
An in-silico analysis of inhibitory logics
in the mitotic checkpoint network —

Supplementary Information

Fridolin Gross, Paolo Bonaiuti, Silke Hauf and Andrea Ciliberto

Contents
1 Modeling Approach 1

2 Model Parameters 2

3 Analytical Results 3
3.1 Sequential Inhibition Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Competitive Inhibition Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Combined Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Model with Mad3 as a separate species . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1 Modeling Approach

In the following we give more detailed information on the modeling approach used in the article, and
provide some analytical results in support of the generality of our conclusions.

Our models are straightforward translations of the wiring diagrams shown in Fig 2 into ordinary
differential equations using mass action kinetics. All binding reactions are assumed to be reversible. For
the sake of readability we use the following abbreviations:

A free APC/C

C free Cdc20

M free Mad2, Mad3

Atotal total APC/C

Ctotal total Cdc20

Mtotal total Mad2, Mad3

AC APC/CCdc20

MCC1 MCC with one Cdc20 molecule

MCC2 MCC with two Cdc20 molecules

AMCC2 APC/CMCC2
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Furthermore, we use the following notation to refer to the net association and dissociation reaction of two
species X and Y that can form a complex Z:

RX:Y�Z = k+
X:Y�Z [X] · [Y ]− k−

X:Y�Z [Z] , (1)

where [X] stands for the concentration of species X . To indicate the steady state level of X , we use the
notation [X̂].

The dissociation constant is defined as

KX:Y
D =

k−
X:Y�Z

k+
X:Y�Z

, (2)

For some derivations we assume that the rate is approximately the same for all reactions. In that case we
will simply refer to it as KD. We write down equations only for the concentrations of complexes. The
concentrations of free A, M , and C can then be obtained from conservation relations that are justified by
the observation that all checkpoint proteins and APC/C are stable and that total Cdc20 is at steady state.

All numerical simulations were carried out using the Python package “SloppyCell” [S1, S2] and
custom written Python functions.

2 Model Parameters

Table S1 lists experimental measurements of the relevant species in different organisms derived from a
comprehensive survey of the scientific literature. Relevant for our model are the concentrations of free
Mad2 (not bound to Mad1), Mad3, APC/C, and Cdc20. With very few exceptions, these concentrations
do not differ by more than a factor of five. Different studies come to very different conclusions, illustrat-
ing the difficulty of accurately determining absolute values. As a general scheme, however, total levels of
APC/C are typically lower than Mad2/3 and Cdc20 (see also S1 Fig). For the simulations we further as-
sumed that all dissociation constants are small (i.e. strong binding) and have the same value. Specifically,
we used:

[Ctotal] = 1 , (3)

[Mtotal] = 1 , (4)

[Atotal] = 0.5 , (5)

KD = 0.01 . (6)

in dimensionless units (i.e. normalized to the total amount of Mad levels in wild type).
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3 Analytical Results

3.1 Sequential Inhibition Model

Equations

The wiring diagram in Fig 2 (i) corresponds to the following set of equations:

d[AC]

dt
= RA:C�AC −RAC:MCC1�AMCC2 , (7)

d[MCC1]

dt
= RM :C�MCC1 −RAC:MCC1�AMCC2 , (8)

d[AMCC2]

dt
= RAC:MCC1�AMCC2 . (9)

Furthermore, we have the following conservation relations:

[Atotal] = [A] + [AC] + [AMCC2] , (10)

[Mtotal] = [M ] + [MCC1] + [AMCC2] , (11)

[Ctotal] = [C] + [AC] + [MCC1] + 2 · [AMCC2] . (12)

Approximation for small Cdc20

In the following we will often exploit the fact that the models we consider are detailed balanced. This
means that at steady state all forward reactions are individually balanced against their corresponding
reverse reactions, or

RX:Y�Z = 0 , (13)

which directly leads to

[Ẑ] =
[X̂][Ŷ ]

KX:Y
D

. (14)

For the sequential inhibition model, detailed balancing can easily be shown. Setting (9) to zero, we
immediately get

RAC:MCC1�AMCC2 = 0 . (15)

But then it follows from (7) and (8) that both other reactions are also detailed balanced.
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Therefore, we obtain

[ÂC] =
[Â][Ĉ]

KA:C
D

, (16)

[ ˆMCC1] =
[M̂ ][Ĉ]

KM :C
D

, (17)

[ ˆAMCC2] =
[ÂC][ ˆMCC1]

KAC:MCC1
D

=
[Â][M̂ ][Ĉ]2

KA:C
D KM :C

D KAC:MCC1
D

. (18)

For small levels of Ctotal we can assume that most species are in their free form and therefore use the
approximation

[Â] ≈ [Atotal] and [M̂ ] ≈ [Mtotal]. (19)

Then from (16) and (17) we immediately get

[ÂC]

[ ˆMCC1]
≈ [Atotal]

[Mtotal]

KM :C
D

KA:C
D

. (20)

Thus, in this regime the relative amounts of AC and MCC1 are directly related to the total amounts and
the corresponding binding reactions. Furthermore, using (20) we can rewrite (18) as

[ ˆAMCC2] =
[Mtotal][ÂC]2KA:C

D

[Atotal]KM :C
D KAC:MCC1

D

, (21)

or

[ ˆAMCC2] ≈ 1

k
[ÂC]2 with k =

[Atotal]

[Mtotal]

KM :C
D KAC:MCC1

D

KA:C
D

. (22)

The quadratic dependence means that AMCC2 will dominate for [AC] larger than k. But k is a small
number if binding is generally strong and/or [Mtotal] > [Atotal]. Note that k is small even if all reactions
have the same binding strength and and [Mtotal] = [Atotal]. This is because there are three binding reac-
tions leading to the inhibited, but only one reaction leading to the active species. Mathematically this
is reflected by the product of two KDs in the numerator of (22). Together this explains the “funneling”
effect that we observe for small levels of Cdc20.

We can find approximate solutions for the species concentrations as a function of [Ctotal] under the
assumption of strong binding (i.e. KD � Atotal,Mtotal). In this case [ ˆAMCC2] dominates the sum in
(12). In particular, we have

[ ˆAMCC2]→ [Ctotal]

2
for KD → 0 , (23)
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which explains the initially approximately linear behavior of APC/CMCC2 in S2 Fig. Based on this first
order approximation, we can use Equations (16)–(18) to derive expressions for the other species as well:

[Ĉ] ≈

√
KA:C

D KM :C
D KAC:MCC1

D

2[Atotal][Mtotal]

√
[Ctotal] , (24)

[ÂC] ≈

√
1

2

[Atotal]

[Mtotal]

KM :C
D KAC:MCC1

D

KA:C
D

√
[Ctotal] , (25)

[ ˆMCC1] ≈

√
1

2

[Mtotal]

[Atotal]

KA:C
D KAC:MCC1

D

KM :C
D

√
[Ctotal] . (26)

These expressions indicate how the steady state concentrations for small levels of Cdc20 depend on
parameters and concentrations. In particular, they explain the approximately linear dependence of
APC/CMCC2 and the square root dependence of the other species. The approximations are in good quan-
titative agreement with the simulations for small values of KD. But even for larger values they provide a
qualitative understanding of the behavior of the model (S2 Fig).

Approximation for large Cdc20

If Ctotal is large, then every free molecule of M or A will quickly bind to a free molecule of C. With the
approximation that this binding is instantaneous and M ≈ A ≈ 0, we can directly calculate the steady
state values for the remaining species. For this it is sufficient to look at the three species MCC1, AC,
and AMCC2, and the only reaction left to be considered is

d[AMCC2]

dt
= RAC:MCC1�AMCC2 , (27)

because the other two species are then determined by the conservation relations. At steady state we have

[ ˆAMCC2] =
[ÂC] · [ ˆMCC1]

KAC:MCC1
D

=
([Atotal]− [ ˆAMCC2])([Mtotal]− [ ˆAMCC2])

KAC:MCC1
D

.

From this we get

([Atotal]− [ ˆAMCC2])([Mtotal]− [ ˆAMCC2])−KAC:MCC1
D · [ ˆAMCC2] = 0 , (28)

which is a quadratic equation in [ ˆAMCC2] whose solutions are

[ ˆAMCC2] =
[Atotal] + [Mtotal] +KAC:MCC1

D

2
±

√(
[Atotal] + [Mtotal] +KAC:MCC1

D

2

)2

− [Atotal][Mtotal] .

(29)

5



Only the “−” solution ensures that [ ˆAMCC2] ≤ [Mtotal], [Atotal]. Expressions for the other species can
be directly inferred, using

[ÂC] = [Atotal]− [ ˆAMCC2] , (30)

[ ˆMCC1] = [Mtotal]− [ ˆAMCC2] . (31)

The relative amounts of [ ˆAMCC2] and [ÂC] mainly depend on the strength of AC binding to MCC1.
For weak binding (KAC:MCC1

D � [Mtotal], [Atotal]) we get AMCC2 ≈ 0, while for strong binding we get
[ÂC] ≈ 0. In general, both species co-exist, and their levels are insensitive to changes in Ctotal levels.

In S2 Fig (i) the simulated steady state concentrations for the sequential model are shown together
with the analytical approximations for small and large Cdc20.

3.2 Competitive Inhibition Model

Equations:

The competitive inhibition model includes the additional species MCC2 which is formed when MCC1

binds an additional molecule of C. The inhibited species AMCC2 is in this case formed by MCC2

binding to a free molecule of A. We therefore have to consider four equations:

d[AC]

dt
= RA:C�AC , (32)

d[MCC1]

dt
= RM :C�MCC1 −RMCC1:C�MCC2 , (33)

d[MCC2]

dt
= RMCC1:C�MCC2 −RA:MCC2�AMCC2 , (34)

d[AMCC2]

dt
= RA:MCC2�AMCC2 , (35)

together with the following conservation relations:

[Atotal] = [A] + [AC] + [AMCC2] , (36)

[Mtotal] = [M ] + [MCC1] + [MCC2] + [AMCC2] , (37)

[Ctotal] = [C] + [AC] + [MCC1] + 2 · ([MCC2] + [AMCC2]) . (38)
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Approximation for small Cdc20

In the same way as before we can show that detailed balancing holds, and we get at steady state

[ÂC] =
[Â][Ĉ]

KA:C
D

, (39)

[ ˆMCC1] =
[M̂ ][Ĉ]

KM :C
D

, (40)

[ ˆMCC2] =
[ ˆMCC1][Ĉ]

KMCC1:C
D

=
[M̂ ][Ĉ]2

KM :C
D KMCC1:C

D

, (41)

[ ˆAMCC2] =
[Â][ ˆMCC2]

KA:MCC2
D

=
[Â][M̂ ][Ĉ]2

KM :C
D KMCC1:C

D KA:MCC2
D

. (42)

Equations (39) and (40) are identical to (16) and (17), and the only difference between (42) and (18) is
one of the dissociation constants. Moreover, for strong binding [ ˆMCC2] is very small compared to the
other species because, for example, from (41) and (42) we get

ˆMCC2

ˆAMCC2
≈ KAC:MCC2

D

[Atotal]
. (43)

So the model effectively reduces to the same equations as the sequential inhibition model. In particular
we get the equivalent of (22) by rewriting (42) using (39):

[ ˆAMCC2] ≈ 1

k
[ÂC]2 with k =

[Atotal]

[Mtotal]

KM :C
D KMCC1:C

D KA:MCC2
D

(KA:C
D )2

. (44)

This explains why for small levels of Cdc20 the steady state behavior is basically the same for sequential
and competitive inhibition given equivalent choice of parameters. Again, k is a small number provided
that binding is strong and Atotal does not exceed Mtotal. Moreover, we see that the funneling effect is
indifferent to the order in which the complexes are formed. This is a straightforward consequence of
mass action kinetics and detailed balancing.

Analogously to the case of sequential inhibition, [AMCC2] dominates (38) for KD → 0, so we can
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derive the following approximations:

[ ˆAMCC2] ≈ [Ctotal]

2
, (45)

[Ĉ] ≈

√
KM :C

D KMCC1:C
D KA:MCC2

D

2[Atotal][Mtotal]

√
[Ctotal] , (46)

[ÂC] ≈

√
1

2

[Atotal]

[Mtotal]

KM :C
D KMCC1:C

D KA:MCC2
D

(KA:C
D )2

√
[Ctotal] , (47)

[ ˆMCC1] ≈

√
1

2

[Mtotal]

[Atotal]

KMCC1:C
D KA:MCC2

D

KM :C
D

√
[Ctotal] , (48)

[ ˆMCC2] ≈ KA:MCC2
D

2[Atotal]
[Ctotal] . (49)

Again we reproduce the approximately linear behavior of APC/CAMCC2 and the square root behavior of
the other species (with the exception for free MCC2, which increases linearly, but with a very small
slope).

Approximation for large Cdc20

For high levels of Ctotal, we can assume that

[Mtotal] ≈ [AMCC2] + [MCC2] , (50)

[Atotal] ≈ [AMCC2] + [AC] , (51)

meaning that all species that bind to free C (i.e. A, M , and MCC) are approximately zero. With the help
of the conservation relation (38) we can then immediately derive

[Ctotal] ≈ 2 · [Mtotal] + [AC] + [C] . (52)

This means that the system effectively reduces to a simple competition model where the inhibitor MCC2

competes with C for free A.
It can be easily shown that the active species will always outcompete the inactive species if levels of

Cdc20 are high. First of all, note that if [Ctotal] → ∞, then also [C] → ∞. From detailed balancing, we
then get

[A] =
KA:C

D [AC]

[C]
<

KA:C
D [Atotal]

[C]
→ 0 , (53)
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which entails

[AMCC2] =
[A][MCC2]

KA:MCC2
D

<
[A][Mtotal]

KA:MCC2
D

→ 0 . (54)

For the special case of KD = KA:MCC2
D = KA:C

D , we can derive simple expressions for [ÂC] and
[ ˆAMCC2] as functions of [Ctotal]. Given detailed balancing, Eq. (50) leads to

[Mtotal] ≈
[Â][ ˆMCC2]

KD

+ [ ˆMCC2] =
KD + [Â]

KD

· [ ˆMCC2] , (55)

or

[ ˆMCC2] ≈ [Mtotal]
KD

KD + [Â]
. (56)

From Eq. (52) we can derive an analogous expression for [Ĉ]:

[Ctotal]− 2 · [Mtotal] ≈
KD + [Â]

KD

· [Ĉ] , (57)

or

[Ĉ] ≈ ([Ctotal]− 2 · [Mtotal])
KD

KD + [Â]
. (58)

Furthermore, rewriting (51) and afterwards substituting (56) and (58), we get

[Atotal] ≈
[Â][ ˆMCC2]

KD

+
[Â][Ĉ]

KD

≈ [Â] ·

(
[Mtotal]

KD + [Â]
+

[Ctotal]− 2 · [Mtotal]

KD + [Â]

)
, (59)

from which we obtain

[Â]

KD + [Â]
≈ [Atotal]

[Ctotal]− [Mtotal]
. (60)

Combining (56), (58), and (60), we finally get

[ ˆAMCC2] =
[Â][ ˆMCC2]

KD

≈ [Atotal][Mtotal]

[Ctotal]− [Mtotal]
(61)
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and

[ÂC] =
[Â][Ĉ]

KD

≈ [Atotal]([Ctotal]− 2 · [Mtotal])

[Ctotal]− [Mtotal]
. (62)

Furthermore, from (50) and (61) we get

[ ˆMCC2] =
[Mtotal([Ctotal]− [Mtotal]− [Atotal])]

[Ctotal]− [Mtotal]
. (63)

From (61) and (62) we obtain the simple expression

[ÂC]

[ ˆAMCC2]
=

[Ctotal]

[Mtotal]
− 2 . (64)

Thus, the ratio of active to inactive APC/C increases linearly with the level of Cdc20.
Note that these expressions depend only on the total amounts and not on the association/dissociation

parameters (in particular, we did not use the assumption of strong binding). Most importantly, and as
already shown, we will always get AC → Atotal and AMCC2 → 0 for Ctotal → ∞. In other words, the
competitive inhibition model always becomes checkpoint deficient for sufficiently high levels of Cdc20.

The approximations for the competitive inhibition model are shown in S2 Fig (ii).

3.3 Combined Model

Equations

The combined model includes both ways of producing the inhibited species AMCC2. The corresponding
set of equations is

d[AC]

dt
= RA:C�AC −RAC:MCC1�AMCC2 , (65)

d[MCC1]

dt
= RM :C�MCC1 −RMCC1:C�MCC2 −RAC:MCC1�AMCC2 , (66)

d[MCC2]

dt
= RMCC1:C�MCC2 −RA:MCC2�AMCC2 , (67)

d[AMCC2]

dt
= RA:MCC2�AMCC2 +RAC:MCC1�AMCC2 . (68)

The conservation relations are the same as (36), (37), and (38). For this network the detailed balancing
property does not follow directly from the equations, but requires certain restricting conditions on the
rate constants. It can be shown that the condition for detailed balancing for this model is

KA:C
D ·KAC:MCC1

D = KMCC1:C
D ·KA:MCC2

D (69)
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(a procedure for deriving this condition can be found for instance in [S3]). For our analysis we assume
that detailed balancing holds. The condition is obviously fulfilled in the special case that all KDs are the
same.

Approximation for small Cdc20

Given detailed balancing, the derivation of steady state expressions can be carried out in the same way
as in the case of the competitive inhibition model in Section 3.2. The relationship between active and
inhibited species is described both by (22) and (44) because the two equations coincide when condition
(69) holds. This explains why the behavior of the combined model for small Cdc20 is the same as in the
other two models.

Approximation for large Cdc20

As in Section 3.2, we can assume that all reactions involving free C are saturated. In particular, we
have MCC1 ≈ 0, which means that the sequential production of the inhibitor RAC:MCC1�AMCC2, that
is added with respect to the competitive inhibition model, is negligible. As a consequence, the behavior
of the combined model at saturating levels of Cdc20 is the same as the competitive inhibition model.

The approximations for the combined model are shown in S3 Fig (iii).

3.4 Model with Mad3 as a separate species

Equations:

To incorporate Mad3 as a separate species, we assume that first Mad2 (M2) binds to Cdc20 (C) to form
Mad2:Cdc20 (M2C). Afterwards this complex binds to free Mad3 (M3) to form MCC1. This translates
to the following equations for the competitive inhibition case:

d[M2C]

dt
= RM2:C�M2C −RM2C:M3�MCC1 , (70)

d[MCC1]

dt
= RM2C:M3�MCC1 −RMCC1:C�MCC2 , (71)

and to

d[M2C]

dt
= RM2:C�M2C −RM2C:M3�MCC1 , (72)

d[MCC1]

dt
= RM2C:M3�MCC1 −RAC:MCC1�AMCC2 , (73)

for the sequential inhibition case. The equations for [AC], [MCC2], and [AMCC2] are unchanged with
respect to 3.1 and 3.2.
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As before, the concentrations of the free species can be obtained from conservation relations:

[Atotal] = [A] + [AC] + [AMCC2] , (74)

[M2total] = [M2] + [M2C] + [MCC1] + [MCC2] + [AMCC2] , (75)

[M3total] = [M3] + [MCC1] + [MCC2] + [AMCC2] , (76)

[Ctotal] = [C] + [AC] + [M2C] + [MCC1] + 2 · ([MCC2] + [AMCC2]) . (77)

Approximation for small Cdc20

We can use the same strategy as before, based on the property of detailed balancing, to derive steady state
expressions for AC and AMCC2. But whereas the expression for AC is unchanged:

[ÂC] ≈ [Atotal][Ĉ]

KA:C
D

, (78)

due to the additional species we now get

[ ˆAMCC2] ≈ [Atotal][M2total][M3total][Ĉ]2

KA:C
D KM2:C

D KM2C:M3
D KAC:MCC1

D

(79)

for sequential inhibition, and

[ ˆAMCC2] ≈ [Atotal][M2total][M3total][Ĉ]2

KM2:C
D KM2C:M3

D KMCC1:C
D KA:MCC2

D

(80)

for competitive inhibition.
As a result, we get the following relationship between active and inhibited species:

[ ˆAMCC2] ≈ 1

k
[ÂC]2 , (81)

where

k =
[Atotal]

[M2total][M3total]

KM2:C
D KM2C:M3

D KAC:MCC1
D

KA:C
D

(82)

for sequential inhibition, and

k =
[Atotal]

[M2total][M3total]

KM2:C
D KM2C:M3

D KMCC1:C
D KA:MCC2

D

(KA:C
D )2

(83)

for competitive inhibition.
Comparing this to (22), the corresponding equation for the model without M3, we see that the con-

stant k is now even smaller (provided that the KDs are smaller than M2 and M3) because there are four
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reactions to build the inhibited species. This means that the funneling effect is even more pronounced in
a model with Mad3 as a separate species. This can be seen in S3 Fig B.

Approximation for large Cdc20

For large levels of Cdc20 the model including Mad3 behaves very similarly to the simpler models, pro-
vided that [M3total] = [Mtotal], i.e. M3 is limiting.

For the competitive inhibition scenario, the model is approximated by exactly the same reduced net-
work as the model in 3.2. This is because MCC1 ≈ 0, and therefore also M3,M2C ≈ 0 (using again
detailed balancing).

In the case of sequential inhibition we are left with two remaining reactions: RM2C:M3�MCC1 and
RAC:MCC1�AMCC2. Thus there is again an equilibrium between AC and AMCC2, but the levels are
slightly shifted because [MCC1] < [M3total]. Under the assumption that binding of M2C to M3 is
strong, the asymptotic levels of AC and AMCC2 are very close to those in 3.1, as can be seen in S3 Fig
B (i).
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