characteristics of patients
17	undergoing percutaneous angioplasty followed by below-knee or above-knee
18	undergoing perculaneous angiophasty followed by below-knee of above-knee
19	
20	amputation for peripheral artery disease. <i>PloS one</i> 2014;9(10):e111130. doi:
21	
22	
23	10.1371/journal.pone.0111130
24	10112 / Ljournaupontor 1120
25	
26	18. Valim V, Gerdts E, Jonsson R, et al. Atherosclerosis in Sjogren's syndrome:
27	
28	
29	evidence, possible mechanisms and knowledge gaps. Clinical and
30	
31	
32	experimental rheumatology 2016;34(1):133-42. [published Online First:
33	
34	
35	2016/01/27]
36	
37	
38	19. Singh AG, Singh S, Matteson EL. Rate, risk factors and causes of mortality in
39	
40	notionto with Siggraphs and homes a systematic review and mate analysis of
41	patients with Sjogren's syndrome: a systematic review and meta-analysis of
42	
43	cohort studies. Rheumatology (Oxford, England) 2016;55(3):450-60. doi:
44	Conort studies. Kneumatology (Oxford, England) 2010, $55(5)$. $+50-00$. doi:
45	
46	10.1093/rheumatology/kev354
47	10.1095/mounde1055/k04554
48	
49	20. Sezis Demirci M, Karabulut G, Gungor O, et al. Is There an Increased Arterial
50	
51	
52	Stiffness in Patients with Primary Sjogren's Syndrome? Intern Med
53	
54	
54 55	2016;55(5):455-9. doi: 10.2169/internalmedicine.55.3472 [published Online
56	
57	
58	
59	

2	
3	
4	
5	
4 5 6 7 8 9	
7	
Q	
0	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
21	
 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 20 	
23	
24	
25	
25	
26	
27	
28	
29	
20	
30	
31	
32 33 34 35	
33	
24	
54	
35	
36 37 38	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

1

First: 2016/03/05]

21. Sawada H, Hao H, Naito Y, et al. Aortic iron overload with oxidative stress and inflammation in human and murine abdominal aortic aneurysm. Arteriosclerosis, thrombosis, and vascular biology 2015;35(6):1507-14. doi: 10.1161/atvbaha.115.305586 [published Online First: 2015/04/18] 22. Vadacca M, Margiotta D, Sambataro D, et al. [BAFF/APRIL pathway in Sjogren] syndrome and systemic lupus erythematosus: relationship with chronic inflammation and disease activity]. Reumatismo 2010;62(4):259-65. 23. Cifani N, Proietta M, Tritapepe L, et al. Stanford-A acute aortic dissection, inflammation, and metalloproteinases: a review. Annals of medicine 2015;47(6):441-6. doi: 10.3109/07853890.2015.1073346 24. Eagleton MJ. Inflammation in abdominal aortic aneurysms: cellular infiltrate and cytokine profiles. Vascular 2012;20(5):278-83. doi: 10.1258/vasc.2011.201207 25. Nocturne G, Mariette X. Advances in understanding the pathogenesis of primary Sjogren's syndrome. Nat Rev Rheumatol 2013;9(9):544-56. doi: 10.1038/nrrheum.2013.110 26. Wu AJ, Lafrenie RM, Park C, et al. Modulation of MMP-2 (gelatinase A) and

MMP-9 (gelatinase B) by interferon-gamma in a human salivary gland cell

BMJ Open

line. Journal of cellular physiology 1997;171(2):117-24. doi:
10.1002/(sici)1097-4652(199705)171:2<117::aid-jcp1>3.0.co;2-r [published
Online First: 1997/05/01]
27. Hulkkonen J, Pertovaara M, Antonen J, et al. Matrix metalloproteinase 9 (MMP-9)
gene polymorphism and MMP-9 plasma levels in primary Sjogren's syndrome.
Rheumatology (Oxford, England) 2004;43(12):1476-9. doi:
10.1093/rheumatology/keh369 [published Online First: 2004/08/19]
28. Dale MA, Suh MK, Zhao S, et al. Background differences in baseline and
stimulated MMP levels influence abdominal aortic aneurysm susceptibility.
Atherosclerosis 2015;243(2):621-9. doi: 10.1016/j.atherosclerosis.2015.10.006
29. Amalinei C, Caruntu ID, Giusca SE, et al. Matrix metalloproteinases involvement
in pathologic conditions. <i>Romanian journal of morphology and embryology</i> =
Revue roumaine de morphologie et embryologie 2010;51(2):215-28.
[published Online First: 2010/05/25]
30. Zoukhri D, Macari E, Choi SH, et al. c-Jun NH2-terminal kinase mediates
interleukin-1 beta-induced inhibition of lacrimal gland secretion. Journal of
neurochemistry 2006;96(1):126-35. doi: 10.1111/j.1471-4159.2005.03529.x
[published Online First: 2005/11/23]
31. Tsai SH, Huang PH, Peng YJ, et al. Zoledronate attenuates angiotensin II-induced

	abdominal aortic aneurysm through inactivation of Rho/ROCK-dependent
	JNK and NF-kappaB pathway. Cardiovasc Res 2013;100(3):501-10. doi:
	10.1093/cvr/cvt230
32. H	all BE, Zheng C, Swaim WD, et al. Conditional overexpression of TGF-beta1
	disrupts mouse salivary gland development and function. Laboratory
	investigation; a journal of technical methods and pathology
	2010;90(4):543-55. doi: 10.1038/labinvest.2010.5 [published Online First:
	2010/02/10]
33. Jo	ones JA, Spinale FG, Ikonomidis JS. Transforming growth factor-beta signaling
	in thoracic aortic aneurysm development: a paradox in pathogenesis. J Vasc
	Res 2009;46(2):119-37. doi: 10.1159/000151766
34. SI	nolter DE, Armstrong PW. Adverse effects of corticosteroids on the
	cardiovascular system. The Canadian journal of cardiology
	2000;16(4):505-11.
35. Y	u TM, Chuang YW, Yu MC, et al. Risk of cancer in patients with polycystic
	kidney disease: a propensity-score matched analysis of a nationwide,
	population-based cohort study. Lancet Oncol 2016;17(10):1419-25. doi:
	10.1016/S1470-2045(16)30250-9

1 2 3 4 5 6 7 8 9 10	
11	
12 13	
14	
15 16	
17	
18 19	
20	
21 22	
23 24	
25	
26 27	
28	
29 30	
31	
32 33	
34	
35 36	
37	
38 39	
40	
41 42 43	
43	
44	

Sjögren's syndrome	Total	With	Without	P-value
	N (%)	N (%)	N (%)	P-value
Total	54,705	10,941 (20.00%)	43,764(80.00%)	
Gender				0.999
Male	10,187 (18.63%)	2,011 (18.44%)	8,176 (18.68%)	
Female	44,485 (81.37%)	8,897 (81.56%)	35,588 (81.32%)	
Age (years)	55.78±17.09	55.80±16.65	55.77±17.20	0.897
DM	3,553 (6.49%)	724 (6.62%)	2,829 (6.46%)	0.558
Hypertension	8,091 (14.79%)	1,578 (14.42%)	6,513 (14.88%)	0.228
Hyperlipidaemia	1,145 (2.09%)	234 (2.14%)	911 (2.08%)	0.709
Behcet's disease	321 (0.59%)	62 (0.57%)	259 (0.59%)	0.834
Giant cell arteritis	15 (0.03%)	3 (0.03%)	12 (0.03%)	0.999
Rheumatoid arthritis	8,907 (16.28%)	1,784 (16.31%)	7,123 (16.28)	0.942
Relapsing polychondritis	71 (0.13%)	14 (0.13%)	57 (0.13%)	0.953
Takayasu's arteritis	15 (0.03%)	3 (0.03%)	12 (0.03%)	0.999
COPD	2,931 (5.36%)	581 (5.3%)	2,350 (5.37%)	0.831
Steroid	16,799 (30.71%)	3,345 (30.57%)	13,454 (30.74%)	0.737
β blocker	12,588 (23.01%)	2,513 (22.97%)	10,075 (23.02%)	0.919
ССВ	11,553 (21.12%)	2,342 (21.41%)	9,211 (21.05%)	0.409
ACEI	13,586 (24.84%)	2,711 (24.78%)	10,875 (24.85%)	0.878
ARB	12,718 (23.25%)	2,620 (23.95%)	10,098 (23.07%)	0.054
Diuretic	12,440 (22.74%)	2,429 (22.20%)	10,011 (22.87%)	0.136
Statin	13,922 (25.45%)	2,811 (25.69%)	11,111 (25.39%)	0.516

Table 1 Characteristics of the study participants at baseline

P-value (categorical variable: chi-square/Fisher's exact test; continuous variable: t-test)

DM = diabetes mellitus; COPD = chronic obstructive pulmonary disease; CCB = calcium channel blocker; ACEI =

angiotensin-converting enzyme inhibitor; ARB = angiotensin receptor blocker

BMJ Open

Table 2 Incidences of aortic aneurysm and dissection and other characteristics during

the ten-year follow-up period

Sjögren's syndrome	Total N (%)	With N (%)	Without	Davala
			N (%)	P-value
Total	54,705	10,941(20.00%)	43,764(80.00%)	
Aortic aneurysm				
and dissection	207 (0.38%)	47(0.43%)	160(0.37%)	0.045
Gender				0.999
Male	10,187 (18.63%)	2,011(18.44%)	8,176(18.68%)	
Female	44,485 (81.37%)	8,897(81.56%)	35,588(81.32%)	
Age (years)	61.36±5.41	60.90±4.98	61.47±5.51	< 0.001
DM	7,603 (13.90%)	846(7.73%)	6,757(15.44%)	< 0.001
Hypertension	8,821 (16.12%)	1,708(15.61%)	7,113(16.25%)	0.102
Hyperlipidaemia	1,128 (2.06%)	240(2.19%)	888(2.03%)	0.279
Behcet's disease	324 (0.59%)	63(0.58%)	261(0.60%)	0.802
Giant cell arteritis	16 (0.03%)	3(0.03%)	13(0.03%)	0.901
Rheumatoid arthritis	9,033 (16.51%)	1,774(16.21%)	7,259(16.59%)	0.348
Relapsing				
polychondritis	80 (0.15%)	19 (0.17%)	61 (0.14%)	0.401
Takayasu's arteritis	15 (0.03%)	3 (0.03%)	12 (0.03%)	0.999
COPD	3,593 (6.57%)	652 (5.96%)	2,941 (6.72%)	0.004
CCI_R	0.78±1.53	0.83±1.39	0.77±1.56	< 0.001
Steroid	17,112 (31.28%)	3,511 (32.09%)	13,601 (31.08%)	0.041
β blockers	13,750 (25.13%)	2,674 (24.44%)	11,076 (25.31%)	0.061
ССВ	11,833 (21.63%)	2,397 (21.91%)	9,436 (21.56%)	0.430
ACEI	13,793 (25.21%)	2,784 (25.45%)	11,009 (25.16%)	0.532
ARB	12,976 (23.72%)	2,681 (24.50%)	10,295 (23.52%)	0.031
Diuretic	12,692 (23.20%)	2,507 (22.91%)	10,185 (23.27%)	0.427
Statin	14,123 (25.82%)	2,828 (25.85%)	11,295 (25.81%)	0.934

P-value (categorical variable: chi-square/Fisher's exact test; continuous variable: t-test)

CCI_R = Charlson comorbidity index removed DM, COPD; DM = diabetes mellitus; COPD = chronic obstructive pulmonary

disease; CCB = calcium channel blocker; ACEI = angiotensin-converting enzyme inhibitor; ARB = angiotensin receptor blocker

Table 3 Factors associated with aortic aneurysm and dissection according to Cox

regression

Variables	Crude HR	95% CI	Р	Adjusted HR	95% CI	Р
Sjögren's syndrome	3.205	2.254-3.565	< 0.001	3.642	2.527-5.250	< 0.001
Gender (male)	2.645	1.974-3.597	< 0.001	2.035	1.534-2.700	< 0.001
Age (years)	1.049	1.032-1.057	< 0.001	1.043	1.032-1.055	< 0.001
DM	1.704	1.389-1.944	0.024	1.674	1.065-1.976	0.037
Hypertension	1.165	1.022-1.454	0.038	1.305	0.973-1.751	0.075
Hyperlipidaemia	1.211	0.594-2.436	0.618	1.343	0.656-2.751	0.420
Rheumatoid arthritis	1.645	0.774-3.496	0.196	0.801	0.362 -1.769	0.583
COPD	1.838	1.256-2.691	0.002	1.170	0.790-1.735	0.433
CCI_R	1.036	0.945-1.087	0.074	1.016	0.968-1.065	0.527
Steroid	1.497	0.598-2.976	0.495	1.501	0.339-3.298	0.617
β blockers	1.468	0.453-2.772	0.862	1.398	0.401-2.895	0.803
ССВ	1.345	0.343-2.901	0.372	1.402	0.452-2.806	0.280
ACEI	1.298	0.426-3.041	0.601	1.288	0.395-2.845	0.334
ARB	1.346	0.379-1.986	0.711	1.345	0.343-1.886	0.682
Diuretic	1.198	0.598-2.511	0.652	1.201	0.490-2.907	0.703
Statin	1.364	0.667-4.972	0.798	1.335	0.679-4.787	0.897

HR= hazard ratio; CI = confidence interval; Adjusted HR: adjusted variables listed in the table;

CCI_R = Charlson comorbidity index removed DM, COPD; DM = diabetes mellitus; COPD = chronic obstructive

pulmonary disease; CCB = calcium channel blocker; ACEI = angiotensin-converting enzyme inhibitor; ARB =

angiotensin receptor blocker

Table 4. Factors associated with aortic aneurysm and dissection stratified by primary/secondary Sjögren's syndrome using Cox regression

	Patients	with Sjögren	ögren's syndrome Patients without Sjögr		en's syndrome	Ratio	Adjusted HR*	95% CI	P-value	
	Events	PY	Incidence rate	Events	PY	Incidence rate				
			(per 10 ⁵ PY)			(per 10 ⁵ PY)				
			U,							
Total	47	55,860.08	84.14	160	253,779.88	63.05	1.335	3.642	2.527-5.250	<0.001
Without RA / SLE / SS /PBC	30	36,607.55	81.95	158	248,694.36	63.53	1.290	1.753	1.108-9.382	0.042
With RA/SLE/SS/PBC	17	19,252.53	88.30	2	5,085.52	39.33	2.245	3.693	2.520-5.411	<0.001

PYs = person-years; Ratio = incidence of patients with AA/AD divided by the incidence of patients without AA/AD; *Adjusted HR = adjusted hazard ratio: adjusted for age, sex, comorbidities, and medications, as

listed in Table 3, using Cox regression; CI = confidence interval; RA = rheumatoid arthritis ; SLE = systemic lupus erythematosus ; SS = systemic sclerosis ; PBC = primary biliary cirrhosis

Primary Sjögren's syndrome: Sjögren's syndrome without systemic lupus erythematosus, rheumatoid arthritis, systemic sclerosis, or primary biliary cirrhosis; Secondary Sjögren's syndrome:

with systemic lupus erythematosus, rheumatoid arthritis, systemic sclerosis, or primary biliary cirrhosis

Outpatients and inpatients in Taiwan (2000-2010)

N=986,713

3. Age < 20

study cohort

With Sjögren's syndrome

(Study cohort)

N=10,941

Aortic aneurysm and dissection

127x95mm (300 x 300 DPI)

N=47

Exclusion criteria

1. Aortic aneurysm , aortic dissection , and

Sjögren's syndrome before index date

2. Turner syndrome / aortic coarctation / bicuspid aortic valve / Marfan

syndrome / Ehler-Danlos syndrome

N=5,902

2. The same exclusion criteria as those for the

3. Matched 4 times by index year, gender, age,

comorbidities, and medications

At the end of follow-up (2010.12.31)

1. Without Sjögren's syndrome in the study period

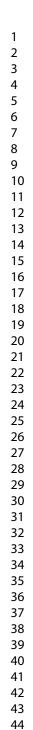
Without Sjögren's syndrome

(Comparison cohort)

N=43,764

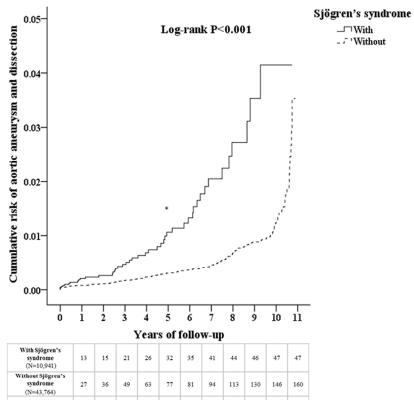
Aortic aneurysm and dissection

N=160


300 DPI)

4. Tracking time < 6 months

Inclusion criteria


N=16,843

With Sjögren's syndrome

- 55 56 57
- 58 59

 P value
 0.897
 0.513
 0.275
 0.102
 0.036
 0.015
 0.001
 <0.001</td>
 <0.001</td>

*:P<0.05 is considered statistically significant

145x124mm (300 x 300 DPI)

BMJ Open

Risk of aortic aneurysm and dissection in patients with Sjögren's syndrome: a nationwide population-based cohort study in Taiwan

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-022326.R1
Article Type:	Research
Date Submitted by the Author:	30-May-2018
Complete List of Authors:	Tsai, Yi-Da; Tri-Service General Hospital, National Defensive Medical Center, Department of Emergency medicine Chien, Wu-Chien ; Tri-Service General Hospital, National Defense Medical Center, Department of Medical Research; National Defense Medical Center, School of Public Health Tsai, Shih-Hung ; Tri-Service General Hospital, National Defense Medical Center, Department of Emergency Medicine Chung, Chi-Hsiang; Tri-Service General Hospital, National Defense Medical Center, Department of Medical Research; National Defense Medical Center, School of Public Health Chu, Shi-Jye ; Tri-Service General Hospital, National Defense Medical Center, Department of Medical Research; National Defense Medical Center, Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine Chen, Sy-Jou ; Tri-Service General Hospital, National Defense Medical Center, Department of Emergency Medicine Liao, Wen-I; Tri-Service General Hospital, National Defense Medical Center, Department of Emergency Medicine Liao, Wen-I; Tri-Service General Hospital, National Defense Medical Center, Department of Emergency Medicine Yang, Chih-Jen; Tri-Service General Hospital, National Defensive Medical Center, Emergency Medicine Liao, Min-Tser ; Taoyuan Armed Forces General Hospital, Department of Pediatrics Wang, Jen-Chun; Tri-Service General Hospital, National Defensive Medical Center, department of Emergency Medicine, Emergency Department of Pediatrics
Primary Subject Heading :	Rheumatology
Secondary Subject Heading:	Cardiovascular medicine
Keywords:	Sjögren's syndrome, aortic dissection, aortic aneurysm

SCHOLARONE[™] Manuscripts

BMJ Open

1	Increased risk of aortic aneurysm and dissection in patients with Sjögren's
2	syndrome: a nationwide population-based cohort study in Taiwan
3	
4	Yi-Da Tsai MD ¹ , Wu-Chien Chien PhD ^{2,3} , Shih-Hung Tsai MD, PhD ¹ , Chi-Hsiang
5	Chung PhD ^{2,3,4} , Shi-Jye Chu MD ⁵ , Sy-Jou Chen MD, MS ^{1,6} , Wen-I Liao MD ¹ ,
6	Chih-Jen Yang MD ¹ , Min-Tser Liao, MD ⁷ , Jen-Chun Wang MD ^{1,8,*}
7	
8	¹ Department of Emergency Medicine, Tri-Service General Hospital, National Defense
9	Medical Center, Taipei, Taiwan
10	² Department of Medical Research, Tri-Service General Hospital, National Defense
11	Medical Center
12	³ School of Public Health, National Defense Medical Center, Taipei, Taiwan
13	⁴ Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan
14	⁵ Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine,
15	Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
16	⁶ Graduate Institute of Injury Prevention and Control, College of Public Health and
17	Nutrition, Taipei Medical University, Taipei, Taiwan
18	⁷ Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
19	⁸ Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan

1	*Corresponding author:
2	Dr. Jen-Chun Wang
3	Department of Emergency Medicine,
4	Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
5	No. 325, Sec. 2, Cheng-Kung Road, Neihu Dist., Taipei City 11490, Taiwan
6	E-mail: royalflushwang@gmail.com
7	Tel.: + 886-2-87923311-16877;
8	Fax: + 886-2-87927034
9	
10	Word count:
11	Fax: + 886-2-87927034 Word count: 2602
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 3 of 40

ABSTRACT

1

BMJ Open

1	
2	
3 4	
4	
5	
6	
7	
8 9	
9 10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
20 21 22 23 24 25	
25 24	
24	
26	
27	
28	
29	
30	
31 32	
32	
33	
34	
35	
36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48 49	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

2	Objectives: Sjögren's syndrome (SS) is a systemic autoimmune disorder. Several
3	molecular pathways and the activation of matrix metalloproteinases associated with
4	the pathogenesis of SS participate in the initiation and progression of aortic aneurysm
5	(AA) and aortic dissection (AD). In this study, we aimed to evaluate whether patients
6	with SS exhibit an increased risk of AA or AD.
7	Methods: We conducted a retrospective cohort study using a database extracted from
8	Taiwan's National Health Insurance Research Database (NHIRD). All medical
9	conditions for each case and control were categorized using the International
10	Classification of Diseases, 9 th Revision (ICD-9). Hazard ratios (HRs) and 95%
11	confidence intervals (CIs) for associations between SS and AA/AD were estimated
12	using Cox regression and adjusted for co-morbidities.
13	Results: Our analyses included 10,941 SS cases and 43,764 propensity score-matched
14	controls. Compared with the controls, the patients with SS exhibited a significantly
15	increased risk of developing an AA or AD (adjusted HR = 3.642 , P < 0.001).
16	Subgroup analysis revealed that compared with patients without SS, patients with
17	primary and secondary SS both exhibited a significantly increased risk of developing
18	AA or AD (adjusted HR = 1.753, P = 0.042; adjusted HR = 3.693, P < 0.001).
19	Conclusion: Patients with SS exhibit increased risks of developing AA or AD, and

- 1 healthcare professionals should be aware of this risk when treating patients with SS.
- 2 Increased aortic surveillance may be required for patients with SS syndrome.

- 4 Keywords: Sjögren's syndrome, aortic dissection, aortic aneurysm

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

to peet texies only

1		
2		
3		
4	1	STRENGTHS AND LIMITATIONS OF THIS STUDY
5		
6	2	The strength of our study is its nonulation based schort design with a large
7	Z	• The strength of our study is its population-based cohort design with a large
8		
9	3	sample size.
10	5	sumple size.
11		
12	4	• The patients and controls were selected by 1:4 matching according to the
13	•	
14		
15	5	following baseline variables: age; sex; co-morbidities; and medications used.
16		
17		
18	6	This population-based cohort study was adjusted for potential risk factors to
19		
20	_	
21	7	minimize study bias.
22		
23	0	This was a retragnestive schort study
24	8	• This was a retrospective cohort study.
25		
26	9	• NHIRD cannot provide detailed information regarding the laboratory results
27	5	• TTITLE cannot provide detailed information regarding the laboratory results
28		
29	10	or lifestyle factors of the patients.
30	-	
31		
32	11	• Our results are limited to human data. Both mechanistic and animal studies are
33		
34		
35	12	required for further clarification.
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		5

INTRODUCTION

2	Sjögren's syndrome (SS) is a systemic autoimmune disorder commonly
3	presenting with dry eyes and mouth. The prevalence of SS is between 0.1% and 4.8%
4	in various populations when strictly defined according to the American-European
5	Consensus Criteria, and it is one of the most common autoimmune diseases.[1] SS
6	may affect patients at any age, but more cases occur in the fourth decade of life, and
7	there is a female predominance. The female-male ratio is approximately 9:1.[2] Aortic
8	aneurysms (AAs) are often diagnosed inadvertently and are a common cause of
9	sudden death. Enlarged aneurysms can result in rupture. Aortic dissection (AD) is one
10	of the deadliest complications of thoracic aortic disease. Estimates of the incidence of
11	AD range from 6 cases per 100,000 to 16.3 per 100,000 in England and Sweden,
12	respectively.[3,4] Regarding the Asian population, the average annual incidence of
13	AD is 5.6 per 100,000 persons in Taiwan and the prevalence is 19.9 per 100,000
14	persons, with a predominance noted among men 50 to 54 years of age (27.3 per
15	100,000 persons per year).[5]
16	Previous studies have demonstrated that AA is more prevalent in patients with
17	rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) compared with the
18	general population.[6,7] Compared with age- and sex-matched healthy controls,
19	primary SS (PSS) patients exhibited a 2-fold increased prevalence of hypertension
	6

Page 7 of 40

BMJ Open

1		
2		
3	1	and hypertriglyceridemia. Furthermore, hypertension is underdiagnosed and
4 5	1	and hypertribiyeendema. I arthermore, hypertension is underdiagnosed and
5 6		
7	2	suboptimally treated in PSS.[8] SS with positive autoantibodies is associated with a
8		
9		
10	3	low ankle-brachial index, which may indicate an increased risk of early
11		
12	Λ	othereselencies [0] Negetheless, previous negulation based studies indicated that SS is
13	4	atherosclerosis.[9] Nonetheless, previous population-based studies indicated that SS is
14		
15	5	not associated with an increased risk of subsequent acute myocardial infarction (AMI)
16		
17		
18	6	and ischaemic stroke.[10,11]
19		
20	_	
21	7	Several molecular mechanisms, including JNK, NF- κ B and TGF- β signalling
22		
23	8	pathways, and matrix metalloproteinase (MMP) activation are associated with the
24	0	pathways, and matrix metanoproteinase (whith) activation are associated with the
25		
26	9	pathogenesis of SS.[12,13] These molecular mechanisms also actively participate in
27		
28		
29	10	the initiation and progression of AA or AD.[14,15] Based on these findings, we
30		
31		
32	11	hypothesized that patients with SS may have an increased risk of AA or AD due to
33		
34 25	12	SS-related cardiovascular risks and shared molecular mechanisms. However, the
35	12	
36 37		
38	13	association between SS and AA or AD has not been thoroughly evaluated in
39		
40		
41	14	large-scale studies. Therefore, we aimed to determine whether SS patients exhibited
42		
43	15	an increased risk of AA or AD using a nationwide healthcare insurance claim
44	10	
45		
46	16	database.
47		
48		
49	17	METHODS
50		
51	4.0	
52	18	Data source
53		
54		
55		
56		
57 59		7
58 50		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
017		

1	The data described herein were acquired from the Longitudinal Health Insurance
2	Database 2005 (LHID 2005), a subgroup database of the Taiwan National Health
3	Insurance Research Database (NHIRD) used for the nationwide population-based
4	retrospective cohort study. The National Health Insurance programme in Taiwan
5	provides health care for 99% of the population (greater than 23 million people) and
6	was implemented in 1995. The LHID 2005 provides information on medical service
7	utilization using a randomly selected sample of approximately one million people
8	receiving benefits, representing approximately 5% of Taiwan's population in 2005.
9	The information was obtained from the NHIRD between 2000 and 2010. The
10	accuracy of the diagnoses in the NHIRD, particularly the diagnoses of major diseases
11	(e.g., acute coronary syndrome and stroke), has been corroborated.[16,17] The LHID
12	is composed of "de-identified" secondary data that are available to the public via open
13	access for research. ICD-9-CM (International Classification of Diseases, 9th Revision,
14	Clinical Modification) diagnostic and procedure codes (up to five each), sex,
15	birthdays, patient identification numbers, dates of admission and discharge, and
16	outcomes are coded. In addition, information regarding the medical institutions that
17	served patients was obtained. Individual information was protected using encoded
18	personal identification to prevent ethical violations related to the data. Our study
19	conformed to the Declaration of Helsinki and relevant guidelines. This Institutional
	8

1 2		
3 4	1	Review Board of the Tri-Service General Hospital, National Defense Medical Center,
5 6 7	2	Taipei, Taiwan, permitted this study (TSGH IRB No.2-105-05-082).
8 9 10	3	Patient and public involvement
11		
12 13 14	4	This is a database study using NHIRD. No patients or public were involved in setting
15 16	5	out the research question or developing the outcome measures. No patients or public
17 18 19	6	involved in developing plans for design or implementation of the study. No patients of
20 21	7	public were asked to advise on interpretation or writing up of results. No patients or
22 23 24	8	public were the burden of the interventions on patients assessed. The results of the
25 26 27	9	research were not disseminated to those study patients.
28 29 30	10	Sampled patients
31 32 33	11	We utilized study and comparison cohorts. Using the LHID 2005, we selected
34 35 36	12	adult patients aged > 20 years who were newly diagnosed with SS (recorded from
37 38 39	13	both the LHID 2005 and the Registry of Catastrophic Illness Patient Database) after
40 41	14	2000 and who were followed-up between 2000 and 2010. We excluded patients who
42 43 44	15	were diagnosed with SS before 2000 and AA or AD, Turner syndrome, aortic
45 46 47	16	coarctation, bicuspid aortic valve, Marfan syndrome, or Ehler-Danlos syndrome.
48 49 50	17	Patients had a tracking time < 6 months. The date of SS diagnosis was used as the
51 52 53	18	index date. Control candidate sampling comparisons were selected from individuals in
54 55	19	the LHID 2005 who lacked a history of SS. The patient and control cohorts were
56 57 58 59		

1	selected by 1:4 matching according to the following baseline variables: age; sex;
2	co-morbidities, including hypertension, diabetes mellitus (DM), hyperlipidaemia,
3	Behcet's disease, giant cell arteritis, RA and other inflammatory polyarthropathies,
4	relapsing polychondritis, Takayasu's arteritis, and chronic obstructive pulmonary
5	disease (COPD); and medication history, including β -blockers, calcium channel
6	blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers,
7	diuretics, and steroid history. We used COPD as a proxy variable for tobacco use to
8	eliminate its potential confounding effect as previously described.[18] The SS patient
9	and control cohorts were matched 1:4 based on their propensity score matching, for
10	which the matching tolerance was 0.15 with the nearest neighbour method. The
11	independent variables were demographics, co-morbidities, medications, and SS. The
12	propensity matching analysis was performed in the logistic regression model. We also
13	divided SS patients into PSS and secondary SS (SSS) patients and performed a
14	subgroup analysis. SS previously diagnosed as SLE, RA, systemic sclerosis, or
15	primary biliary cirrhosis were defined as SSS. We integrated the ICD-9-CM codes of
16	the above diseases into a table in the supplementary materials (Supplement Table 1).
17	The index dates for control patients were the same as the corresponding dates for
18	patients with AA/AD. The study outcome was a diagnosis of AA/AD during the
19	10-year follow-up period. AA/AD was identified using ICD-9 codes. The end point of
	10

1	the follow-up period was 2010-12-31 or the time at which AA/AD events occurred or
2	the patient died or was lost to follow-up. We integrated the median follow-up time and
3	follow-up year with AA/AD events in the supplementary materials (Supplement
4	Tables 2 and 3).
5	Statistical analysis
6	Categorical variables, which are presented as percentages, were compared using
7	the chi-square or Fisher's exact tests. Continuous variables, which are presented as the
8	means and standard deviations, were compared using a t-test. The primary goal of the
9	study was to determine whether SS patients exhibit an increased risk for developing
10	AA/AD. The associations between those outcomes (prognoses) and clinical
11	characteristics were investigated using Cox regression. The results are presented as
12	adjusted hazard ratios (HRs) with corresponding 95% confidence intervals (CIs).
13	Kaplan-Meier curves with the log-rank test were used to compare patients with and
14	without SS in terms of the cumulative risk of AA or AD. The threshold for statistical
15	significance was P < 0.05. All data analyses were conducted using SPSS software
16	version 22 (SPSS Inc., Chicago, IL, USA).
17	RESULTS
18	A flow diagram of our patient enrolment scheme is presented in Figure 1. A total
19	of 10,941 patients diagnosed with SS were identified in the NHIRD, which contains a
	11

1	total of 986,713 individuals. An additional 43,764 age-, sex-, comorbidity-, and
2	medication-matched patients were designated controls. As shown in Table 1, no
3	significant differences in sex, age, co-morbidities, including DM, hypertension,
4	hyperlipidaemia, Behcet's disease, giant cell arteritis, RA, relapsing polychondritis,
5	Takayasu's arteritis, and COPD, or medications were noted between the two groups
6	after matching. Patients with SS exhibited a significantly increased cumulative risk of
7	developing AA/AD in subsequent years compared with patients without SS (log- rank
8	test < 0.001, Figure 2). Table 2 presents the incidences of AA or AD during the
9	ten-year follow-up period. At the end of the follow-up period, SS patients exhibited
10	significantly increased incidences of AA or AD (0.43% vs. 0.37%, $P = 0.045$) but
11	lower incidences of DM (7.73% vs. 15.44%, P < 0.001) and COPD (5.96% vs. 6.72%,
12	P = 0.004). In addition, patients with SS were younger and exhibited higher Charlson
13	comorbidity index (CCI) than patients without SS. The incidence for AA or AD was
14	higher in males and older patients regardless of whether patients had SS or not
15	(Supplement Figures 1 and 2). Regarding the use of Cox regression independent of
16	the effects of sex, age, co-morbidities, and medication, compared with patients
17	without SS, patients with SS also exhibited a significantly increased risk of
18	developing AA or AD (adjusted HR = 3.642 , 95% CI = $2.527-5.250$, P < 0.001 , Table
19	3). The subgroup analysis revealed that patients with PSS or SSS both exhibited
	12
	For peer review only - http://bmiopen.hmi.com/site/about/quidelines.yhtml

BMJ Open

2	
3	
4	
5	
6	
7	
, 8	
9	
10	
11	
12	
13	
14	
15	
13 14 15 16	
17	
18	
19	
20	
20 21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
47 48	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
00	

1	significantly increased risks for developing AA/AD compared with patients without
2	SS (adjusted HR = 1.753 , 95% CI = $1.108-9.382$, P = 0.042 ; adjusted HR = 3.693 ,
3	95% CI = 2.520-5.411, P < 0.001, Table 4). We also integrated the first event of
4	AA/AD coding into the distribution analysis in the supplemental material
5	(Supplement Table 4). All patients were coded with AA/AD for the first time in the
~	

6 Inpatient and ER sections.

7 Table 1 Characteristics of the study participants at baseline

Sjögren's syndrome	Total	With	Without	P-value
	N (%)	N (%)	N (%)	r-value
Total	54,705	10,941 (20.00%)	43,764 (80.00%)	
Sex				0.999
Male	10,187 (18.63%)	2,011 (18.44%)	8,176 (18.68%)	
Female	44,485 (81.37%)	8,897 (81.56%)	35,588 (81.32%)	
Age (years)	55.78 ± 17.09	55.80 ± 16.65	55.77 ± 17.20	0.897
DM	3,553 (6.49%)	724 (6.62%)	2,829 (6.46%)	0.558
Hypertension	8,091 (14.79%)	1,578 (14.42%)	6,513 (14.88%)	0.228
Hyperlipidaemia	1,145 (2.09%)	234 (2.14%)	911 (2.08%)	0.709
Behcet's disease	321 (0.59%)	62 (0.57%)	259 (0.59%)	0.834
Giant cell arteritis	15 (0.03%)	3 (0.03%)	12 (0.03%)	0.999
Rheumatoid arthritis	8,907 (16.28%)	1,784 (16.31%)	7,123 (16.28%)	0.942
Relapsing polychondritis	71 (0.13%)	14 (0.13%)	57 (0.13%)	0.953
Takayasu's arteritis	15 (0.03%)	3 (0.03%)	12 (0.03%)	0.999
COPD	2,931 (5.36%)	581 (5.3%)	2,350 (5.37%)	0.831
Steroid	16,799 (30.71%)	3,345 (30.57%)	13,454 (30.74%)	0.737
β blocker	12,588 (23.01%)	2,513 (22.97%)	10,075 (23.02%)	0.919
ССВ	11,553 (21.12%)	2,342 (21.41%)	9,211 (21.05%)	0.409
ACEI	13,586 (24.84%)	2,711 (24.78%)	10,875 (24.85%)	0.878
ARB	12,718 (23.25%)	2,620 (23.95%)	10,098 (23.07%)	0.054
Diuretic	12,440 (22.74%)	2,429 (22.20%)	10,011 (22.87%)	0.136
Statin	13,922 (25.45%)	2,811 (25.69%)	11,111 (25.39%)	0.516

P-value (categorical variable: Chi-square/Fisher's exact test; continuous variable: t-test)

DM = diabetes mellitus; COPD = chronic obstructive pulmonary disease; CCB = calcium channel blocker; ACEI = angiotensin-converting enzyme inhibitor; ARB = angiotensin receptor blocker

1 Table 2 Incidences of aortic aneurysm and dissection and other characteristics during

2 the ten-year follow-up period

Sjögren's syndrome	Total	With	Without	P-value
	N (%)	N (%)	N (%)	r-value
Total	54,705	10,941 (20.00%)	43,764 (80.00%)	
Aortic aneurysm				
and dissection	207 (0.38%)	47 (0.43%)	160 (0.37%)	0.045
Sex				0.999
Male	10,187 (18.63%)	2,011 (18.44%)	8,176 (18.68%)	
Female	44,485 (81.37%)	8,897 (81.56%)	35,588 (81.32%)	
Age (years)	61.36 ± 5.41	60.90 ± 4.98	61.47 ± 5.51	< 0.001
DM	7,603 (13.90%)	846 (7.73%)	6,757 (15.44%)	< 0.001
Hypertension	8,821 (16.12%)	1,708 (15.61%)	7,113 (16.25%)	0.102
Hyperlipidaemia	1,128 (2.06%)	240 (2.19%)	888 (2.03%)	0.279
Behcet's disease	324 (0.59%)	63 (0.58%)	261 (0.60%)	0.802
Giant cell arteritis	16 (0.03%)	3 (0.03%)	13 (0.03%)	0.901
Rheumatoid arthritis	9,033 (16.51%)	1,774 (16.21%)	7,259 (16.59%)	0.348
Relapsing				
polychondritis	80 (0.15%)	19 (0.17%)	61 (0.14%)	0.401
Takayasu's arteritis	15 (0.03%)	3 (0.03%)	12 (0.03%)	0.999
COPD	3,593 (6.57%)	652 (5.96%)	2,941 (6.72%)	0.004
CCI_R	0.78 ± 1.53	0.83 ± 1.39	0.77 ± 1.56	< 0.001
Steroid	17,112 (31.28%)	3,511 (32.09%)	13,601 (31.08%)	0.041
β blockers	13,750 (25.13%)	2,674 (24.44%)	11,076 (25.31%)	0.061
ССВ	11,833 (21.63%)	2,397 (21.91%)	9,436 (21.56%)	0.430
ACEI	13,793 (25.21%)	2,784 (25.45%)	11,009 (25.16%)	0.532
ARB	12,976 (23.72%)	2,681 (24.50%)	10,295 (23.52%)	0.031
Diuretic	12,692 (23.20%)	2,507 (22.91%)	10,185 (23.27%)	0.427
Statin	14,123 (25.82%)	2,828 (25.85%)	11,295 (25.81%)	0.934

P-value (categorical variable: Chi-square/Fisher's exact test; continuous variable: t-test)

CCI_R = Charlson comorbidity index removed DM, COPD; DM = diabetes mellitus; COPD = chronic obstructive pulmonary

disease; CCB = calcium channel blocker; ACEI = angiotensin-converting enzyme inhibitor; ARB = angiotensin receptor blocker

1 Table 3 Factors associated with aortic aneurysm and dissection according to Cox

2 regression

Variables	Crude HR	95% CI	P-value	Adjusted HR	95% CI	P-value
Sjögren's syndrome	3.205	2.254-3.565	< 0.001	3.642	2.527-5.250	< 0.001
Sex (male)	2.645	1.974-3.597	< 0.001	2.035	1.534-2.700	< 0.001
Age (years)	1.049	1.032-1.057	< 0.001	1.043	1.032-1.055	< 0.001
DM	1.704	1.389-1.944	0.024	1.674	1.065-1.976	0.037
Hypertension	1.165	1.022-1.454	0.038	1.305	0.973-1.751	0.075
Hyperlipidaemia	1.211	0.594-2.436	0.618	1.343	0.656-2.751	0.420
Rheumatoid arthritis	1.645	0.774-3.496	0.196	0.801	0.362 -1.769	0.583
COPD	1.838	1.256-2.691	0.002	1.170	0.790-1.735	0.433
CCI_R	1.036	0.945-1.087	0.074	1.016	0.968-1.065	0.527
Steroid	1.497	0.598-2.976	0.495	1.501	0.339-3.298	0.617
β blockers	1.468	0.453-2.772	0.862	1.398	0.401-2.895	0.803
ССВ	1.345	0.343-2.901	0.372	1.402	0.452-2.806	0.280
ACEI	1.298	0.426-3.041	0.601	1.288	0.395-2.845	0.334
ARB	1.346	0.379-1.986	0.711	1.345	0.343-1.886	0.682
Diuretic	1.198	0.598-2.511	0.652	1.201	0.490-2.907	0.703
Statin	1.364	0.667-4.972	0.798	1.335	0.679-4.787	0.897

HR= hazard ratio; CI = confidence interval; Adjusted HR: adjusted variables listed in the table;

CCI_R = Charlson comorbidity index removed DM, COPD; DM = diabetes mellitus; COPD = chronic obstructive

pulmonary disease; CCB = calcium channel blocker; ACEI = angiotensin-converting enzyme inhibitor; ARB =

angiotensin receptor blocker

Table 4 Factors associated with aortic aneurysm and dissection stratified by primary/secondary Sjögren's syndrome using Cox regression

	Patients	with Sjögren'	s syndrome	Patients	without Sjögre	en's syndrome	Ratio	Adjusted HR*	95% CI	P-value
							_			
	Events	PY	Incidence rate	Events	РҮ	Incidence rate	-			
			(per 10 ⁵ PY)			(per 10 ⁵ PY)				
				6						
Total	47	55,860.08	84.14	160	253,779.88	63.05	1.335	3.642	2.527-5.250	< 0.001
Without RA/SLE/SS/PBC	30	36,607.55	81.95	158	248,694.36	63.53	1.290	1.753	1.108-9.382	0.042
With RA/SLE/SS/PBC	17	19,252.53	88.30	2	5,085.52	39.33	2.245	3.693	2.520-5.411	< 0.001

PYs = person-years; Ratio = incidence of patients with AA/AD divided by the incidence of patients without AA/AD; *Adjusted HR = adjusted hazard ratio: adjusted for age, sex, co-morbidities, and medications,

as listed in Table 3, using Cox regression; CI = confidence interval; RA = rheumatoid arthritis ; SLE = systemic lupus erythematosus ; SS = systemic sclerosis ; PBC = primary biliary cirrhosis

Primary Sjögren's syndrome: Sjögren's syndrome without systemic lupus erythematosus, rheumatoid arthritis, systemic sclerosis, or primary biliary cirrhosis; Secondary Sjögren's syndrome: Sjögren's syndrome

with systemic lupus erythematosus, rheumatoid arthritis, systemic sclerosis, or primary biliary cirrhosis

1	
2	
3	
4	
5	
6 7	
7	
8	
9	
10	
11	
12	
17	
15	
13 14 15 16 17	
17	
18	
18 19	
20	
21	
22	
23	
24 25	
25	
26	
27	
28 29	
29 30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42 43	
45 44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59 60	
00	

DISCUSSION 1

2	This is a retrospective cohort study including 10,941 patients with SS and
3	43,764 patients without SS matched by age, sex, year of index date of the SS
4	diagnosis, co-morbidities, and medication use from a large-scale nationwide
5	population-based database. During follow-up, SS was associated with an increased
6	incidence of the development of AA/AD compared with the comparison cohort.
7	Our research findings should remind healthcare providers of new
8	information that SS patients exhibit an increased risk for AA or AD. Healthcare
9	professionals should be aware of these life-threatening aortic events and aim to make
10	early diagnosis of AA or AD. When SS patients present with chest, back, or
11	abdominal symptoms, the possibility of AA or AD should be considered, with a
12	specific and rapid examination.
13	SS patients exhibit an increased prevalence of developing traditional
14	cardiovascular risk factors, such as hypertension and dyslipidaemia, which predispose
15	patients to endothelial dysfunction and premature atherosclerosis. However, the
16	disease-specific mechanisms associated with premature atherosclerosis in SS are not
17	fully understood.[19] In a recent review article, cardiovascular disease was reported to
18	be one of the primary causes of mortality in SS patients.[20] PSS shares clinical and
19	serological features with RA and SLE, and these two diseases are associated with
	17

2 3	
3 4	
5	
6 7	
8	
9 10	
11	
12 12	
13 14	
15	
16	
18	
19 20	
21	
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 29 30 32 33 34 35 36 37 38 37 38 30 31 32 33 <tbr> 34 35 36 37 </tbr> 38 37 38 37 38 37 38 37	
24	
25 26	
27	
28 29	
30	
31 32	
33	
34 25	
35 36	
37	
30 39	
40 41	
41	
43 44	
44 45	
46 47	
47 48	
49 50	
50 51	
52	
53 54	
55	
56 57	
58	
59 60	

1	acceleration of atherosclerosis.[21] However, the pathophysiology between SS and
2	AA or AD remains unclear, although several possible mechanisms have been
3	proposed. Previous studies have demonstrated that both SS and AA/AD are induced
4	by chronic inflammation.[22-25] Recent studies have provided convincing evidence
5	indicating that several signalling pathways are involved in both AA and SS, including
6	the MAPK, TGF-β, and MMP signalling pathways.[12-15] Activation of the innate
7	immune system and the production of interferons (IFNs) could be the first stages of
8	PSS pathogenesis.[26] IFNs and IL-21 could induce B-cell-activating factor (BAFF)
9	and further activate B cell activity. In human salivary gland cells, interferon- γ
10	modulates and increases MMP-2 and MMP-9 expression.[27] The circulating levels
11	of MMP-9 were increased in patients with definite SS compared with patients with
12	possible SS.[28] Furthermore, MMP-2 and MMP-9 also display a critical role in AAA
13	formation.[29] MMPs play roles in tissue destruction and the weakening of the matrix,
14	as noted in liver cirrhosis, fibrotic lung disease, otosclerosis, atherosclerosis, and
15	multiple sclerosis.[30] Several molecules that are activated in the salivary glands,
16	including JNK, NF- κ B, and TGF- β , also lead to inflammation and reactive oxygen
17	species (ROS) production in the aortic matrix. This process may be a possible
18	mechanistic pathway by which SS aggravates AA or AD.[12,13,22,31-34]
19	Low-dose steroids, such as prednisone, may be used to treat SS-induced
	18

Page 19 of 40

1	
1	
2	
3	
4	
3 4 5	
2	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21 22 23 24 25	
22	
23	
24	
25	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
25	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1	joint and muscle pain. Prolonged or high-dose corticosteroid treatment likely causes
2	disintegration of connective tissue of the media possibly together with primary aortic
3	wall involvement and/or vascular damage in patients with autoimmune disorders,
4	which can result in aortic aneurysmal enlargement and AD.[30,35] In this study, the
5	medical condition of steroids was matched. Therefore, the effect of steroids was
6	mitigated. The strength of our study involves its population-based database design.
7	We accounted for several aneurysm-related confounding factors. Although we
8	adjusted the results extensively using Cox regression models, our study had several
9	limitations and unmeasured confounders. The NHIRD registry is not able to provide
10	detailed information on laboratory results, family histories and health-related lifestyle
11	factors, such as alcohol consumption and tobacco use, which can increase the risk of
12	AA/AD and were potential confounding factors in this study. In our study, we also
13	considered COPD incidence as a proxy variable for tobacco use to eliminate its
14	potential confounding effect.[18] The limitation is that not all smokers develop
15	disease. Although our study identified the association between SS and AA/AD, the
16	cohort study design did not enable determination of the cause-effect relationship.
17	Further prospective follow-up studies, mechanistic studies and animal experiments
18	should be performed.
19	CONCLUSION

	BMJ Open
1	Patients with SS exhibit an increased risk for developing AA or AD, and
2	healthcare professionals should be aware of this risk when treating patients with SS.
3	Increased aortic surveillance may be required in patients with SS.
4	ACKNOWLEDGEMENTS
5	This study was supported by grants from Tri-Service General Hospital, National
6	Defense Medical Center, Taipei, Taiwan (TSGH-C105-058), Tri-Service General
7	Hospital, National Defense Medical, Taipei, Taiwan (TSGH-C105-173), Taoyuan
8	Armed Forces General Hospital, Taoyuan, Taiwan (10514), and the Ministry of
9	Science and Technology (MOST 106-2314-B-016 -008 -MY3).
10	FUNDING
11	This study was supported by grants from Tri-Service General Hospital, National
12	Defense Medical Center, Taipei, Taiwan (TSGH-C105-058), Tri-Service General
13	Hospital, National Defense Medical Center, Taipei, Taiwan (TSGH-C105-173),
14	Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan (10514), and the Ministry
15	of Science and Technology (MOST 106-2314-B-016 -008 -MY3).
16	COMPETING INTERESTS
17	None declared.
18	AUTHOR CONTRIBUTIONS
19	Y-DT, J-CW, and S-HT conceived and designed the study.
	20
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2		
3	4	
4	1	W-CC provided the materials for the study. C-HC and S-JC analysed the data.
5		
6	2	C-JY and M-TL contributed reagents, materials, and analysis tools. Y-DT, J-CW,
7	2	C-JT and WI-TE contributed reagents, materials, and analysis tools. T-DT, J-CW,
8		
9	3	W-IL, and S-HT wrote the manuscript. All the authors approved the manuscript.
10		
11		
12	4	DATA SHARING STATEMENT
13		
14	-	
15	5	No additional data sharing available.
16 17		
18	6	
19	0	
20		No additional data sharing available.
20		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42 43		
43 44		
44 45		
45 46		
40 47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
5	
6	
7	
, 8	
9	
10	
11	
12	
13	
14	
15	
16	
16 17	
18	
19	
20	
21	
22	
22	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
22	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
47 48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
58 59	
60	

REFERENCES

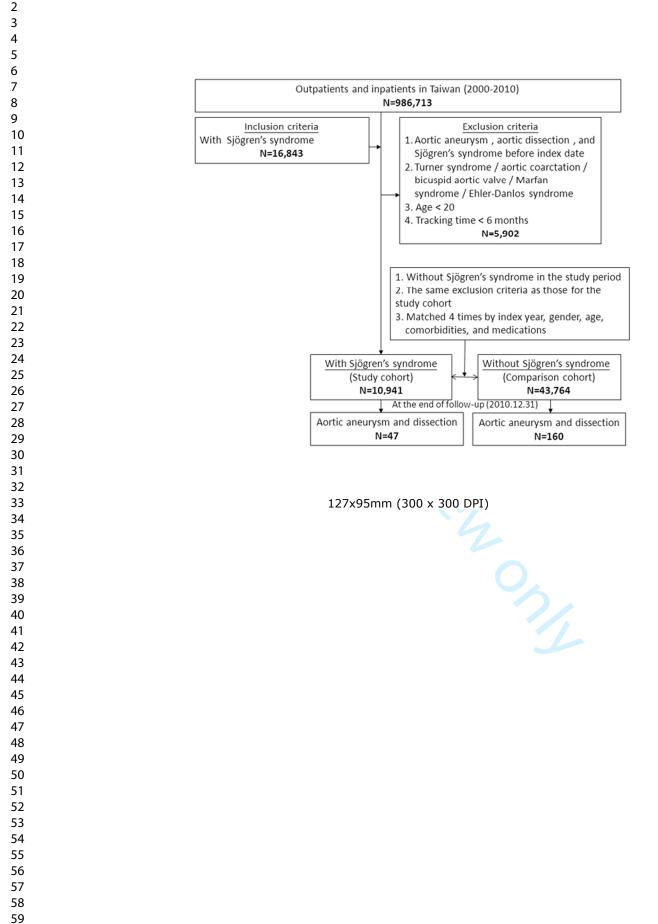
2	1.	Vitali C, Bombardieri S, Jonsson R, et al. Classification criteria for Sjögren's
3		syndrome: a revised version of the European criteria proposed by the
4		American-European Consensus Group. Ann Rheum Dis 2002;61:554-8.
5	2.	Mavragani CP, Moutsopoulos HM. The geoepidemiology of Sjögren's
6		syndrome. Autoimmun Rev 2010;9:A305-10.
7		doi:10.1016/j.autrev.2009.11.004.
8	3.	Howard DP, Banerjee A, Fairhead JF, et al. Population-based study of
9		incidence and outcome of acute aortic dissection and premorbid risk factor
10		control: 10-year results from the Oxford Vascular Study. Circulation
11		2013;127:2031-7. doi:10.1161/CIRCULATIONAHA.112.000483.
12	4.	Olsson C, Thelin S, Stahle E, et al. Thoracic aortic aneurysm and dissection:
13		increasing prevalence and improved outcomes reported in a nationwide
14		population-based study of more than 14,000 cases from 1987 to 2002.
15		Circulation 2006;114:2611-8. doi:10.1161/CIRCULATIONAHA.106.630400.
16	5.	Yeh TY, Chen CY, Huang JW, et al. Epidemiology and medication utilization
17		pattern of aortic dissection in Taiwan: a population-based study. Medicine
18		(Baltimore) 2015;94:e1522. doi:10.1097/MD.000000000001522.
19	6.	Shovman O, Tiosano S, Comaneshter D, et al. Aortic aneurysm associated
		22
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

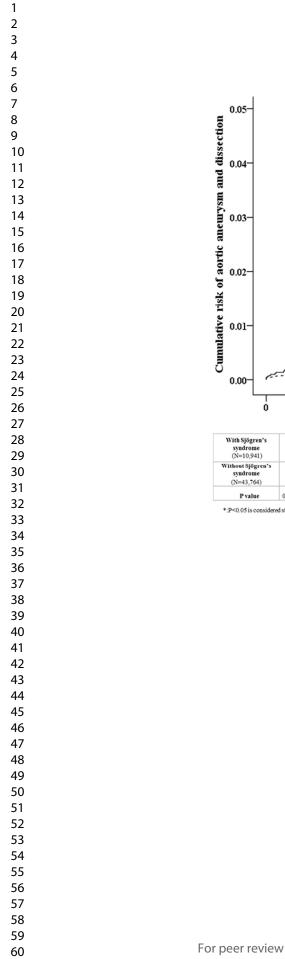
1			
2 3			
5 4	1		with rheumatoid arthritis: a population-based cross-sectional study. Clin
5			, in the second s
6			
7	2		Rheumatol 2016;35:2657-61. doi:10.1007/s10067-016-3372-0.
8			
9	3	7.	Guy A, Tiosano S, Comaneshter D, et al. Aortic aneurysm association with
10	5	1.	Ouy A, Hosano S, Comanesiner D, et al. Aortic aneurysin association with
11			
12	4		SLE - a case-control study. Lupus 2016;25:959-63.
13			
14			
15	5		doi:10.1177/0961203316628999.
16			
17	6	8.	Juarez M, Toms TE, de Pablo P, et al. Cardiovascular risk factors in women
18 19	0	0.	Judiez IVI, Tollis TE, de l'abio I, et al. Cardiovascular fisk factors in women
20			
21	7		with primary Sjögren's syndrome: United Kingdom primary Sjögren's
22			
23	-		
24	8		syndrome registry results. Arthritis Care Res (Hoboken) 2014;66:757-64.
25			
26	9	9.	Garcia AB, Dardin LP, Minali PA, et al. Asymptomatic atherosclerosis in
27	2).	Garcia A.D., Dardin Er, Winder I.A., et al. Asymptomatic aneroscierosis in
28			
29	10		primary Sjögren syndrome: correlation between low ankle brachial index and
30			
31			
32	11		autoantibodies positivity. J Clin Rheumatol 2016;22:295-8.
33 34			
35	12		doi:10.1097/rhu.0000000000000413.
36			
37			
38	13	10.	Chiang CH, Liu CJ, Chen PJ, et al. Primary Sjögren's syndrome and risk of
39			
40	14		ischemic stroke: a nationwide study. Clin Rheumatol 2014;33:931-7.
41	14		ischenne stroke. a nationwide study. Cun Kneumator 2014,55.951-7.
42			
43	15		doi:10.1007/s10067-014-2573-7.
44			
45			
46	16	11.	Chiang CH, Liu CJ, Chen PJ, et al. Primary Sjögren's syndrome and the risk of
47 48			
40	17		acute myocardial infarction: A nationwide study. Acta Cardiol Sin
50	17		
51			
52	18		2013;29:124-31.
53			
54	10	10	Sociima V. Nakamura II. Tamai M. at al. Activation of MIVIA (SEV.1) DIV
55	19	12.	Soejima K, Nakamura H, Tamai M, et al. Activation of MKK4 (SEK1), JNK,
56			
57			23
58			
59			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60			r or peer review only inter, / onljopen.onlj.com/site/about/guidelines.xittili

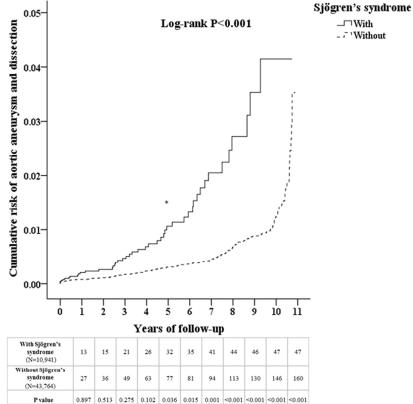
1		and c-Jun in labial salivary infiltrating T cells in patients with Sjögren's
2		syndrome. Rheumatol Int 2007;27:329-33. doi:10.1007/s00296-006-0229-x.
3	13.	Nakamura H, Kawakami A, Yamasaki S, et al. Expression of mitogen
4		activated protein kinases in labial salivary glands of patients with Sjögren's
5		syndrome. Ann Rheum Dis 1999;58:382-5.
6	14.	Ito S, Ozawa K, Zhao J, et al. Olmesartan inhibits cultured rat aortic smooth
7		muscle cell death induced by cyclic mechanical stretch through the inhibition
8		of the c-Jun N-terminal kinase and p38 signaling pathways. J Pharmacol Sci
9		2015;127:69-74. doi:10.1016/j.jphs.2014.11.002.
10	15.	Zhang Y, Naggar JC, Welzig CM, et al. Simvastatin inhibits angiotensin
11		II-induced abdominal aortic aneurysm formation in apolipoprotein E-knockout
12		mice: possible role of ERK. Arterioscler Thromb Vasc Biol 2009;29:1764-71.
13		doi:10.1161/ATVBAHA.109.192609.
14	16.	Cheng CL, Kao YH, Lin SJ, et al. Validation of the National Health Insurance
15		Research Database with ischemic stroke cases in Taiwan. <i>Pharmacoepidemiol</i>
16		Drug Saf 2011;20:236-42. doi:10.1002/pds.2087.
17	17.	Mao CT, Tsai ML, Wang CY, et al. Outcomes and characteristics of patients
18		undergoing percutaneous angioplasty followed by below-knee or above-knee
19		amputation for peripheral artery disease. PLoS One 2014;9:e111130.
		24
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1				
2				
3 4	1		doi:10.1371/journal.pone.0111130.	
5				
6 7	2	18.	Yu TM, Chuang YW, Yu MC, et al. Risk of cancer in patients with polycystic	:
8				
9	3		kidney disease: a propensity-score matched analysis of a nationwide,	
10	5			
11 12	4		normalistican have developed at the Lancest One of 201(-17-1410-25	
13	4		population-based cohort study. <i>Lancet Oncol</i> 2016;17:1419-25.	
14				
15	5		doi:10.1016/s1470-2045(16)30250-9.	
16 17				
18	6	19.	Valim V, Gerdts E, Jonsson R, et al. Atherosclerosis in Sjögren's syndrome:	
19				
20 21	7		evidence, possible mechanisms and knowledge gaps. Clin Exp Rheumatol	
22				
23	8		2016;34:133-42.	
24	0		2010,54.155-42.	
25 26	_	• •		
27	9	20.	Singh AG, Singh S, Matteson EL. Rate, risk factors and causes of mortality in	n
28				
29	10		patients with Sjögren's syndrome: a systematic review and meta-analysis of	
30 31				
32	11		cohort studies. Rheumatology (Oxford) 2016;55:450-60.	
33				
34	12		doi:10.1093/rheumatology/kev354.	
35 36	12		doi.10.1095/medinatorogy/kev551.	
37	10	21		
38	13	21.	Sezis Demirci M, Karabulut G, Gungor O, et al. Is there an increased arterial	
39 40				
40	14		stiffness in patients with primary Sjögren's syndrome? Intern Med	
42				
43	15		2016;55:455-9. doi:10.2169/internalmedicine.55.3472.	
44 45				
46	16	22.	Sawada H, Hao H, Naito Y, et al. Aortic iron overload with oxidative stress	
47				
48 49	17		and inflammation in human and murine abdominal aortic aneurysm.	
49 50	17		and inflammation in numan and mutine abdominal aortic arearysm.	
51				
52	18		Arterioscler Thromb Vasc Biol 2015;35:1507-14.	
53 54				
55	19		doi:10.1161/atvbaha.115.305586.	
56				
57				25
58 59				
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

2			
3			
4	1	23.	Vadacca M, Margiotta D, Sambataro D, et al. [BAFF/APRIL pathway in
5			
6			
7	2		Sjögren syndrome and systemic lupus erythematosus: relationship with
8			
9			
10	3		chronic inflammation and disease activity]. Reumatismo 2010;62:259-65.
11			
12	4	24.	Cifani N, Proietta M, Tritapepe L, et al. Stanford-A acute aortic dissection,
13			
14	_		
15	5		inflammation, and metalloproteinases: a review. Ann Med 2015;47:441-6.
16			
17	~		1 : 10 2100 07052000 2015 1072246
18	6		doi:10.3109/07853890.2015.1073346.
19			
20	7	25	Factor MI Inflationation in all demoined exercise an environment callular infiltrate
21	7	25.	Eagleton MJ. Inflammation in abdominal aortic aneurysms: cellular infiltrate
22			
23	0		and autoking profiles Versular 2012:20:278 82
24	8		and cytokine profiles. Vascular 2012;20:278-83.
25			
26	9		doi:10.1258/vasc.2011.201207.
27	9		u01.10.1230/vasc.2011.201207.
28			
29	10	26.	Nocturne G, Mariette X. Advances in understanding the pathogenesis of
30	10	20.	Noturne O, Martelle A. Advances in understanding the pathogenesis of
31			
32	11		primary Sjögren's syndrome. Nat Rev Rheumatol 2013;9:544-56.
33	11		printary 5jogren's syndrome. War Nev Internation 2015, 7:544-50.
34			
35	12		doi:10.1038/nrrheum.2013.110.
36			
37	13	27.	Wu AJ, Lafrenie RM, Park C, et al. Modulation of MMP-2 (gelatinase A) and
38			
39			
40	14		MMP-9 (gelatinase B) by interferon-gamma in a human salivary gland cell
41			
42			
43	15		line. J Cell Physiol 1997;171:117-24.
44			
45			
46	16		doi:10.1002/(sici)1097-4652(199705)171:2<117::aid-jcp1>3.0.co;2-r.
47			
48			
49	17	28.	Hulkkonen J, Pertovaara M, Antonen J, et al. Matrix metalloproteinase 9
50			
51			
52	18		(MMP-9) gene polymorphism and MMP-9 plasma levels in primary Sjögren's
53			
54	40		
55	19		syndrome. Rheumatology (Oxford) 2004;43:1476-9.
56			
57			
58			26
59			
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

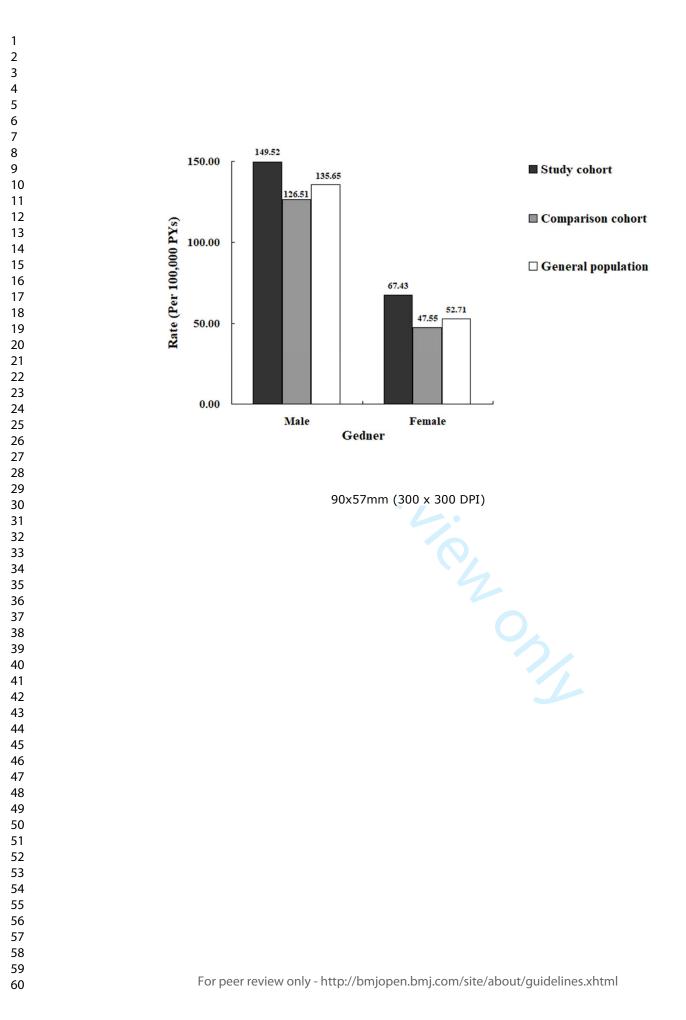

2			
3			
4	1		doi:10.1093/rheumatology/keh369.
5			
6			
7	2	29.	Dale MA, Suh MK, Zhao S, et al. Background differences in baseline and
8			
9			
10	3		stimulated MMP levels influence abdominal aortic aneurysm susceptibility.
11			
12			
13	4		Atherosclerosis 2015;243:621-9. doi:10.1016/j.atherosclerosis.2015.10.006.
14 15	-	20	Amelinei C. Cerente ID. Cierce SE, et al. Mateix metallementainesse
15	5	30.	Amalinei C, Caruntu ID, Giusca SE, et al. Matrix metalloproteinases
16			
17	c		involvement in pathologic conditions. Rom J Morphol Embryol
18	6		involvement in pathologic conditions. <i>Kom 5 Morphol Emoryol</i>
19			
20	7		2010;51:215-28.
21	/		2010,51.215-20.
22			
23	8	31.	Zoukhri D, Macari E, Choi SH, et al. c-Jun NH2-terminal kinase mediates
24	0	51.	Zoukini D, Macari E, Chor Sti, et al. e-sun 1412-terminar kinase mediates
25			
26	9		interleukin-1beta-induced inhibition of lacrimal gland secretion. J Neurochem
27	2		
28			
29	10		2006;96:126-35. doi:10.1111/j.1471-4159.2005.03529.x.
30			,,
31			
32	11	32.	Tsai SH, Huang PH, Peng YJ, et al. Zoledronate attenuates angiotensin
33			
34			
35	12		II-induced abdominal aortic aneurysm through inactivation of
36			
37			
38	13		Rho/ROCK-dependent JNK and NF-kappaB pathway. Cardiovasc Res
39			
40			
41	14		2013;100:501-10. doi:10.1093/cvr/cvt230.
42			
43	4 5	22	Hell DE Zhang C Service WD at al. Canditional communication of
44	15	33.	Hall BE, Zheng C, Swaim WD, et al. Conditional overexpression of
45			
46	16		TGF-beta1 disrupts mouse salivary gland development and function. Lab
47	10		TOF-beta i distupis mouse sanvary grand development and function. Lub
48			
48	17		Invest 2010;90:543-55. doi:10.1038/labinvest.2010.5.
	17		<i>Invest</i> 2010, 70.5+5-55. doi:10.1050/labinvest.2010.5.
50			
51	18	34.	Jones JA, Spinale FG, Ikonomidis JS. Transforming growth factor-beta
52 52	10	51.	concert, opinior i o, monomidio vo. munoromning growin nuclei ocu
53			
54	19		signaling in thoracic aortic aneurysm development: a paradox in pathogenesis.
55	-		
56			
57			27
58			
59			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60			is peer review only intep.//onljopen.onlj.com/site/about/guidennes.xittin


4 5	1		J Vasc Res 2009;46:119-37. doi:10.1159/000151766.
6 7	2	35.	Sholter DE, Armstrong PW. Adverse effects of corticosteroids on the
8			
9 10	3		cardiovascular system. Can J Cardiol 2000;16:505-11.
11			
12	4		
13 14			
15			
16 17			
18			
19			
20 21			
22			
23 24			
25			
26			
27 28			
29			
30 31			
32			
33 34			
35			
36			
37 38			
39			
40 41			
42			
43 44			
45			
46			
47 48			
49			
50 51			
52			
53 54			
55			
56 57			
57 58			
59			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60			respectively map, bijopen.onj.com/site/about/guidennes.kittili


2		
3		
4	1	FIGURE LEGENDS
5		
6	2	Figure 1 Detion tradaction flowshort
7	Z	Figure 1. Patient selection flowchart
8		
9	3	Figure 2. Kaplan-Meier curve of the cumulative risk of aortic aneurysm or dissection
10	5	1 igure 2. Ruptun Woler eurve of the cumulative fisk of dotte anearyshi of dissection
11		
12	4	due to Sjögren's syndrome
13		
14		
15	5	
16		
17		
18	6	TABLE LEGENDS
19		
20	-	
21	7	Table 1. Characteristics of the study participants at baseline
22		
23	0	Table 2. Incidences of cartie annurum and discontion and other characteristics during
24	8	Table 2. Incidences of aortic aneurysm and dissection and other characteristics during
25		
26	9	the ten-year follow-up period
27	5	
28		
29	10	Table 3. Factors associated with aortic aneurysm and dissection according to Cox
30	-	
31		
32	11	regression
33		
34		
35	12	Table 4. Factors associated with aortic aneurysm or dissection stratified by
36		
37	40	
38	13	primary/secondary SS using Cox regression
39		
40	14	
41	14	
42		
43	15	SUPPLEMENTARY MATERIAL
44	10	
45		
46	16	Supplement Table 1 ICD-9-CM coding of diseases in the manuscript
47		
48		
49	17	Supplement Table 2 Years of follow-up
50		
51	4.0	
52	18	Supplement Table 3 Years to AA /AD
53		
54	19	Supplement Table 4 First event of the (AA/AD) coding distribution
55	19	Supprement radie 4 mist event of the (AA/AD) county distribution
56		
57		29
58		
59		

- 1 Supplement Figure 1. Sex-specific incidence of AA or AD in the study cohort, control
- 2 cohort, and general population.
- 3 Supplement Figure 2. Age-specific incidence of AA or AD in the study cohort, control
- 4 cohort, and general population.

to beer terien only



*:P<0.05 is considered statistically significant

145x124mm (300 x 300 DPI)

Aortic aneurysm 441.0-441.9 Behcet's disease 136.1 Sjögren's syndrome 710.2 Giant cell arteritis 446.5 Turner syndrome 758.6 RA 714 Aortic coarctation 747.10 Relapsing polychondritis 733.99 Bicuspid aortic valve 746.4 Takayasu's arteritis 446.7 Marfan syndrome 759.82 COPD 490-496 Ehler-Danlos syndrome 756.83 SLE 710.0 Diabetes mellitus 250 Systemic sclerosis 701.1 Hypertipidaemia 272.0-272.4 Termary biliary cirrhosis 571.6 Hyperlipidaemia 272.0-272.4 RA = rheumatoid arthritis and other inflammatory polyarthropathies; COPD = chronic obstructive pulmonary disease; SLE systemic lupus erythematosus	Disease	ІСД-9-СМ	Disease	ICD-9-CM
and dissectionBehcet's disease136.1Sjögren's syndrome710.2Giant cell arteritis446.5Turner syndrome758.6RA714Aortic coarctation747.10Relapsing polychondritis733.99Bicuspid aortic valve746.4Takayasu's arteritis446.7Marfan syndrome759.82COPD490-496Ehler-Danlos syndrome756.83SLE710.0Diabetes mellitus250Systemic sclerosis701.1Hypertension401-405Primary biliary cirrhosis571.6	Aortic aneurysm			
Turner syndrome758.6RA714Aortic coarctation747.10Relapsing polychondritis733.99Bicuspid aortic valve746.4Takayasu's arteritis446.7Marfan syndrome759.82COPD490-496Ehler-Danlos syndrome756.83SLE710.0Diabetes mellitus250Systemic sclerosis701.1Hypertension401-405Primary biliary cirrhosis571.6Hyperlipidaemia272.0-272.45000000000000000000000000000000000000	nd dissection	441.0-441.9	Behcet's disease	136.1
Aortic coarctation747.10Relapsing polychondritis733.99Bicuspid aortic valve746.4Takayasu's arteritis446.7Marfan syndrome759.82COPD490-496Ehler-Danlos syndrome756.83SLE710.0Diabetes mellitus250Systemic sclerosis701.1Hypertension401-405Primary biliary cirrhosis571.6	sjögren's syndrome	710.2	Giant cell arteritis	446.5
Bicuspid aortic valve746.4Takayasu's arteritis446.7Marfan syndrome759.82COPD490-496Ehler-Danlos syndrome756.83SLE710.0Diabetes mellitus250Systemic sclerosis701.1Hypertension401-405Primary biliary cirrhosis571.6Hyperlipidaemia272.0-272.4272.0-272.4	furner syndrome	758.6	RA	714
Marfan syndrome759.82COPD490-496Ehler-Danlos syndrome756.83SLE710.0Diabetes mellitus250Systemic sclerosis701.1Hypertension401-405Primary biliary cirrhosis571.6Hyperlipidaemia272.0-272.4StatemarkStatemark	Aortic coarctation	747.10	Relapsing polychondritis	733.99
Ehler-Danlos syndrome756.83SLE710.0Diabetes mellitus250Systemic sclerosis701.1Hypertension401-405Primary biliary cirrhosis571.6Hyperlipidaemia272.0-272.4571.6	Bicuspid aortic valve	746.4	Takayasu's arteritis	446.7
Diabetes mellitus250Systemic sclerosis701.1Hypertension401-405Primary biliary cirrhosis571.6Hyperlipidaemia272.0-272.4	Marfan syndrome	759.82	COPD	490-496
Hypertension401-405Primary biliary cirrhosis571.6Hyperlipidaemia272.0-272.4	Ehler-Danlos syndrome	756.83	SLE	710.0
Hyperlipidaemia 272.0-272.4	Diabetes mellitus	250	Systemic sclerosis	701.1
	Iypertension	401-405	Primary biliary cirrhosis	571.6
RA = rheumatoid arthritis and other inflammatory polyarthropathies; COPD = chronic obstructive pulmonary disease; SLE systemic lupus erythematosus	Iyperlipidaemia	272.0-272.4		
	ystemic lupus erythematosı	15		
	ystemic lupus erythematosı	15		

Supplement Table 1 ICD-9-CM coding of diseases in the manuscript

Sjögren's syndrome	Min	Middle	Max	Mean ± SD
With	0.50	3.26	10.91	5.11 ± 7.52
Without	0.50	4.57	10.98	5.80 ± 5.53
Total	0.50	3.69	10.98	5.66 ± 5.99

с<u>с</u>. 11 + T-1.1. 2 V

 Total	0.50	3.69	10.98	5.6
	6			

With
Without
Total

Sjögren's syndrome –	Inpatient		Emergency Room	
	Ν	%	Ν	%
With	40	85.11	7	14.89
Without	141	88.12	19	11.88
Total	181	87.44	26	12.56

Supplement Table 4 First event of the (AA/AD) coding distribution

Without	141	88.12	19	1
 Total	181	87.44	26	1
For peer review o	nlv - http://bmig	open.bmj.com/site	/about/guideline	s.xhtm

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	3
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	3-4
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	6
Objectives	3	State specific objectives, including any prespecified hypotheses	7
Methods			
Study design	4	Present key elements of study design early in the paper	11
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	10-11
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	8
		(b) For matched studies, give matching criteria and number of exposed and unexposed	10
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	9-10
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	10
Bias	9	Describe any efforts to address potential sources of bias	19
Study size	10	Explain how the study size was arrived at	17
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	9-10
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	10
		(b) Describe any methods used to examine subgroups and interactions	11
		(c) Explain how missing data were addressed	11
		(d) If applicable, explain how loss to follow-up was addressed	11
		(e) Describe any sensitivity analyses	11

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	11
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	8-9
		(c) Consider use of a flow diagram	11
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	11
		(b) Indicate number of participants with missing data for each variable of interest	11
		(c) Summarise follow-up time (eg, average and total amount)	11
Outcome data	15*	Report numbers of outcome events or summary measures over time	12
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	12
		(b) Report category boundaries when continuous variables were categorized	11
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	12
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	12
Discussion			
Key results	18	Summarise key results with reference to study objectives	17
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	19
Generalisability	21	Discuss the generalisability (external validity) of the study results	19
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	20

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Risk of aortic aneurysm and dissection in patients with Sjögren's syndrome: a nationwide population-based cohort study in Taiwan

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-022326.R2
Article Type:	Research
Date Submitted by the Author:	18-Aug-2018
Complete List of Authors:	Tsai, Yi-Da; Tri-Service General Hospital, National Defensive Medical Center, Department of Emergency medicine Chien, Wu-Chien ; Tri-Service General Hospital, National Defense Medical Center, Department of Medical Research; National Defense Medical Center, School of Public Health Tsai, Shih-Hung ; Tri-Service General Hospital, National Defense Medical Center, Department of Emergency Medicine Chung, Chi-Hsiang; Tri-Service General Hospital, National Defense Medical Center, Department of Medical Research; National Defense Medical Center, School of Public Health Chu, Shi-Jye ; Tri-Service General Hospital, National Defense Medical Center, Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine Chen, Sy-Jou ; Tri-Service General Hospital, National Defense Medical Center, Department of Emergency Medicine Liao, Wen-I; Tri-Service General Hospital, National Defense Medical Center, Department of Emergency Medicine Liao, Wen-I; Tri-Service General Hospital, National Defense Medical Center, Emergency Medicine Yang, Chih-Jen; Tri-Service General Hospital, National Defense Medical Center, Emergency Medicine Liao, Min-Tser ; Taoyuan Armed Forces General Hospital, National Defensive Medical Center, Emergency Medicine Liao, Jen-Chun; Tri-Service General Hospital, National Defensive Medical Center, Mediatrics Wang, Jen-Chun; Tri-Service General Hospital, National Defensive Medical Center, department of Emergency Medicine, Emergency Department
Primary Subject Heading :	Rheumatology
Secondary Subject Heading:	Cardiovascular medicine
Keywords:	Sjögren's syndrome, aortic dissection, aortic aneurysm

SCHOLARONE[™] Manuscripts

BMJ Open

1	Increased risk of aortic aneurysm and dissection in patients with Sjögren's
2	syndrome: a nationwide population-based cohort study in Taiwan
3	
4	Yi-Da Tsai MD ¹ , Wu-Chien Chien PhD ^{2,3} , Shih-Hung Tsai MD, PhD ¹ , Chi-Hsiang
5	Chung PhD ^{2,3,4} , Shi-Jye Chu MD ⁵ , Sy-Jou Chen MD, MS ^{1,6} , Wen-I Liao MD ¹ ,
6	Chih-Jen Yang MD ¹ , Min-Tser Liao, MD ⁷ , Jen-Chun Wang MD ^{1,8,*}
7	
8	¹ Department of Emergency Medicine, Tri-Service General Hospital, National Defense
9	Medical Center, Taipei, Taiwan
10	² Department of Medical Research, Tri-Service General Hospital, National Defense
11	Medical Center
12	³ School of Public Health, National Defense Medical Center, Taipei, Taiwan
13	⁴ Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan
14	⁵ Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine,
15	Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
16	⁶ Graduate Institute of Injury Prevention and Control, College of Public Health and
17	Nutrition, Taipei Medical University, Taipei, Taiwan
18	⁷ Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
	⁸ Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	*Corresponding author:
2	Dr. Jen-Chun Wang
3	Department of Emergency Medicine,
4	Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
5	No. 325, Sec. 2, Cheng-Kung Road, Neihu Dist., Taipei City 11490, Taiwan
6	E-mail: royalflushwang@gmail.com
7	Tel.: + 886-2-87923311-16877;
8	Fax: + 886-2-87927034
9	
10	Word count:
11	2752
	Fax: + 886-2-87927034 Word count: 2752
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
2 3 4 5	1	ABSTRACT
6 7	2	Objectives : S
8 9 10	3	molecular patl
11 12 13	4	the pathogene
14 15 16	5	(AA) and aort
17 18 19	6	with SS exhib
20 21 22	7	Methods: We
23 24 25	8	Taiwan's Nati
26 27	9	conditions for
28 29 30	10	Classification
31 32 33	11	confidence int
34 35 36	12	using Cox reg
37 38 39	13	Results: Our a
40 41	14	controls. Com
42 43 44	15	increased risk
45 46 47	16	Subgroup ana
48 49 50	17	primary and se
51 52 53	18	AA or AD (ad
54 55 56	19	Conclusion: 1
57 58		
59 60		For pe

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	Objectives: Sjögren's syndrome (SS) is a systemic autoimmune disorder. Several
3	molecular pathways and the activation of matrix metalloproteinases associated with
4	the pathogenesis of SS participate in the initiation and progression of aortic aneurysm
5	(AA) and aortic dissection (AD). In this study, we aimed to evaluate whether patients
6	with SS exhibit an increased risk of AA or AD.
7	Methods: We conducted a retrospective cohort study using a database extracted from
8	Taiwan's National Health Insurance Research Database (NHIRD). All medical
9	conditions for each case and control were categorised using the International
10	Classification of Diseases, 9 th Revision (ICD-9). Hazard ratios (HRs) and 95%
11	confidence intervals (CIs) for associations between SS and AA/AD were estimated
12	using Cox regression and adjusted for co-morbidities.
13	Results: Our analyses included 10,941 SS cases and 43,764 propensity score-matched
14	controls. Compared with the controls, the patients with SS exhibited a significantly
15	increased risk of developing an AA or AD (adjusted HR = 3.642 , P < 0.001).
16	Subgroup analysis revealed that compared with patients without SS, patients with
17	primary and secondary SS both exhibited a significantly increased risk of developing
18	AA or AD (adjusted HR = 1.753, P = 0.042; adjusted HR = 3.693, P < 0.001).
19	Conclusion: Patients with SS exhibit increased risks of developing AA or AD, and

- 1 healthcare professionals should be aware of this risk when treating patients with SS.
- 2 Increased aortic surveillance may be required for patients with SS syndrome.

- 4 Keywords: Sjögren's syndrome, aortic dissection, aortic aneurysm

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

to beet eview only

BMJ Open

1		
2		
3		
4	1	STRENGTHS AND LIMITATIONS OF THIS STUDY
5		
6	2	The strength of sup study is its manufation have dealers that dealers with a large
7	2	• The strength of our study is its population-based cohort design with a large
8		
9	3	somple size
10	5	sample size.
11		
12	4	• The patients and controls were selected by 1:4 matching according to the
13	т	• The patients and controls were selected by 1.4 matching according to the
14		
15	5	following baseline variables: age; sex; co-morbidities; and medications used.
16	-	
17		
18	6	This population-based cohort study was adjusted for potential risk factors to
19		
20		
21	7	minimize study bias.
22		
23	0	
24	8	• This was a retrospective cohort study.
25		
26	9	• NHIRD cannot provide detailed information regarding the laboratory results
27	7	• WHICD calliot provide detailed information regarding the laboratory results
28		
29	10	or lifestyle factors of the patients.
30	-	
31		
32	11	• Our results are limited to human data. Both mechanistic and animal studies are
33		
34		
35	12	required for further clarification.
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		5

1	INTRODUCTION
1	INTRODUCTION

2	Sjögren's syndrome (SS) is a systemic autoimmune disorder commonly
3	presenting with dry eyes and mouth. The prevalence of SS is between 0.1% and 4.8%
4	in various populations when strictly defined according to the American-European
5	Consensus Criteria, and it is one of the most common autoimmune diseases.[1] SS
6	may affect patients at any age, but more cases occur in the fourth decade of life, and
7	there is a female predominance. The female-male ratio is approximately 9:1.[2] Aortic
8	aneurysms (AAs) are often diagnosed inadvertently and are a common cause of
9	sudden death. Enlarged aneurysms can result in rupture. Aortic dissection (AD) is one
10	of the deadliest complications of thoracic aortic disease. Estimates of the incidence of
11	AD range from 6 cases per 100,000 to 16.3 per 100,000 in England and Sweden,
12	respectively.[3,4] Regarding the Asian population, the average annual incidence of
13	AD is 5.6 per 100,000 persons in Taiwan and the prevalence is 19.9 per 100,000
14	persons, with a predominance noted among men 50 to 54 years of age (27.3 per
15	100,000 persons per year).[5]
16	Previous studies have demonstrated that AA is more prevalent in patients with
17	rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) compared with the
18	general population.[6,7] Compared with age- and sex-matched healthy controls,
19	primary SS (PSS) patients exhibited a 2-fold increased prevalence of hypertension
	6

Page 7 of 41

60

BMJ Open

1			
2			
3	1	and hymostric lycoridomic. Furthermore, hymostension is underdiceneed and	
4	1	and hypertriglyceridemia. Furthermore, hypertension is underdiagnosed and	
5			
6	2	suboptimally treated in PSS.[8] SS with positive autoantibodies is associated with a	
7	2	suboptimany induced in 155.[6] 55 with positive autoantioodies is associated with a	
8			
9	3	low ankle-brachial index, which may indicate an increased risk of early	
10			
11			
12	4	atherosclerosis.[9] Nonetheless, previous population-based studies indicated that SS	is
13			
14			
15	5	not associated with an increased risk of subsequent acute myocardial infarction (AM	I)
16			
17			
18	6	and ischaemic stroke.[10,11]	
19			
20	7	Several melecular mechanisms, including DW, NE (D and TCE 0 signalling	
21	7	Several molecular mechanisms, including JNK, NF- κ B and TGF- β signalling	
22			
23	8	pathways, and matrix metalloproteinase (MMP) activation are associated with the	
24	0	patiways, and matrix metanoproteinase (wivit) activation are associated with the	
25			
26	9	pathogenesis of SS.[12,13] These molecular mechanisms also actively participate in	
27			
28			
29	10	the initiation and progression of AA or AD.[14,15] Based on these findings, we	
30			
31			
32	11	hypothesized that patients with SS may have an increased risk of AA or AD due to	
33			
34			
35	12	SS-related cardiovascular risks and shared molecular mechanisms. However, the	
36			
37	12		
38	13	association between SS and AA or AD has not been thoroughly evaluated in	
39			
40	14	large-scale studies. Therefore, we aimed to determine whether SS patients exhibited	
41	14	large-scale studies. Therefore, we affiled to determine whether 55 patients exhibited	
42			
43	15	an increased risk of AA or AD using a nationwide healthcare insurance claim	
44			
45			
46	16	database.	
47			
48			
49	17	METHODS	
50			
51	10		
52	18	Data source	
53			
54			
55			
56			
57			7
58			/
59			

1	The data described herein were acquired from the Longitudinal Health Insurance
2	Database 2005 (LHID 2005), a subgroup database of the Taiwan National Health
3	Insurance Research Database (NHIRD) used for the nationwide population-based
4	retrospective cohort study. The National Health Insurance programme in Taiwan
5	provides health care for 99% of the population (greater than 23 million people) and
6	was implemented in 1995. The LHID 2005 provides information on medical service
7	utilization using a randomly selected sample of approximately one million people
8	receiving benefits, representing approximately 5% of Taiwan's population in 2005.
9	The information was obtained from the NHIRD between 2000 and 2010. The
10	accuracy of the diagnoses in the NHIRD, particularly the diagnoses of major diseases
11	(e.g., acute coronary syndrome and stroke), has been corroborated.[16,17] The LHID
12	is composed of "de-identified" secondary data that are available to the public via open
13	access for research. ICD-9-CM (International Classification of Diseases, 9th Revision,
14	Clinical Modification) diagnostic and procedure codes (up to five each), sex,
15	birthdays, patient identification numbers, dates of admission and discharge, and
16	outcomes are coded. In addition, information regarding the medical institutions that
17	served patients was obtained. Individual information was protected using encoded
18	personal identification to prevent ethical violations related to the data. Our study
19	conformed to the Declaration of Helsinki and relevant guidelines. This Institutional
	8

1		
2		
3 4	1	Review Board of the Tri-Service General Hospital, National Defense Medical Center,
5	-	
6		
7	2	Taipei, Taiwan, permitted this study (TSGH IRB No.2-105-05-082).
8		
9	2	Define and multiplinger out
10	3	Patient and public involvement
11		
12	4	This is a database study using NHIRD. No patients or public were involved in setting
13		
14	_	
15	5	out the research question or developing the outcome measures. No patients or public
16		
17 18	6	involved in developing plans for design or implementation of the study. No patients or
18	0	involved in developing plans for design of implementation of the study. No patients of
20		
21	7	public were asked to advise on interpretation or writing up of results. No patients or
22		
23	0	
24	8	public were the burden of the interventions on patients assessed. The results of the
25		
26	9	research were not disseminated to those study patients.
27	,	researen were not abseminated to those study patients.
28		
29	10	Sampled patients
30		
31	11	We utilized study and commention exhants Using the LUID 2005, we selected
32	11	We utilized study and comparison cohorts. Using the LHID 2005, we selected
33 34		
35	12	adult patients aged > 20 years who were newly diagnosed with SS (recorded from
36		
37		
38	13	both the LHID 2005 and the Registry of Catastrophic Illness Patient Database) after
39		
40	14	2000 and who were followed-up between 2000 and 2010. We excluded patients who
41	17	2000 and who were followed-up between 2000 and 2010. We excluded patients who
42		
43	15	were diagnosed with SS before 2000 and had AA or AD, Turner syndrome, aortic
44		
45	16	
46 47	16	coarctation, bicuspid aortic valve, Marfan syndrome, or Ehler-Danlos syndrome.
47		
49	17	Patients who had a tracking time < 6 months were also excluded in order to decrease
50	- /	
51		
52	18	the probability of including AA/AD cases that went undiagnosed before SS diagnosis.
53		
54	19	The date of SS diagnosis was used as the index date. Control candidate sampling
55	19	The date of 55 diagnosis was used as the index date. Control candidate sampling
56		
57		9
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
<u></u>		

1	comparisons were selected from individuals in the LHID 2005 who lacked a history
2	of SS. The patient and control cohorts were selected by 1:4 matching according to the
3	following baseline variables: age; sex; co-morbidities, including hypertension,
4	diabetes mellitus (DM), hyperlipidaemia, Behcet's disease, giant cell arteritis, RA and
5	other inflammatory polyarthropathies, relapsing polychondritis, Takayasu's arteritis,
6	and chronic obstructive pulmonary disease (COPD); and medication history, including
7	β -blockers, calcium channel blockers, angiotensin-converting enzyme inhibitors,
8	angiotensin receptor blockers, diuretics, and steroid history. We used COPD as a
9	proxy variable for tobacco use to eliminate its potential confounding effect as
10	previously described.[18] The SS patient and control cohorts were matched 1:4 based
11	on their propensity score matching, for which the matching tolerance was 0.15 with
12	the nearest neighbour method. The independent variables were demographics,
13	co-morbidities, medications, and SS. The dependent variables were AA and AD. We
14	also divided SS patients into PSS and secondary SS (SSS) patients and performed a
15	subgroup analysis. SS previously diagnosed as SLE, RA, systemic sclerosis, or
16	primary biliary cirrhosis were defined as SSS. We integrated the ICD-9-CM codes of
17	the above diseases into a table in the supplementary materials (Supplement Table 1).
18	The index dates for control patients were the same as the corresponding dates for
19	patients with AA/AD. The study outcome was a diagnosis of AA/AD during the
	10

2		
3		
4	1	10-year follow-up period. AA/AD was identified using ICD-9 codes. The end point of
5		
6	2	the follow-up period was 2010-12-31 or the time at which AA/AD events occurred or
7	2	the follow-up period was 2010-12-51 of the time at which AA/AD events occurred of
8		
9	3	the patient died or was lost to follow-up. We integrated the median follow-up time and
10	5	the patient died of was lost to follow-up. We integrated the inculan follow-up time and
11		
12	4	follow-up year with AA/AD events in the supplementary materials (Supplement
13		iono il up your (ioni il 2012) of once il one supprendentali (oupprendentali
14		
15	5	Tables 2 and 3).
16		
17		
18	6	Statistical analysis
19		·
20		
21	7	Propensity matching analysis was performed in the logistic regression model.
22		
23		
24	8	The potential confounders were index year, gender, age, comorbidities, and
25		
26	0	
27	9	medications. The match tolerance was 0.15 with the nearest neighbour method. The
28		
29	10	$atudu a amagningan a chart matching ratio a_{1} (atudu a amagningan = 1.4)$
30	10	study comparison cohort-matching ratio was 4-fold (study: comparison = 1:4).
31		
32	11	Categorical variables, which are presented as percentages, were compared using the
33	11	Categoriear variables, which are presented as percentages, were compared using the
34		
35	12	chi-square or Fisher's exact tests. Continuous variables, which are presented as the
36		
37	13	means and standard deviations, were compared using a t-test. The primary goal of the
38		
39		
40	14	study was to determine whether SS patients exhibit an increased risk for developing
41		
42		
43	15	AA/AD. The associations between those outcomes (prognoses) and clinical
44		
45	1.6	
46	16	characteristics were investigated using Cox regression. As shown in Supplement
47		
48	17	
49	17	Tables 4, all explanatory variables in the fully adjusted model were retained. The
50		
51	18	regults are presented as adjusted hererd ratios (UDs) with corresponding 05%
52	10	results are presented as adjusted hazard ratios (HRs) with corresponding 95%
53		
54	19	confidence intervals (CIs). Kaplan-Meier curves with the log-rank test were used to
55	17	contractive intervals (C15). Exeptan-tyteter curves with the tog-tank test were used to
56		
57		11
58		
59		

1	compare patients with and without SS in terms of the cumulative risk of AA or AD.
2	The threshold for statistical significance was $P < 0.05$. All data analyses were
3	conducted using SPSS software version 22 (SPSS Inc., Chicago, IL, USA).
4	RESULTS
5	A flow diagram of our patient enrolment scheme is presented in Figure 1. A total
6	of 10,941 patients diagnosed with SS were identified in the NHIRD, which contains a
7	total of 986,713 individuals. An additional 43,764 age-, sex-, comorbidity-, and
8	medication-matched patients were designated controls. As shown in Table 1, no
9	significant differences in sex, age, co-morbidities, including DM, hypertension,
10	hyperlipidaemia, Behcet's disease, giant cell arteritis, RA, relapsing polychondritis,
11	Takayasu's arteritis, and COPD, or medications were noted between the two groups
12	after matching. Patients with SS exhibited a significantly increased cumulative risk of
13	developing AA/AD in subsequent years compared with patients without SS (log- rank
14	test < 0.001, Figure 2). Table 2 presents the incidences of AA or AD during the
15	ten-year follow-up period. At the end of the follow-up period, SS patients exhibited
16	significantly increased incidences of AA or AD (0.43% vs. 0.37%, $P = 0.045$) but
17	lower incidences of DM (7.73% vs. 15.44%, P < 0.001) and COPD (5.96% vs. 6.72%,
18	P = 0.004). In addition, patients with SS were younger and exhibited higher Charlson
19	comorbidity index (CCI) than patients without SSThe incidence for AA or AD was
	12

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 13 of 41

1		
2		
3		
4	1	higher in males and older patients regardless of whether patients had SS or not
5		
б	2	
7	2	(Supplement Figures 1 and 2). Regarding the use of Cox regression independent of
8		
9	3	the effects of sevence as markidities and mediantian compared with nationts
10	3	the effects of sex, age, co-morbidities, and medication, compared with patients
11		
12	4	without SS, patients with SS also exhibited a significantly increased risk of
13	-	without 55, patients with 55 also exhibited a significantly increased lisk of
14		
15	5	developing AA or AD (adjusted HR = 3.642, 95% CI = 2.527-5.250, P < 0.001, Table
16	0	
17		
18	6	3). The subgroup analysis revealed that patients with PSS or SSS both exhibited
19		
20		
21	7	significantly increased risks for developing AA/AD compared to patients without SS
22		
23		
24	8	(adjusted HR = 1.753 , 95% CI = $1.108-9.382$, P = 0.042 ; adjusted HR = 3.693 , 95%
25		
26		
27	9	CI = 2.520-5.411, $P < 0.001$, Table 4). We also have included the first event of
28		
29	10	
30	10	AA/AD coding into the distribution analysis in the supplemental material
31		
32	11	(Supplement Table 5). All patients were coded with AA/AD for the first time in the
32 33	11	(Supprement Table 5). An patients were coded with AA/AD for the first time in the
34	12	Inpatient and ER sections.
35	12	inputient und Elix sociolis.
36 27		
37	13	
38 39		
39 40		
40 41	14	
41		
42 43		
43 44	15	
44 45		
45 46	17	
40 47	16	
47 48		
	17	
49 50	1 /	
50 51		
51 52	18	
52 53	10	
53 54		
	19	
55 56		
56 57		
57		1
58 59		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00		

3 Table 1 Characteristics of the study participants at baseline

Sjögren's syndrome	Total	With	Without	N 1
	N (%)	N (%)	N (%)	P-value
Total	54,705	10,941 (20.00%)	43,764 (80.00%)	
Sex				0.999
Male	10,187 (18.63%)	2,011 (18.44%)	8,176 (18.68%)	
Female	44,485 (81.37%)	8,897 (81.56%)	35,588 (81.32%)	
Age (years)	55.78 ± 17.09	55.80 ± 16.65	55.77 ± 17.20	0.897
DM	3,553 (6.49%)	724 (6.62%)	2,829 (6.46%)	0.558
Hypertension	8,091 (14.79%)	1,578 (14.42%)	6,513 (14.88%)	0.228
Hyperlipidaemia	1,145 (2.09%)	234 (2.14%)	911 (2.08%)	0.709
Behcet's disease	321 (0.59%)	62 (0.57%)	259 (0.59%)	0.834
Giant cell arteritis	15 (0.03%)	3 (0.03%)	12 (0.03%)	0.999
Rheumatoid arthritis	8,907 (16.28%)	1,784 (16.31%)	7,123 (16.28%)	0.942
Relapsing polychondritis	71 (0.13%)	14 (0.13%)	57 (0.13%)	0.953
Takayasu's arteritis	15 (0.03%)	3 (0.03%)	12 (0.03%)	0.999
COPD	2,931 (5.36%)	581 (5.3%)	2,350 (5.37%)	0.831
Steroid	16,799 (30.71%)	3,345 (30.57%)	13,454 (30.74%)	0.737
β blocker	12,588 (23.01%)	2,513 (22.97%)	10,075 (23.02%)	0.919
ССВ	11,553 (21.12%)	2,342 (21.41%)	9,211 (21.05%)	0.409
ACEI	13,586 (24.84%)	2,711 (24.78%)	10,875 (24.85%)	0.878
ARB	12,718 (23.25%)	2,620 (23.95%)	10,098 (23.07%)	0.054
Diuretic	12,440 (22.74%)	2,429 (22.20%)	10,011 (22.87%)	0.136
Statin	13,922 (25.45%)	2,811 (25.69%)	11,111 (25.39%)	0.516

P-value (categorical variable: Chi-square/Fisher's exact test; continuous variable: t-test)

DM = diabetes mellitus; COPD = chronic obstructive pulmonary disease; CCB = calcium channel blocker; ACEI =

angiotensin-converting enzyme inhibitor; ARB = angiotensin receptor blocker

BMJ Open

3 Table 2 Incidences of aortic aneurysm and dissection and other characteristics during

Sjögren's syndrome	Total	With	Without	D vol	
	N (%)	N (%)	N (%)	P-value	
Total	54,705	10,941 (20.00%)	43,764 (80.00%)		
Aortic aneurysm					
and dissection	207 (0.38%)	47 (0.43%)	160 (0.37%)	0.045	
Sex				0.999	
Male	10,187 (18.63%)	2,011 (18.44%)	8,176 (18.68%)		
Female	44,485 (81.37%)	8,897 (81.56%)	35,588 (81.32%)		
Age (years)	61.36 ± 5.41	60.90 ± 4.98	61.47 ± 5.51	< 0.001	
DM	7,603 (13.90%)	846 (7.73%)	6,757 (15.44%)	< 0.001	
Hypertension	8,821 (16.12%)	1,708 (15.61%)	7,113 (16.25%)	0.102	
Hyperlipidaemia	1,128 (2.06%)	240 (2.19%)	888 (2.03%)	0.279	
Behcet's disease	324 (0.59%)	63 (0.58%)	261 (0.60%)	0.802	
Giant cell arteritis	16 (0.03%)	3 (0.03%)	13 (0.03%)	0.901	
Rheumatoid arthritis	9,033 (16.51%)	1,774 (16.21%)	7,259 (16.59%)	0.348	
Relapsing					
polychondritis	80 (0.15%)	19 (0.17%)	61 (0.14%)	0.401	
Takayasu's arteritis	15 (0.03%)	3 (0.03%)	12 (0.03%)	0.999	
COPD	3,593 (6.57%)	652 (5.96%)	2,941 (6.72%)	0.004	
CCI_R	0.78 ± 1.53	0.83 ± 1.39	0.77 ± 1.56	< 0.001	
Steroid	17,112 (31.28%)	3,511 (32.09%)	13,601 (31.08%)	0.041	
β blockers	13,750 (25.13%)	2,674 (24.44%)	11,076 (25.31%)	0.061	
ССВ	11,833 (21.63%)	2,397 (21.91%)	9,436 (21.56%)	0.430	
ACEI	13,793 (25.21%)	2,784 (25.45%)	11,009 (25.16%)	0.532	
ARB	12,976 (23.72%)	2,681 (24.50%)	10,295 (23.52%)	0.031	
Diuretic	12,692 (23.20%)	2,507 (22.91%)	10,185 (23.27%)	0.427	
Statin	14,123 (25.82%)	2,828 (25.85%)	11,295 (25.81%)	0.934	

4 the ten-year follow-up period

P-value (categorical variable: Chi-square/Fisher's exact test; continuous variable: t-test)

CCI_R = Charlson comorbidity index removed DM, COPD; DM = diabetes mellitus; COPD = chronic obstructive pulmonary disease; CCB = calcium channel blocker; ACEI = angiotensin-converting enzyme inhibitor; ARB = angiotensin receptor

blocker

3 Table 3 Factors associated with aortic aneurysm and dissection according to Cox

4 regression

Variables	Crude HR	95% CI	P-value	Adjusted HR	95% CI	P-value
Sjögren's syndrome	3.205	2.254-3.565	< 0.001	3.642	2.527-5.250	< 0.001
Sex (male)	2.645	1.974-3.597	< 0.001	2.035	1.534-2.700	< 0.001
Age (years)	1.049	1.032-1.057	< 0.001	1.043	1.032-1.055	< 0.001
DM	1.704	1.389-1.944	0.024	1.674	1.065-1.976	0.037
Hypertension	1.165	1.022-1.454	0.038	1.305	0.973-1.751	0.075
Hyperlipidaemia	1.211	0.594-2.436	0.618	1.343	0.656-2.751	0.420
Rheumatoid arthritis	1.645	0.774-3.496	0.196	0.801	0.362 -1.769	0.583
COPD	1.838	1.256-2.691	0.002	1.170	0.790-1.735	0.433
CCI_R	1.036	0.945-1.087	0.074	1.016	0.968-1.065	0.527
Steroid	1.497	0.598-2.976	0.495	1.501	0.339-3.298	0.617
β blockers	1.468	0.453-2.772	0.862	1.398	0.401-2.895	0.803
ССВ	1.345	0.343-2.901	0.372	1.402	0.452-2.806	0.280
ACEI	1.298	0.426-3.041	0.601	1.288	0.395-2.845	0.334
ARB	1.346	0.379-1.986	0.711	1.345	0.343-1.886	0.682
Diuretic	1.198	0.598-2.511	0.652	1.201	0.490-2.907	0.703
Statin	1.364	0.667-4.972	0.798	1.335	0.679-4.787	0.897

HR= hazard ratio; CI = confidence interval; Adjusted HR: adjusted variables listed in the table;

CCI_R = Charlson comorbidity index removed DM, COPD; DM = diabetes mellitus; COPD = chronic obstructive pulmonary disease; CCB = calcium channel blocker; ACEI = angiotensin-converting enzyme inhibitor; ARB = angiotensin receptor blocker

BMJ Open

Table 4 Factors associated with aortic aneurysm and dissection stratified by primary/secondary Sjögren's syndrome using Cox regression

	Patients	with Sjögren'	's syndrome	Patients	without Sjögre	en's syndrome	Ratio	Adjusted HR*	95% CI	P-value
							_			
	Events	РҮ	Incidence rate	Events	РҮ	Incidence rate				
			(per 10 ⁵ PY)			(per 10 ⁵ PY)				
				6						
Total	47	55,860.08	84.14	160	253,779.88	63.05	1.335	3.642	2.527-5.250	< 0.001
Without RA/SLE/SS/PBC	30	36,607.55	81.95	158	248,694.36	63.53	1.290	1.753	1.108-9.382	0.042
With RA/SLE/SS/PBC	17	19,252.53	88.30	2	5,085.52	39.33	2.245	3.693	2.520-5.411	< 0.001

PYs = person-years; Ratio = incidence of patients with AA/AD divided by the incidence of patients without AA/AD; *Adjusted HR = adjusted hazard ratio: adjusted for age, sex, co-morbidities, and medications,

as listed in Table 3, using Cox regression; CI = confidence interval; RA = rheumatoid arthritis; SLE = systemic lupus erythematosus; SS = systemic sclerosis; PBC = primary biliary cirrhosis

Primary Sjögren's syndrome: Sjögren's syndrome without systemic lupus erythematosus, rheumatoid arthritis, systemic sclerosis, or primary biliary cirrhosis; Secondary Sjögren's syndrome:

with systemic lupus erythematosus, rheumatoid arthritis, systemic sclerosis, or primary biliary cirrhosis

DISCUSSION

2	This is a retrospective cohort study including 10,941 patients with SS and 43,764
3	patients without SS matched by age, sex, year of index date of the SS diagnosis,
4	co-morbidities, and medication use from a large-scale nationwide population-based
5	database. During follow-up, SS was associated with an increased incidence of the
6	development of AA/AD compared with the comparison cohort.
7	Our research findings should remind healthcare providers of new information
8	that SS patients exhibit an increased risk for AA or AD. Healthcare professionals
9	should be aware of these life-threatening aortic events and aim to make early
10	diagnosis of AA or AD. When SS patients present with chest, back, or abdominal
11	symptoms, the possibility of AA or AD should be considered, with a specific and
12	rapid examination.
13	SS patients exhibit an increased prevalence of developing traditional
14	cardiovascular risk factors, such as hypertension and dyslipidaemia, which predispose
15	patients to endothelial dysfunction and premature atherosclerosis. However, the
16	disease-specific mechanisms associated with premature atherosclerosis in SS are not
17	fully understood.[19] In a recent review article, cardiovascular disease was reported to
18	be one of the primary causes of mortality in SS patients.[20] PSS shares clinical and
19	serological features with RA and SLE, and these two diseases are associated with
	18

Page 19 of 41

BMJ Open

1 2	
3 4 5 6 7	1
6 7	2
8 9 10	3
11 12 13	4
14 15 16	5
17 18 19	6
20 21 22	7
23 24	8
25 26 27	9
28 29 30	10
31 32 33	11
34 35 36	12
37 38 39	13
40 41	14
42 43 44	15
45 46 47	16
48 49 50	17
51 52 53	18
54 55 56	19
50 57 58 59	
60	

1	acceleration of atherosclerosis.[21] However, the pathophysiology between SS and
2	AA or AD remains unclear, although several possible mechanisms have been
3	proposed. Previous studies have demonstrated that both SS and AA/AD are induced
4	by chronic inflammation.[22-25] Recent studies have provided convincing evidence
5	indicating that several signalling pathways are involved in both AA and SS, including
6	the MAPK, TGF-β, and MMP signalling pathways.[12-15] Activation of the innate
7	immune system and the production of interferons (IFNs) could be the first stages of
8	PSS pathogenesis.[26] IFNs and IL-21 could induce B-cell-activating factor (BAFF)
9	and further activate B cell activity. In human salivary gland cells, interferon- γ
10	modulates and increases MMP-2 and MMP-9 expression.[27] The circulating levels
11	of MMP-9 were increased in patients with definite SS compared with patients with
12	possible SS.[28] Furthermore, MMP-2 and MMP-9 also display a critical role in AAA
13	formation.[29] MMPs play roles in tissue destruction and the weakening of the matrix,
14	as noted in liver cirrhosis, fibrotic lung disease, otosclerosis, atherosclerosis, and
15	multiple sclerosis.[30] Several molecules that are activated in the salivary glands,
16	including JNK, NF- κ B, and TGF- β , also lead to inflammation and reactive oxygen
17	species (ROS) production in the aortic matrix. This process may be a possible
18	mechanistic pathway by which SS aggravates AA or AD.[12,13,22,31-34]
19	Low-dose steroids, such as prednisone, may be used to treat SS-induced joint and
	19

Page 20 of 41

$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\22\\324\\25\\26\\27\\28\\29\\30\\31\\32\\33\\4\\5\\36\\37\\38\\39\end{array}$	
31 32 33 34	
36 37 38	
41 42 43 44 45	
46 47 48 49 50 51	
52 53 54 55 56	
57 58 59 60	

1	muscle pain. Prolonged or high-dose corticosteroid treatment likely causes
2	disintegration of connective tissue of the media possibly together with primary aortic
3	wall involvement and/or vascular damage in patients with autoimmune disorders,
4	which can result in aortic aneurysmal enlargement and AD.[30,35] In this study, the
5	medical condition of steroids was matched. Therefore, the effect of steroids was
6	mitigated. The strength of our study involves its population-based database design.
7	We accounted for several aneurysm-related confounding factors. Although we
8	adjusted the results extensively using Cox regression models, our study had several
9	limitations and unmeasured confounders. The NHIRD registry is not able to provide
10	detailed information on laboratory results, family histories and health-related lifestyle
11	factors, such as alcohol consumption and tobacco use, which can increase the risk of
12	AA/AD and were potential confounding factors in this study. This is a database study
13	using NHIRD. All medical conditions for each case and the controls were categorized
14	using the ICD-9-CM, in which diagnostic codes (up to five each) are coded. There
15	may be a small number of coding errors or missing information when using this kind
16	of administrative data, and limitations are bound to exist in any statistical method,
17	even the propensity score matching. In our study, we also considered COPD incidence
18	as a proxy variable for tobacco use to eliminate its potential confounding effect.[18]
19	The limitation is that not all smokers develop disease. Although our study identified
	20

1	the association between SS and AA/AD, the cohort study design did not enable
2	determination of the cause-effect relationship. Further prospective follow-up studies,
3	mechanistic studies and animal experiments should be performed.
4	CONCLUSION
5	Patients with SS exhibit an increased risk for developing AA or AD, and
6	healthcare professionals should be aware of this risk when treating patients with SS.
7	Increased aortic surveillance may be required in patients with SS.
8	ACKNOWLEDGEMENTS
9	This study was supported by grants from Tri-Service General Hospital, National
10	Defense Medical Center, Taipei, Taiwan (TSGH-C105-058), Tri-Service General
11	Hospital, National Defense Medical, Taipei, Taiwan (TSGH-C105-173), Taoyuan
12	Armed Forces General Hospital, Taoyuan, Taiwan (10514), and the Ministry of
13	Science and Technology (MOST 106-2314-B-016 -008 -MY3).
14	FUNDING
15	This study was supported by grants from Tri-Service General Hospital, National
16	Defense Medical Center, Taipei, Taiwan (TSGH-C105-058), Tri-Service General
17	Hospital, National Defense Medical Center, Taipei, Taiwan (TSGH-C105-173),
18	Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan (10514), and the Ministry
19	of Science and Technology (MOST 106-2314-B-016 -008 -MY3).
	21

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
27	
28	
29	
30	
31	
27	
32	
33	
34	
35	
36	
50	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

COMPETING INTERESTS 1

2 None declared.

3 **AUTHOR CONTRIBUTIONS**

- 4 Y-DT, J-CW, and S-HT conceived and designed the study.
- 5 W-CC provided the materials for the study. C-HC and S-JC analysed the data.
- C-JY and M-TL contributed reagents, materials, and analysis tools. Y-DT, J-CW, 6
- W-IL, and S-HT wrote the manuscript. All the authors approved the manuscript. 7

DATA SHARING STATEMENT 8

- 9 No additional data sharing available.
- 10

1				
2				
3 4	1	REFI	ERENCES	
5				
6	2	1		
7	2	1.	Vitali C, Bombardieri S, Jonsson R, et al. Classification criteria for Sjögren's	\$
8				
9	3		syndrome: a revised version of the European criteria proposed by the	
10				
11 12	4			
13	4		American-European Consensus Group. Ann Rheum Dis 2002;61:554-8.	
14				
15	5	2.	Mavragani CP, Moutsopoulos HM. The geoepidemiology of Sjögren's	
16				
17	(
18	6		syndrome. Autoimmun Rev 2010;9:A305-10.	
19				
20 21	7	3.	Howard DP, Banerjee A, Fairhead JF, et al. Population-based study of	
22				
23	0			
24	8		incidence and outcome of acute aortic dissection and premorbid risk factor	
25				
26	9		control: 10-year results from the Oxford Vascular Study. Circulation	
27				
28				
29	10		2013;127:2031-7.	
30 31				
32	11	4.	Olsson C, Thelin S, Stahle E, et al. Thoracic aortic aneurysm and dissection:	
33				
34				
35	12		increasing prevalence and improved outcomes reported in a nationwide	
36				
37	13		population-based study of more than 14,000 cases from 1987 to 2002.	
38	15		population based study of more than 11,000 cases non 1907 to 2002.	
39 40				
40	14		<i>Circulation</i> 2006;114:2611-8.	
42				
43	15	5.	Yeh TY, Chen CY, Huang JW, et al. Epidemiology and medication utilization	n
44	10	<i>.</i> .	Ten 1 1, enen e 1, fraung v 11, et un Epidemiology und medieution dimzation	-
45				
46	16		pattern of aortic dissection in Taiwan: a population-based study. Medicine	
47				
48 49	17		(Baltimore) 2015;94:e1522.	
49 50	1/		(Dammore) 2015,)7.01522.	
51				
52	18	6.	Shovman O, Tiosano S, Comaneshter D, et al. Aortic aneurysm associated	
53				
54	19		with rheumatoid arthritis: a population-based cross-sectional study. Clin	
55	19		with meanatold artifitis. a population-based cross-sectional study. Clin	
56 57				
57 58				23
58 59				
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

	1		Rheumatol 2016;35:2657-61.	
	2	7.	Guy A, Tiosano S, Comaneshter D, et al. Aortic aneurysm association with	
	Z	1.	Guy A, Hosano S, Comanesnier D, et al. Aortic aneurysin association with	
	3		SLE - a case-control study. Lupus 2016;25:959-63.	
	4	8.	Juarez M, Toms TE, de Pablo P, et al. Cardiovascular risk factors in women	
	5		with primary Sjögren's syndrome: United Kingdom primary Sjögren's	
	6		syndrome registry results. Arthritis Care Res (Hoboken) 2014;66:757-64.	
	7	9.	Garcia AB, Dardin LP, Minali PA, et al. Asymptomatic atherosclerosis in	
	8		primary Sjögren syndrome: correlation between low ankle brachial index an	d
	9		autoantibodies positivity. J Clin Rheumatol 2016;22:295-8.	
1	10	10.	Chiang CH, Liu CJ, Chen PJ, et al. Primary Sjögren's syndrome and risk of	
1	11		ischemic stroke: a nationwide study. Clin Rheumatol 2014;33:931-7.	
1	12	11.	Chiang CH, Liu CJ, Chen PJ, et al. Primary Sjögren's syndrome and the risk	of
1	13		acute myocardial infarction: a nationwide study. Acta Cardiol Sin	
1	14		2013;29:124-31.	
1	15	12.	Soejima K, Nakamura H, Tamai M, et al. Activation of MKK4 (SEK1), JNK	, ` ,
1	16		and c-Jun in labial salivary infiltrating T cells in patients with Sjögren's	
1	17		syndrome. Rheumatol Int 2007;27:329-33.	
1	18	13.	Nakamura H, Kawakami A, Yamasaki S, et al. Expression of mitogen	
1	19		activated protein kinases in labial salivary glands of patients with Sjögren's	
				24
			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

2 3			
4 5	1		syndrome. Ann Rheum Dis 1999;58:382-5.
6 7 8	2	14.	Ito S, Ozawa K, Zhao J, et al. Olmesartan inhibits cultured rat aortic smooth
9 10	3		muscle cell death induced by cyclic mechanical stretch through the inhibition
11 12 13	4		of the c-Jun N-terminal kinase and p38 signaling pathways. J Pharmacol Sci
14 15	5		2015;127:69-74.
16 17	6	15.	Zhang V. Naggar IC. Walzig CM, at al. Simulatotin inhibits angiotonoin
18 19	6	13.	Zhang Y, Naggar JC, Welzig CM, et al. Simvastatin inhibits angiotensin
20 21 22	7		II-induced abdominal aortic aneurysm formation in apolipoprotein E-knockout
23 24	8		mice: possible role of ERK. Arterioscler Thromb Vasc Biol 2009;29:1764-71.
25 26 27	9	16.	Cheng CL, Kao YH, Lin SJ, et al. Validation of the National Health Insurance
28 29 30	10		Research Database with ischemic stroke cases in Taiwan. Pharmacoepidemiol
31 32	11		Drug Saf 2011;20:236-42.
33 34 35	12	17.	Mao CT, Tsai ML, Wang CY, et al. Outcomes and characteristics of patients
36 37 38	13		undergoing percutaneous angioplasty followed by below-knee or above-knee
39 40 41	14		amputation for peripheral artery disease. PLoS One 2014;9:e111130.
42 43		10	
44 45	15	18.	Yu TM, Chuang YW, Yu MC, et al. Risk of cancer in patients with polycystic
45 46 47	16		kidney disease: a propensity-score matched analysis of a nationwide,
48 49 50	17		population-based cohort study. Lancet Oncol 2016;17:1419-25.
51 52	18	19.	Valim V, Gerdts E, Jonsson R, et al. Atherosclerosis in Sjögren's syndrome:
53 54 55	19		evidence, possible mechanisms and knowledge gaps. Clin Exp Rheumatol
56 57 58			25
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	1		2016;34:133-42.
	2	20.	Singh AG, Singh S, Matteson EL. Rate, risk factors and causes of mortality in
	3		patients with Sjögren's syndrome: a systematic review and meta-analysis of
	4		cohort studies. Rheumatology (Oxford) 2016;55:450-60.
	5	21.	Sezis Demirci M, Karabulut G, Gungor O, et al. Is there an increased arterial
	6		stiffness in patients with primary Sjögren's syndrome? Intern Med
	7		2016;55:455-9.
	8	22.	Sawada H, Hao H, Naito Y, et al. Aortic iron overload with oxidative stress
	9		and inflammation in human and murine abdominal aortic aneurysm.
1	0		Arterioscler Thromb Vasc Biol 2015;35:1507-14.
1	1	23.	Vadacca M, Margiotta D, Sambataro D, et al. [BAFF/APRIL pathway in
1	2		Sjögren syndrome and systemic lupus erythematosus: relationship with
1	3		chronic inflammation and disease activity]. Reumatismo 2010;62:259-65.
1	4	24.	Cifani N, Proietta M, Tritapepe L, et al. Stanford-A acute aortic dissection,
1	5		inflammation, and metalloproteinases: a review. Ann Med 2015;47:441-6.
1	6	25.	Eagleton MJ. Inflammation in abdominal aortic aneurysms: cellular infiltrate
1	7		and cytokine profiles. Vascular 2012;20:278-83.
1	8	26.	Nocturne G, Mariette X. Advances in understanding the pathogenesis of
1	9		primary Sjögren's syndrome. Nat Rev Rheumatol 2013;9:544-56.
			2
			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1				
2				
3 4	1	27.	Wu AJ, Lafrenie RM, Park C, et al. Modulation of MMP-2 (gelatinase A) and	d
5				
6				
7	2		MMP-9 (gelatinase B) by interferon-gamma in a human salivary gland cell	
8				
9	2		1	
10	3		line. J Cell Physiol 1997;171:117-24.	
11				
12	4	28.	Hulkkonen J, Pertovaara M, Antonen J, et al. Matrix metalloproteinase 9	
13		20.	Turkkohen 5, 1 ertovaara 14, 7 mohen 5, et al. Maark metanoproteinase 5	
14				
15	5		(MMP-9) gene polymorphism and MMP-9 plasma levels in primary Sjögren	's
16				
17				
18	6		syndrome. Rheumatology (Oxford) 2004;43:1476-9.	
19				
20	7	29.	Dala MA Sub MK 7hao S at al Daakground differences in baseling and	
21	/	29.	Dale MA, Suh MK, Zhao S, et al. Background differences in baseline and	
22				
23	8		stimulated MMP levels influence abdominal aortic aneurysm susceptibility.	
24	0			
25				
26	9		Atherosclerosis 2015;243:621-9.	
27				
28	10	•		
29	10	30.	Amalinei C, Caruntu ID, Giusca SE, et al. Matrix metalloproteinases	
30				
31 32	11		involvement in pathologic conditions. Rom J Morphol Embryol	
33	11		involvement in pathologic conditions. Now 5 Worphot Embryot	
34				
35	12		2010;51:215-28.	
36				
37				
38	13	31.	Zoukhri D, Macari E, Choi SH, et al. c-Jun NH2-terminal kinase mediates	
39				
40	14			
41	14		interleukin-1beta-induced inhibition of lacrimal gland secretion. J Neurocher	т
42				
43	15		2006;96:126-35.	
44			,	
45				
46	16	32.	Tsai SH, Huang PH, Peng YJ, et al. Zoledronate attenuates angiotensin	
47				
48	17			
49	17		II-induced abdominal aortic aneurysm through inactivation of	
50				
51	18		Rho/ROCK-dependent JNK and NF-kappaB pathway. Cardiovasc Res	
52	10		reno, resolve dependent si in and in -kappab pathway. Caratovase Res	
53				
54 55	19		2013;100:501-10.	
55 56				
50 57				
58				27
59				
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	
~~				

Hall BE, Zheng C, Swaim WD, et al. Conditional overexpression of

Invest 2010;90:543-55.

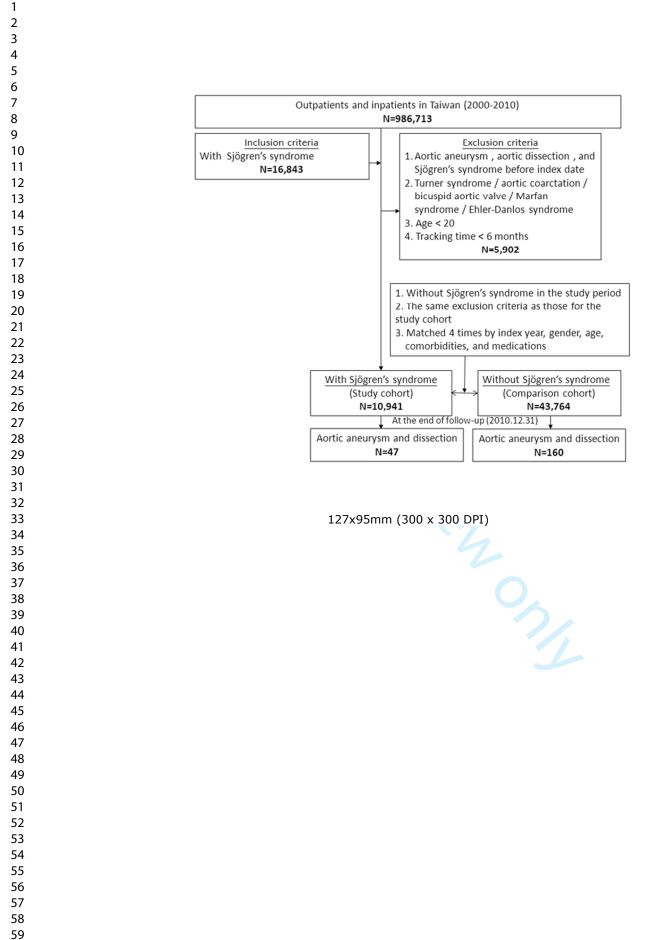
J Vasc Res 2009;46:119-37.

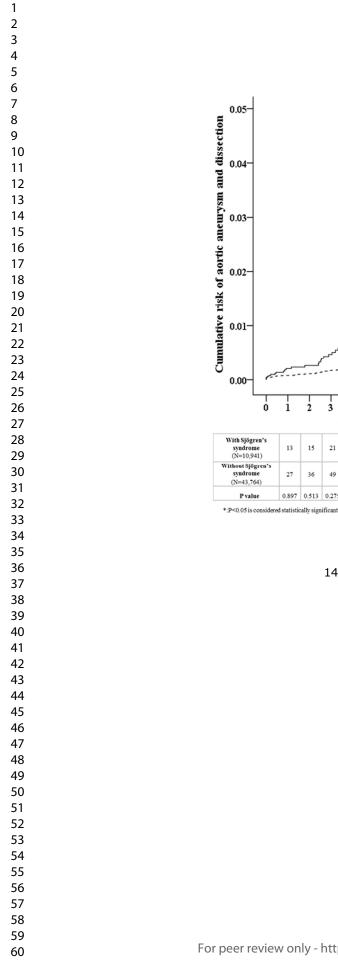
TGF-beta1 disrupts mouse salivary gland development and function. Lab

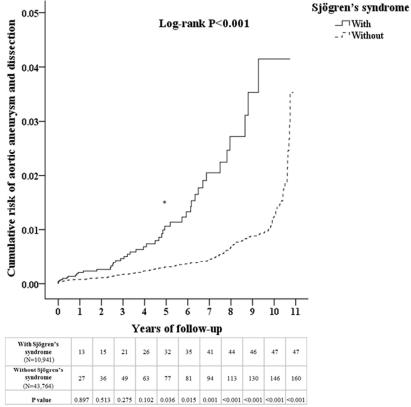
Jones JA, Spinale FG, Ikonomidis JS. Transforming growth factor-beta

Sholter DE, Armstrong PW. Adverse effects of corticosteroids on the

cardiovascular system. Can J Cardiol 2000;16:505-11.

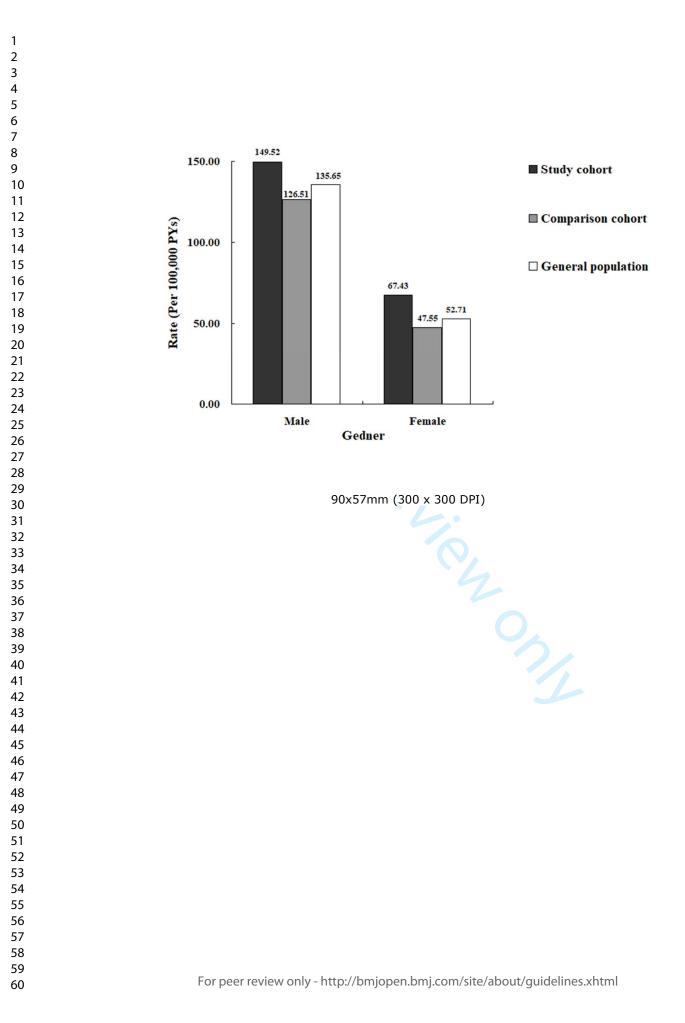

signaling in thoracic aortic aneurysm development: a paradox in pathogenesis.

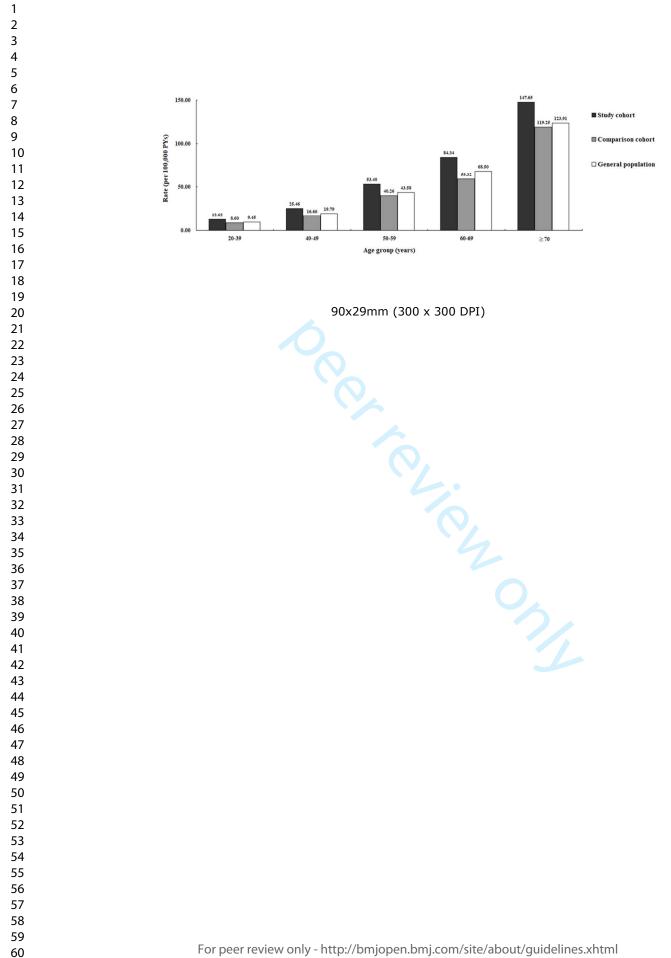

2		
3		22
4	1	33.
5 6 7		
б	•	
7	2	
8		
9		
10	3	
11		
12	4	34.
13		
14		
15	5	
16		
17		
18	6	
19	÷	
20	7	35.
21	,	55.
22		
23	8	
24	0	
25		
26	9	
27	9	
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		
60		


1

1		
2		
3	1	FICUDE LECENDO
4	1	FIGURE LEGENDS
5		
6	2	Figure 1. Patient selection flowchart
7	2	rigure 1. I attent selection now chart
8		
9	3	Figure 2. Kaplan-Meier curve of the cumulative risk of aortic aneurysm or dissection
10	-	
11		
12	4	due to Sjögren's syndrome
13		
14		
15	5	
16		
17		
18	6	TABLE LEGENDS
19		
20	7	Table 1. Characteristics of the study participants at baseline
21	/	Table 1. Characteristics of the study participants at baseline
22		
23	8	Table 2. Incidences of aortic aneurysm and dissection and other characteristics during
24	0	Tuble 2: merdenees of dorme unear ysin and dissection and other endracteristics during
25		
26	9	the ten-year follow-up period
27		
28		
29	10	Table 3. Factors associated with a rtic aneurysm and dissection according to Cox
30		
31		
32	11	regression
33		
34	10	$T_{11} + T_{12} + \dots + \dots + T_{12} + \dots + $
35	12	Table 4. Factors associated with aortic aneurysm or dissection stratified by
36		
37	13	primary/secondary SS using Cox regression
38	15	primary/secondary 55 using Cox regression
39		
40	14	
41		
42		
43	15	SUPPLEMENTARY MATERIAL
44		
45		
46	16	Supplement Table 1 ICD-9-CM coding of diseases in the manuscript
47		
48	17	Supplement Table 2 Veers of follow up
49	17	Supplement Table 2 Years of follow-up
50		
51	18	Supplement Table 3 Years to AA /AD
52	10	
53		
54	19	Supplement Table 4 Variables including in the Cox regression
55		
56 57		
57 58		29
59		
<i></i>		

- Supplement Table 5 First event of the (AA/AD) coding distribution
- Supplement Figure 1. Sex-specific incidence of AA or AD in the study cohort, control
- cohort, and general population.
- Supplement Figure 2. Age-specific incidence of AA or AD in the study cohort, control
- cohort, and general population. tor oper terren only





145x124mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplement Table 1 ICD-9-CM coding of diseases in manuscript

Disease	ІСД-9-СМ	Disease	ІСД-9-СМ
Aortic aneurysm			
and dissection	441.0-441.9	Behcet's disease	136.1
Sjögren's syndrome	710.2	Giant cell arteritis	446.5
Turner syndrome	758.6	RA	714
Aortic coarctation	747.10	Relapsing polychondritis	733.99
Bicuspid aortic valve	746.4	Takayasu's arteritis	446.7
Marfan syndrome	759.82	COPD	490-496
Ehler-Danlos syndrome	756.83	SLE	710.0
Diabetes mellitus	250	Systemic sclerosis	701.1
Hypertension	401-405	Primary biliary cirrhosis	571.6
Hyperlipidaemia	272.0-272.4		

RA = Rheumatoid arthritis and other inflammatory polyarthropathies; COPD = chronic obstructive pulmonary disease; SLE =

systemic lupus erythematosus

2	
3	
4	
5	
6	
7	
8	
9	
9 10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21 22	
22 23	
∠⊃ ⊃4	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35 36	
36	
37	
38	
39	
40	
40 41	
41	
42 43	
44 45	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	

1 2

Supplement Table 2 Years of follow-up

Sjögren's syndrome	Min	Middle	Max	Mean±SD
With	0.50	3.26	10.91	5.11±7.52
Without	0.50	4.57	10.98	5.80±5.53
Total	0.50	3.69	10.98	5.66±5.99

For pect teries only

			Max	Mea
With	0.51	3.32	9.27	4.67
Without	0.52	5.07	10.87	5.53
Total	0.51	4.93	10.87	5.12

2	
3	
4	
5	
6	
-	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
23 24	
25	
26	
27	
28	
29	
30	
31	
32	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40 49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

1 2

Supplement Table 4 Variables including in the Cox regression

Variables	Variables
Sjögren's syndrome	CCI_R
Sex (male)	Steroid
Age (years)	β blockers
DM	ССВ
Hypertension	ACEI
Hyperlipidaemia	ARB
Rheumatoid arthritis	Diuretic
COPD	Statin

DM = diabetes mellitus; COPD = chronic obstructive pulmonary disease; CCB = calcium channel blocker; ACEI = angiotensin-

converting enzyme inhibitor; ARB = angiotensin receptor blocker

Sjögren's syndrome –	Inpa	ntient	I	ER
	Ν	%	Ν	%
With	40	85.11	7	14.89
Without	141	88.12	19	11.88
Total	181	87.44	26	12.56

to beet terien only

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cohort studies

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	3
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	3-4
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	6
Objectives	3	State specific objectives, including any prespecified hypotheses	7
Methods			
Study design	4	Present key elements of study design early in the paper	11
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	10-11
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	9
		(b) For matched studies, give matching criteria and number of exposed and unexposed	11
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	9-10
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	10
Bias	9	Describe any efforts to address potential sources of bias	19
Study size	10	Explain how the study size was arrived at	17
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	9-10
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	11
		(b) Describe any methods used to examine subgroups and interactions	11
		(c) Explain how missing data were addressed	11
		(d) If applicable, explain how loss to follow-up was addressed	11
		(e) Describe any sensitivity analyses	11

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

Participants 13*		(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	12-13
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	7-8
		(c) Consider use of a flow diagram	12
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential	12
		confounders	
		(b) Indicate number of participants with missing data for each variable of interest	11
		(c) Summarise follow-up time (eg, average and total amount)	11
Outcome data	15*	Report numbers of outcome events or summary measures over time	12-13
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	12
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	11
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	12
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	12
Discussion			
Key results	18	Summarise key results with reference to study objectives	18
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	20
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	20
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	21
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml