
Supplementary Text 

We designed gRNAs targeting SOD1, TBK1, and TARDBP for use with AsCpf1(S542R/K607R), a modified, highly 

efficient Cpf1 variant1. We first tested the efficacy of these guides in HEK293FT cells and selected the gRNA 

with the highest indel rate for each target (Supplementary Fig. 22). We next targeted these three genes in our 

engineered neural tissues using a dual vector system in which one vector contained hSyn1-promoter-driven 

AsCpf1(S542R/K607R) enabling specific targeting of human iN cells and the second vector contained the 

gRNA (Supplementary Fig. 23a,b). The second vector also included hSyn1-promoter-driven mCherry fluorescent 

protein, fused to KASH transmembrane domain, to enable fluorescent-activated cell sorting (FACS) of targeted 

human iN cells (Supplementary Fig. 23a). These vectors were packaged into adeno-associated viral vectors 

(AAVs), which were used to infect co-cultured iN cells in a 3D hydrogel matrix (Supplementary Fig. 23c). 

 

Supplementary Methods 

Immunostaining and imaging. For immunofluorescent staining of iN cells cultured on 2D for 2 weeks, cells on 

coverslips in 6-well plates were fixed with 4% paraformaldehyde for 20 min at room temperature (RT) and then 

washed 3 times with DPBS. Coverslips containing fixed cells were individually transferred to each well of a 24-

well plate for immunostaining procedure.  For immunofluorescent staining of iN cells 3D cultured in 200 µl 4.6 

mg/ml Matrigel for 30 days without use of Ara-C, cell encapsulating hydrogels were fixed with 4% PFA for 1 h 

at RT and 2 h at 4 °C and then washed 3 times with DPBS at RT. These hydrogels were then frozen in freezing 

medium (Tissue-Tek O.C.T. Compound) and maintained at -80 °C overnight. Sections of cell encapsulating 

hydrogels were cut at 20 µm using a cryostat (Leica CM1950) and washed with DPBS to remove freezing 

medium before immonostaining. For immunofluorescent staining of astrocytic cells generated using 

“morphogen + fbs” condition, at day 35 cells were fixed on coverslips as previously described and transferred to 

the 24-well plate for immunostaining. Mouse astrocytes were fixed in the same manner for immunostaining. 

Samples were blocked with 5% normal goat serum (Sigma) and 0.15% Triton X-100 (Sigma) in DPBS for 1 h at 

RT. Samples were then incubated with primary antibodies in 2.5% normal goat serum and 0.1% Triton X-100 in 

DPBS overnight at 4 °C. Following the washing step 3 times with 0.1% Triton X-100 in DPBS, samples were 

incubated with secondary antibodies in 2.5% normal goat serum and 0.1% Triton X-100 in DPBS for 1 h at RT. 

After washing 3 times with 0.1% Triton X-100 in DPBS, samples were mounted using Prolong Diamond Antifade 

Mountant with DAPI (Thermo-Fisher Scientific) and imaged using a fluorescent microscope (Zeiss AX10). 

Quantification of astrocytic cells was performed using ImageJ software. Stem cells encapsulated in 200 µl 4.6 

mg/ml Matrigel were stained with calcein (Thermo-Fisher Scientific) after 5 days of neural induction and 

imaged using a fluorescent microscope (Zeiss AX10). Day 2 phase images of iN cells encapsulated in Matrigel 

without Ara-C and phase images at different time points of cells exposed to astrocytic cell generation protocols 

were taken using the same microscope.  
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For immunofluorescent staining of iN cells 3D cultured in 200 µl 4.6 mg/ml Matrigel for 2 weeks with Ara-C, 

cell-laden hydrogels were fixed with 4% PFA for 1 h at RT and 2 h at 4 °C and then washed 3 times with DPBS at 

RT. Samples were immersed in blocking solution of 5% normal goat serum (Sigma) and 0.15% Triton X-100 

(Sigma) in DPBS and placed on a shaker overnight at 4 °C. Samples were then immersed in a solution with a 

primary antibody in 2.5% normal goat serum and 0.1% Triton X-100 in DPBS and placed on a shaker for 24 h at 

4 °C. Samples were washed 2 times with 0.1% Triton X-100 in DPBS and each wash was performed for 3 h on a 

shaker at RT. Samples were immersed in a solution with a secondary antibody in 2.5% normal goat serum and 

0.1% Triton X-100 in DPBS and placed on a shaker for 18 h at RT. Samples were then washed as before. 

Immunostained cell-laden hydrogels were mounted using Prolong Diamond Antifade Mountant with DAPI on 

microscope slides by gently pressing them with coverslips and imaged using a confocal microscope (Zeiss LSM 

710).  

 

The following primary antibodies were used in this study: mouse anti-Map2 (M4403, Sigma, 1:300-500); rabbit 

anti-Pax6 (901301, BioLegend, 1:300); chicken anti-GFAP (ab4674, Abcam, 1:500); mouse anti-S100β 

(ab11178, Abcam, 1:500); rabbit anti-Vimentin (5741, Cell Signaling, 1:100). Secondary antibodies used in this 

study are: Alexa Fluor 488, 568 and/or 647 (Life Technologies, 1:500-1:1,000).  

 

RT-qPCR. Total RNA isolates were used for quantitative PCR (qPCR) experiments. For qPCR validation 

experiments for 3D and 2D cultures of iN cells, 1 ng total RNA was used for each triplicate of each condition. For 

qPCR experiments of generation of astrocytic cells, 50 ng total RNA was used for each triplicate of each 

condition. For each sample, cDNA synthesis was carried out with RevertAid Reverse Transcription kit (Thermo-

Fisher Scientific) using random hexamers and oligo-DT. RNA expression levels were quantified by qPCR using 

Taqman qPCR probes (Thermo-Fisher Scientific, Supplementary Table 16) and Fast Advanced Master Mix 

(Thermo-Fisher Scientific). qPCR was performed in 5 µl multiplexed reactions within 384-well plates using the 

LightCycler 480 Instrument II. Relative RNA expression was quantified by normalizing to GAPDH.  

 

Electrophysiological measurements. Whole cell voltage-clamp and current-clamp recordings were performed for 

3D cultures/co-cultures and 2D co-cultures of iN cells. 3D cultures/co-cultures and 2D co-cultures were 

infected with AAV U6-hSyn1-mCherry-KASH-hGH vectors encoding non-targeting sgRNA 6 days after forming 

the tissues to identify iN cells in 3D cultures during electrophysiological experiments. Recordings were 

performed in room temperature using K-Gluconate based intracellular solution (in mM: 131 K-Gluconate, 17.5 

KCl, 9 NaCl, 10 HEPES, 1.1 EGTA, 1 MgCl2, 2 Mg-ATP and 0.2 Na-GTP) and artificial cerebrospinal fluid (in mM: 

119 NaCl, 2.3 KCl, 1 NaH2PO4, 11 Glucose, 26.2 NaHCO3, 1.3 MgCl2, 2.5 CaCl2) as the external solution. Data 

were recorded using pClamp 10 (Molecular Devices). Spontaneous synaptic currents were recorded with the 

voltage clamped at -70 mV. Membrane capacitance and resistance were measured online using the built-in 

pClamp membrane test. The resting membrane potential was recorded under current clamp configuration. 
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Current voltage relationships of the neurons were also recorded under current clamp configuration, where 

changes in voltage and subsequent action potentials were recorded after injecting hyperpolarizing and 

depolarizing currents (-200 pA to +200 pA, 50 pA steps). All recordings were performed using a patch pipette 

with a resistance ranging from 3-5 mΩ. 

 

Genome editing. Guides for Cpf1-mediated genome editing were analyzed for efficacy in human embryonic 

kidney 293FT (HEK293FT) cells. Each crRNA guide was cloned into a separate U6-driven crRNA expression 

plasmid (U6-crRNA-CMV-mCherry). An expression vector for the AsCpf1 S542R/K607R PAM variant 

(pcDNA3.1-CMV-AsCpf1(TYCV)-NLS-3xHA) was used as described previously1. HEK293FT cells were 

maintained in Dulbecco’s modified Eagle’s medium supplemented with 10% FBS (Gibco) at 37 °C with 5% CO2 

incubation. Cells were seeded one day prior to transfection in 96-well plates (Corning) at a density of 

approximately 2.4x104 cells per well and transfected at 90-100% confluency using Lipofectamine 2000 

(Invitrogen), according to the manufacturer’s recommended protocol. A total of 100 ng Cpf1 plasmid and 50 ng 

crRNA expression plasmid were delivered per well. Cells were harvested using Quick Extract DNA extraction 

solution (Epicentre) according to the manufacturer’s recommended protocol. Indel frequencies were quantified 

by deep sequencing as described previously1. 

 

For delivery, the AAV hSyn1-HA-NLS-AsCpf1(TYCV)-spA vector was generated by PCR amplifying the 

AsCpf1(TYCV) encoding sequence1, and cloning of the resulting PCR template into AAV backbone2 containing 

HA-NLS and a short poly A signal , under control of the human Synapsin 1 promoter (hSyn1). For the generation 

of AAV U6-hSyn1-mCherry-KASH-hGH vectors encoding sgRNAs targeting SOD1, TBK1, and TARDBP (plus a 

non-targeting control sgRNA), oligonucleotides (Integrated DNA Technologies) containing sgRNA sequences 

were annealed and cloned into AAV U6-DR(SapI)-hSyn1-mCherry-KASH-hGH scaffold construct. All 

constructs were verified by Sanger sequencing.  

 

High-titer AAV1/2 virions encoding AAV hSyn1-HA-NLS-AsCpf1(TYCV)-spA and AAV U6-hSyn1-mCherry-

KASH-hGH vectors encoding sgRNAs targeting SOD1, TBK1, and TARDBP (plus a non-targeting control sgRNA) 

were produced as described previously2. Briefly, HEK293T cells were transfected with AAV1 and AAV2 

serotype plasmids in equal ratios, transgene plasmid and pDF6 helper plasmid using polyethyleneimine. 72 h 

after transfection, cells were harvested and high-titer AAV1/2 virus was purified by iodixanol gradient 

ultracentrifugation as previously described3,4. The titer of AAV vectors was determined by real-time 

quantitative PCR (qPCR) using probe and primers specific for the hSyn1 promoter sequence (Integrated DNA 

Technologies). 

 

Genome editing was performed in 3D human neural tissues formed by co-culturing 1:1 mixture of human iN cells 

and human astrocytic cells at a final cell concentration of 20x106 cells/ml in 100 µl 3D hydrogels (7.36 mg/ml 
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Matrigel), and the culture mediums did not contain doxycycline, as described above. Astrocytic cells formed by 

following the protocol termed “morhogen + fbs” were cultured until day 70 (passage 3) and detached from 

culture plates with accutase for co-culturing with iN cells. 6 days after forming 3D human neural tissues, AAV 

infection was carried out using concentrated AAV constructs containing Cpf1 or targeting/non-targeting 

gRNAs. Each hydrogel encapsulated a total 2x106 cells and was in 3 ml of neural culture medium. A 1:1 mixture 

of AAVs containing Cpf1 and AAVs containing targeting/non-targeting gRNA was mixed with 3 ml culture 

medium of each 3D tissue by having 40x103 viral copies of each vector per cell. Each condition of targeting and 

non-targeting gRNA had two replicate tissues. After mixing AAV mixtures with culture mediums, 6-well plates 

containing 3D tissues were gently shaken for 1 min and then transferred to an incubator at 37 °C with 5% CO2 

atmosphere. For 5 days following AAV infection, the culture medium of 3D tissues was not changed. After that, 

one third of the whole culture medium was renewed with neural culture medium. 24 days after AAV infection, 

cells in 3D tissues were disassociated by following the protocol described above (see methods for 3D co-

cultures of iN cells with human astrocytic cells and with human primary astrocytes). A population of 1x103 

mCherry+ iN cells was collected by FACS for each disassociated 3D tissue in a well of 96-well plate containing 5 

µl of QuickExtract DNA extraction buffer (Epicentre). The 96-well plate was then spun down at 2,000g for 1 

min.   

 

Cells suspended in QuickExtract DNA solution were incubated at 65 °C for 15 min, 68 °C for 15 min, and 98 °C 

for 10 min. Genomic DNA was PCR-amplified with Herculase II fusion polymerase over 28 cycles using locus-

specific primers. An additional round of PCR was then performed to attach Illumina handles to amplicons for 

deep sequencing. Next-generation sequencing (NGS) was performed and indel frequencies were quantified as 

described previously1. For the targeting gRNA, one guide per locus was used. DNA from two biological 

replicates was used for NGS analysis. For the non-targeting control, DNA from two biological replicates was 

pooled for NGS analysis. 
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Supplementary Figures

Supplementary Figure 1 | Method for generating pure 3D human neural tissue. (a) Schematic showing neural tissue 
formation by encapsulating hESCs within a 4.6 mg/ml Matrigel hydrogel and activating transcription factors (NGN2 and 
NGN1) by delivering doxycyclin to cells in the matrix. Image of calcein stained 3D cultured cells at day 5 show 
encapsulated cells form aggregates. (b) Schematic showing neural tissue formation by first inducing neurons from 
hESCs on 2D cultures by activating transcription factors (NGN2 and NGN1) followed by drug selection (puromycin), and 
then encapsulation of iN cells within a 4.6 mg/ml Matrigel hydrogel. (c) Phase image of encapsulated cells following 
neural induction on 2D cultures. Arrows point to cell aggregates formed in the hydrogel matrix within 2 days. (d) Cell 
aggregates formed in 3D (4.6 mg/ml) Matrigel hydrogels resulted in spheroids at day 30 which are shown by fluorescent 
images of cells stained with antibodies against MAP2 and PAX6. (e) Initial neural induction on 2D cultures was modified 
by performing stronger drug selection (puromycin) following transcription activation (NGN2 and NGN1) in the presence 
of a proliferation inhibitor (Ara-C) introduced into culture medium after encapsulating cells in 3D (4.6 mg/ml Matrigel) 
matrix. Confocal z-stack images (with 10X, 20X, and 63X objectives) of pure 3D neural tissue at day 40 without cell 
aggregates formed by culturing iN cells in 4.6 mg/ml Matrigel (with MAP2 and DAPI staining).
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Supplementary Figure 2 | Analysis of 3D cultured iN cells. (a) Gene set enrichment analysis (GSEA) of representative 
enriched biological processes or signaling pathways in 3D (red) and 2D (blue) cultured iN cells at week 5 (represented 
in Fig. 1a,c). Normalized Enrichment Scores and nominal p values are shown as well as log

2
(fold change) (bottom) of 

genes contributing to core enrichment for each plot. (b) qPCR validation of selected genes from RNA-sequencing data 
at 5 weeks. (n=3 for all conditions). 
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Supplementary Figure 3 | Analysis of the effect of batch and concentration of Matrigel on the gene expression profiles 
of 3D cultured iN cells.  (a) Principal component analysis (PCA) of whole transcriptome data of 3D and 2D cultured iN 
cells at 1 week and 5 weeks (n=3 for each condition). For 3D cultures, human iN cells (at a concentration of 10x106 

cells/ml) were encapsulated in Matrigel (4.6 mg/ml) from two different batches, Batch-1 Matrigel and Batch-2 Matrigel. 
(b) Venn diagrams showing number of differentially upregulated genes with p<0.05 for 3D vs 2D cultures of iN cells 
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using two different batches of Matrigel and overlap genes at week 5 (adjusted p value is 0.05). (c) Gene ontology (GO) 
analysis for differentially upregulated and downregulated genes with p<0.05 for 3D vs 2D cultures of iN cells using two 
different batches of Matrigel (adjusted p value is 0.05). (d) PCA of whole transcriptome data of 3D cultured iN cells 
cultured (at 10x106 cells/ml) in either 4.6 mg/ml or 7.36 mg/ml Matrigel (from same batch) at 1 week and 5 weeks (n=3 
for each condition). (e) GO analysis for upregulated genes with p<0.05 in iN cells cultured within either 4.6 mg/ml or 
7.36 mg/ml Matrigel at week 5. Differential expression analysis between 3D cultures in 4.6 mg/ml and 7.36 mg/ml 
Matrigel was performed by taking adjusted p value 0.05. 
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Supplementary Figure 4 | Long-term culture of iN cells in 3D hydrogels promotes expression of some genes associated 
with channels and healthy electrophysiological properties relative to iN cells on 2D cultures. (a) Relative expression of 
genes associated with channel activity and channel complexes showing significant (p<0.05) upregulation in iN cells 
cultured either within 4.6 mg/ml or 7.36 mg/ml Matrigel compared to 2D cultured iN cells at 5 weeks (n=3 for each 
condition). (b) iN cells cultured in 7.36 mg/ml Matrigel at 36 days exhibit neuronal excitability and spontaneous 
excitatory postsynaptic currents (sEPSCs) (n=6 iN cells). 3 out of 6 patched 3D cultured iN cells showed spontaneous 
activity. iN cells were patched while they were in the 3D matrix; 2D cultured iN cells at same time point could not be 
patched. (c) Representative phase images at week 5 of 2D cultured iN cells and 3D cultured iN cells (in 7.36 mg/ml 
Matrigel). 
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Supplementary Figure 5 | Filtering mouse reads from RNA-seq data involving co-cultures of human iN cells with 
mouse astrocytes and analysis of the effect of 3D co-culture of human iN cells with mouse astrocytes on gene 
expression profile of human iN cells. (a) We compare the number of mouse genes expressed to the number of human 
genes expressed in each sample, as well as comparing the number of reads mapping to mouse (excluding those mapping 
to Rn45s) to the number of reads mapping to human. Note these results are based on running RSEM using a joint human 
and mouse transcriptome. We see that samples consisting only of mouse cells have very little contaminating human 
reads and vice versa, while mixed samples contain both. (b) PCA for whole-transcriptome data of iN cells in 3D 
co-cultures (iN cells + mouse astro) or pure iN cells cultures (just iN cells) at 1 week and 5 weeks (n=3 for each 
condition). For co-cultures, iN cells derived from hESCs and mouse astrocytes (1:1 ratio at total 20x106 cells/ml) were 
co-cultured in 3D (4.6 mg/ml Matrigel) hydrogels. For pure iN cells cultures, iN cells (at 10x106 cells/ml) were cultured 
in 3D (4.6 mg/ml Matrigel) hydrogels. (c) Relative expression of genes significantly (p<0.05) upregulated in 3D 
co-cultured iN cells compared to 3D pure cultures of iN cells at 5 weeks associated with neurological processes. 
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Supplementary Figure 6 | Electrophysiological properties of 3D cultured/co-cultured or 2D co-cultured iN cells. 
Human iN cells cultured with or without mouse astrocytes in 3D hydrogels (7.36 mg/ml Matrigel) and co-cultured with 
mouse astrocytes on 2D surfaces. Electrophysiological measurements on iN cell cultures with and without astrocytes 
in 3D hydrogels were conducted at day 45 and 36, respectively.  Electrophysiological measurements on iN cell 
co-cultures on 2D surfaces were conducted at day 44. (a) Plots demonstrating excitability iN cells co-cultured with 
mouse astrocytes (Neuron+Astro) in a 3D hydrogel (7.36 mg/ml Matrigel) or on a 2D surface. (b) Absolute resting 
membrane potential and membrane capacitance for iN cells co-cultured with mouse astrocytes (Neuron+Astro) either 
in 3D or on 2D and 3D only iN cell cultures (Neuron) are shown. Each dot represents an absolute resting membrane 
potential value or a membrane capacitance value for a neuronal cell in a culture condition. Error bars show mean ± SEM. 
(c) Plots showing representative sEPSCs of human iN cells co-cultured with mouse astrocytes (Neuron+Astro) in 3D 
hydrogels (7.36 mg/ml Matrigel) (n=6 iN cells were measured for spontaneous activity) or on 2D surfaces (n=5 iN cells 
were measured for spontaneous activity). 6 out of 6 3D co-cultured iN cells showed spontaneous activity, while 5 out 
of 5 2D co-cultured iN cells showed spontaneous activity.
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Supplementary Figure 8 | Mechanical properties of Matrigel 
and composite hydrogels (CHs) and analysis of gene 
expression profiles of human iN cells co-cultured in Matrigel or 
composite hydrogels (CHs). (a) Storage modulus at 0.5 Hz of 
4.6 mg/ml Matrigel and CH formed with varying amounts of 
crosslinker (CRS), CaCl

2
 (1X: 3.125 mM; 2X: 6.25 mM; 4X: 12.5 

mM; 8X: 25 mM) (n=3 for each condition). Error bars show 
mean ± SEM. Relative expression of genes associated with (b) 
forebrain development process, (c) axon guidance pathway, and 
(d) neuron development process in iN cells co-cultured within 
either Matrigel (4.6 mg/ml) or CH formed with varying amounts 
of CRS. Differential expression was processed between 
co-cultures in CHs and co-culture in Matrigel. Differentially 
expressed genes with p < 0.01 and log

2
 (fold change) < -1 or log

2
 

(fold change) > 1 were used for intersecting with the gene sets of 
neuronal processes. 
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Supplementary Figure 9 | Expression profiles of disease-associated genes in iN cells co-cultured in Matrigel or 
composite hydrogels (CHs). Relative expression levels of (a) Autism Spectrum Disorder (ASD)-associated syndromic 
genes (from https://gene.sfari.org/autdb/GSGeneList.do?c=S) and ASD-associated high confidence genes 
(https://gene.sfari.org/autdb/GSGeneList.do?c=1), (b) Amyotrophic Lateral Sclerosis (ALS)-associated genes from 
ALS Online Database (ALSoD)5 (http://alsod.iop.kcl.ac.uk/misc/dataDownload.aspx#C1), ALS-associated genes which 
are top results in ALS Gene Database6 (http://www.alsgene.org/top_results) and Parkinson’s Disease-associated 
genes7 (http://www.pdgene.org/top_results) in iN cells co-cultured within either Matrigel (4.6 mg/ml) or CH formed 
with varying amounts of crosslinker (CRS), CaCl

2
 (1X: 3.125 mM; 2X: 6.25 mM; 4X: 12.5 mM; 8X: 25 mM) (n=3 for each 

condition). Differential expression was processed between co-cultures in CHs and co-culture in Matrigel. Differentially 
expressed genes with p < 0.01 and log

2
 (fold change) < -1 or log

2
 (fold change) > 1 were used for intersecting with the 

disease-associated gene sets.
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Supplementary Figure 10 | Analysis of the effect of varying amounts of CRS in CHs on expression of genes involved in 
neuronal processes. Relative expression of genes involved in forebrain development process, axon guidance pathway 
and neuron development process in iN cells co-cultured within CHs formed with varying amounts of CaCl

2
 (1X: 3.125 

mM; 2X: 6.25 mM; 4X: 12.5 mM; 8X: 25 mM). Differential expression analysis was performed as described in Fig. 4a and 
differentially expressed genes with p < 0.05 and log

2
 (fold change) < -0.75 or log

2
 (fold change) > 0.75 were further used 

for intersecting with the gene sets of neuronal processes. 

15



0.52

0.56

0.60

M
ea

n 
co

rre
la

tio
n

timepoint
● 12 pcw

16 pcw
19 pcw
37 pcw

V1C

0.48

0.52

0.56

0.60

0.64

M
ea

n 
co

rre
la

tio
n

DFC

0.50

0.55

0.60

M
ea

n 
co

rre
la

tio
n

A1C

0.45

0.50

0.55

0.60

●

●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

● ● ●

●

●

●
●

●

●

●

●

●
● ● ●

●

●

●
●

●

●

●

●

●
● ● ●

●

M
ea

n 
co

rre
la

tio
n

M1C

with 1 mg/ml HA

CH 1X
 CRS

CH 2X
 CRS

CH 4X
 CRS

CH 8X
 CRS

with 1.5 mg/ml HA

CH 1X
 CRS

CH 2X
 CRS

CH 4X
 CRS

CH 8X
 CRS

CH 1X
 CRS

CH 2X
 CRS

CH 4X
 CRS

CH 8X
 CRS

a b

3D coculture conditions (without HA)CH 1X CRS CH 2X CRS CH 4X CRS CH 8X CRS

Increasing CH crosslinking density

CH 1X CRS CH 2X CRS CH 4X CRS CH 8X CRS

Increasing CH crosslinking density

Composite Hydrogel (CH)Matrigel Alginate Crosslinker (CRS)HA

Encapsulation in 3D Matrix

Neural Induction

●

●

●

−10

−5

0

5

−15 −10 −5 0 5
PC1: 44% variance

PC
2:

 3
0%

 v
ar

ia
nc

e

CH 8X CRS

CH 2X CRS

Matrigel

CH 1X CRS●

CH 4X CRS

c

Supplementary Figure 11 | Analysis of the effect of HA on the transcriptome of 3D co-cultured human iN cells in CHs 
with varying amounts of CRS. (a) Schematic showing generation of 3D co-cultures of human iN cells and mouse 
astrocytes (at a concentration of 30x106 cells/ml) to evaluate the addition of HA (either at 1 mg/ml or at 1.5 mg/ml 
concentration) within a CH of Matrigel (4.6 mg/ml) and alginate (5 mg/ml) with varying amounts of CaCl

2 
(1X: 3.125 

mM; 2X: 6.25 mM; 4X: 12.5 mM; 8X: 25 mM). (b) PCA based on whole-transcriptome data of co-cultured iN cells in 

16



CHs without HA at week 5 (n=3 for each condition). (c) Pearson’s correlation analysis comparing RNA-sequencing data 
of co-cultured human iN cells in CH with/without two different concentrations of HA with varying amounts of CRS to 
human brain transcriptome data of 4 different subregions at 4 fetal developmental stages. V1C: primary visual cortex 
(striate cortex, area V1/17); DFC: dorsolateral prefrontal cortex; A1C: primary auditory cortex (core); M1C: primary 
motor cortex (area M1, area 4). pcw: post-conceptual weeks. Bars show mean correlation ± SEM.
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Supplementary Figure 12 | Influence of varying the volume of CH on gene expression in 3D co-cultured human iN cells. 
(a) Schematic showing generation of 3D co-cultures of human iN cells and mouse astrocytes (with 30x106 cells/ml) in 
either 200 μl or 50 μl CH (4.6 mg/ml Matrigel and 5 mg/ml alginate) with 2X CRS (6.25 mM CaCl

2
). (b) PCA based on 

whole-transcriptome data of co-cultured iN cells at week 5 in two different volumes of CHs (n=3 for each condition). 
(c) GO analysis for differentially upregulated and downregulated genes with p<0.05 for co-culture of iN cells in 200 μl  
CH vs co-culture of iN cells in 50 μl CH (adjusted p value is 0.05). FDR: False Discovery Rate.  (d) Pearson’s correlation 
analysis of RNA-sequencing data of co-cultured human iN cells in two different volumes of CHs (with 2X CRS) with or 
without two different concentrations of HA compared to human brain transcriptome data of 4 different subregions at 4 
fetal developmental stages. V1C: primary visual cortex (striate cortex, area V1/17); DFC: dorsolateral prefrontal cortex; 
A1C: primary auditory cortex (core); M1C: primary motor cortex (area M1, area 4). pcw: post-conceptual weeks. Bars 
show mean correlation ± SEM. (n=3 for each 3D culture condition, except n=2 for 50 μl CH with 1.5 mg/ml HA).
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Supplementary Figure 13 | Gene expression clusters of iN cells cultured/co-cultured in different culturing conditions 
relative to hESCs. Differential expression was performed for each condition relative to hESCs (n=3 for each condition, 
except n=2 for condition of day 3 iN cells) (symbols are shown at the bottom of the figure). Differentially expressed 
genes for each condition relative to hESCs with p < 0.01 and log

2
 (fold change) < -2 or log

2
 (fold change) > 2 were used. 

Differentially expressed genes for all conditions were then combined. Heatmap displays the relative expression of 
combined genes as 4 clusters in iN cells cultured or co-cultured with mouse astrocytes in various conditions and in 
hESCs. Representative enriched GO terms for genes in each cluster are shown.
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Supplementary Figure 15 | Global comparison of effects of culture conditions on human iN cells. (a) Pearson’s 
correlations between RNA-sequencing data of human iN cells cultured/co-cultured in different 3D conditions at 5 weeks 
(n=3 for each condition) (symbols are shown at the bottom of the figure) and human brain transcriptome data of 2 
different subregions at 3 fetal developmental stages. A1C: primary auditory cortex (core); M1C: primary motor cortex 
(area M1, area 4); pcw: post-conceptual weeks. Each dot shows a correlation value between a 3D condition and a 
brainspan sample. Each brainspan timepoint-region pair has 1 sample except for 12 pcw, which had 3 samples available 
for each subregion. Bars show mean correlation ± SEM. (b) Expression levels of selected disease-associated genes 
across various 3D conditions encapsulating human iN cells (ASD, autism spectrum disorder; ALS, amyotrophic lateral 
sclerosis; AD, Alzheimer’s disease; PD, Parkinson’s disease). Color schemes are based on z-score distribution. 
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Supplementary Figure 16 | Derivation of human astrocytic cells directly derived from hESCs. (a) Schematic showing 
generation of human astrocytic cells from hESCs by combining transcription factors (NGN1 and NGN2) used for neural 
induction, a morphogen (cntf, ciliary neurotrophic factor) and fetal bovine serum (fbs). (b) Expression of GFAP, S100B, 
VIM and ALDH1L1 in treated cells at day 5 and day 15. Undifferentiated hESCs were used as negative control. (Expression 
levels for human primary astrocytes used as positive control can be found in Supplementary Fig. 18b). (n=3 for all 
conditions and bars show mean ± SEM). (n.d. represents not-detected).
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Supplementary Figure 18 | Characterization of human astrocytic cells derived from hESCs. (a) Immunostaining images 
of mouse astrocytes and hESC-derived astrocytic cells at day 35 for GFAP, S100β and Vimentin along with DAPI for 
nuclei staining. Plots show percent of GFAP+, S100β+ and Vimentin+ hESC-derived cells at day 35 (n=3). Scale bars are 
50 μm.(b) Expression of GFAP, S100B, VIM and ALDH1L1 in cells in different conditions of differentiation protocols 
(involved transcription factors (NGN1 and NGN2) used for neural induction, a morphogen (cntf, ciliary neurotrophic 
factor) and fetal bovine serum (fbs)) was measured at day 30. Undifferentiated hESCs were used as a negative control 
and human primary astrocytes were used as positive control (n=3 for all conditions and bars show mean ± SEM, and n.d. 
represents not-detected). (c) Expression levels of marker genes for a variety of cell types across different conditions of 
differentiation protocols at different time points. Undifferentiated hESCs were used as a negative control and human 
primary astrocytes (huPAst) were used as positive control. Astro: Astrocyte marker genes; RG: Radial Glia marker genes; 
NE: Neuroepithelial cells marker genes; IPC: Intermediate Progenitor Cells marker genes; ExcN: Excitatory Neurons 
marker genes; InhbN: Inhibitory Neurons marker genes. Color schemes are based on z-score distribution. (n=3 for all 
conditions). 
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Supplementary Figure 19 | Transcriptomic correlation of cells in astrocytic cell differentiation protocols to cell types 
in human brain and characterization of co-culture of human iN cells with human astrocytic cells. Pearson’s 
correlations between bulk RNA-seq data of cells in astroctytic cell differentiation protocols (involved transcription 
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factors (NGN1 and NGN2) used for neural induction, a morphogen (cntf, ciliary neurotrophic factor) and fetal bovine 
serum (fbs)) at different time points as well as undifferentiated hESCs and human primary astrocytes (huPAst) were 
used as controls (n=3 for all conditions) (columns) and (a) cell types (Excitatory Neurons, Inhibitory Neurons, and 
Astrocytes) defined by DroNC-seq (single-nucleus RNA sequencing with droplet technology) in the adult post-mortem 
human brain tissue8 (rows) and (b) cell types (Int-Neu: Interneurons; IPC: Intermediate Progenitor Cells; RG: Radial Glia 
cells) defined by single-cell RNA sequencing (scRNA-seq) in the human fetal cortex9 (rows) and (c) cell types defined 
by scRNA-seq in the human fetal cortex10 (rows). EN: Excitatory Neuron; PFC: Prefrontal Cortex; V1: Primary Visual 
Cortex; IN: Inhibitory Neuron; CGE: Caudal Ganglionic Eminence; MGE: Medial Ganglionic Eminence; IPC: Intermediate 
Progenitor Cells; RG: Radial Glia cells. See also Supplementary Table 15 for descriptions of cell type clusters defined by 
scRNA-seq in the human fetal cortex10. (d) PCA based on whole-transcriptome data of human astrocytic cells (only 
huAstC) cultured in Matrigel (7.36 mg/ml) and iN cells cultured (only iN) or co-cultured with either human primary 
astrocytes (iN - huPAst) or human astrocytic cells (iN - huAstC) in Matrigel (7.36 mg/ml) at 5 weeks. (n=3 for each 
condition, 103 iN cells were sorted from each replicate of each culture/coculture condition). (e) Expression levels of 
neuronal, radial glia (RG) and astrocyte (Astro) marker genes in conditions shown in (d), demonstrating minimal 
contamination from human astrocytic cells and human primary astrocytes among population of iN cells sorted from their 
co-cultures (iN – huAstC and iN – huPAst). 
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Supplementary Figure 20 | Analysis of scRNA-seq data. (a) A t-distributed stochastic embedding (tSNE) plot showing 
identified clusters by using Louvain clustering for scRNA-seq profiles shown in Fig. 7a, with cells colored by cluster 
membership. (b) tSNE plots showing expression levels of cell type marker genes for identified clusters of cell types shown in 
Fig. 7b with cells colored by the expression level of marker genes. CPM: Counts per million. (SNAP25 and SLC17A6, neuron 
markers; GFAP and S100B, astrocyte markers; PAX6 and HES1, radial glia markers; GAD2, inhibitory neuron marker; COL1A2, 
neuroepithelial cell marker). (c) Heatmap showing average expression of various cell type markers genes (rows) in identified 
clusters of cell types shown in Fig. 7b (columns). (d) Heatmap showing average expression of various cell type markers 
genes (rows) in identified clusters shown in (a) (columns). (e) Pearson’s correlations between the average gene expression 
in identified clusters shown in (a) (rows) and cell types defined by scRNA-seq in the human fetal cortex9 (columns). Int-Neu: 
Interneurons; IPC: Intermediate Progenitor Cells; RG: Radial Glia cells. (f) Pearson’s correlations between the average gene 
expression in identified clusters shown in (a) (rows) and cell types (Excitatory Neurons, Inhibitory Neurons, and Astrocytes) 
defined by DroNC-seq in the adult post-mortem human brain tissue8 (columns). (g) Pearson’s correlations between the 
average gene expression in identified clusters shown in (a) (rows) and main clusters and forebrain subclusters defined by 
scRNA-seq in six-moth-old human brain organoids11 (columns). Forebrain subclusters were derived from forebrain cluster 
shown in main clusters. IPC: Intermediate Progenitor Cells. 
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Supplementary Figure 21 | Comparison of scRNA-seq data of 3D neural tissues and scRNA-seq data of six-month-old 
human brain organoids to scRNA-seq data of fetal human cortex. (a) Pearson’s correlations between the average gene 
expression in identified clusters shown in Fig. 7b (rows) and cell types defined by scRNA-seq in the human fetal cortex10 

(columns). EN: Excitatory Neuron; PFC: Prefrontal Cortex; V1: Primary Visual Cortex; IN: Inhibitory Neuron; CGE: Caudal 
Ganglionic Eminence; MGE: Medial Ganglionic Eminence; IPC: Intermediate Progenitor Cells; RG: Radial Glia cells. See 
also Supplementary Table 15 for descriptions of cell type clusters defined by scRNA-seq in the human fetal cortex10. 
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(b) Pearson’s correlations between the average gene expression in identified clusters shown in Supplementary Fig. 20a 
(rows) and cell types defined by scRNA-seq in the human fetal cortex10 (columns). (c) Pearson’s correlations between 
main clusters and forebrain subclusters defined by scRNA-seq in six-moth-old human brain organoids11 (rows) and cell 
types defined by scRNA-seq in the human fetal cortex10 (columns). Forebrain subclusters were derived from forebrain 
cluster shown in main clusters. IPC: Intermediate Progenitor Cells. (d) Differential expression analysis between 
astrocytes and RG cells in the scRNA-seq dataset of the human fetal cortex10 was performed. The top 9 
astrocyte-specific genes and top 9 RG-specific genes were identified based on log fold change. Heatmap showing 
average expression of top 9 astrocyte-specific genes and top 9 RG-specific genes (rows) in astrocyte and RG clusters 
defined by scRNA-seq in the human fetal cortex10 (columns). CPM: Counts per million. (e) Heatmap showing average 
expression of top 9 astrocyte-specific genes and top 9 RG-specific genes (rows) in astrocyte and RG clusters shown in 
Fig. 7b (columns). (f) Heatmap showing average expression of top 9 astrocyte-specific genes and top 9 RG-specific 
genes (rows) in astrocyte and RG clusters defined by scRNA-seq in six-moth-old human brain organoids11 (columns). 
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PAM Target Sequence
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guide-2 TTTC TGGATAGAGGATTAAAGTGAGGA
guide-3 ACCG TGTTTTCTGGATAGAGGATTAAA
guide-4 TTCA ATAGACACATCGGCCACACCATC

PAM Target Sequence
guide-1 TTTC TCTTTAGGAAAAGTAAAAGATGT
guide-2 ACCC GAATATATTCAGACATCTTTTAC
guide-3 TTCG GTTACCCGAATATATTCAGACAT
guide-4 TCCA GAAAACATCCGATTTAATAGTGT
guide-5 TTCC ATGGGAGACCCAACACTATTAAA
guide-6 TTCG GTTGTTTTCCATGGGAGACCCAA

PAM Target Sequence
guide-1 TCCA GCCAAGATGCAGAGCACTTCTAA
guide-2 GCCA CAGATGATTAGAAGTGCTCTGCA
guide-3 TTTA ATAACATAAGCTTCCTTCGTCCA

SO
D

1
TA

R
D

B
P

TB
K

1

WT AsC
pf1

S54
2R

/K60
7R

0

10

20

30

40

50

60

%
 in

de
l

SOD1

guide-1
guide-2
guide-3
guide-4

WT AsC
pf1

S54
2R

/K60
7R

0

10

20

30

40

50

60

%
 in

de
l

TARDBP

guide-1
guide-2
guide-3
guide-4
guide-5 
guide-6

WT AsC
pf1

S54
2R

/K60
7R

0

10

20

30

40

50

60
TBK1

%
 in

de
l

guide-1
guide-2
guide-3

Supplementary Figure 22 | Editing efficiencies of gRNAs for three targeted genes. Four gRNAs targeting SOD1 locus, 
six gRNAs targeting TARDBP locus, and three gRNAs targeting TBK1 locus were tested for efficacy with AsCpf1 
(S542R/K607R) and wild-type AsCpf1 (WT AsCpf1) by transfecting HEK293FT cells. PAM and target sequences for 
each gRNA are shown. Plots show indel (MLE) percentages of all tested gRNAs for each targeted gene. (n=3 for each 
condition and bars show mean ± SEM).
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Supplementary Figure 23 | Perturbation of disease-implicated genes in 3D tissues composed of human iN and astrocytic 
cells. (a) Schematic of AAV vector design for gene editing using AsCpf1(S542R/K607R). Bottom: gray rectangle, direct 
repeat; green diamond, spacer for targeted gene. Bottom vector encodes the mCherry-KASH fusion protein for identification 
of transduced iN cells. (b) Graphical representation of the human SOD1, TARDBP, and TBK1 loci displaying 
AsCpf1(S542R/K607R) target locations; targeted genomic locus for genes indicated in blue and PAM sequences marked in 
magenta (see also Supplementary Fig. 22). (c) Schematic for genome editing in 3D neural tissues. (d) Representative 
mutation patterns detected by sequencing of SOD1, TARDBP, and TBK1 loci. (e) Indel analysis of Cpf1-mediated editing of 
SOD1, TARDBP, and TBK1 using AAV vectors in mCherry+ iN cells sorted from 3D human neural tissues (n = 2 human neural 
tissues for targeting guides). A total of 103 mCherry+ iN cells were sorted for each condition.
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Supplementary Tables 

Supplementary Table 1 | Differentially expressed genes at 1 week between iN cells cultured in 4.6 mg/ml 

Matrigel and iN cells cultured on 2D. 

 

Supplementary Table 2 | Differentially expressed genes at 5 week between iN cells cultured in 4.6 mg/ml 

Matrigel and iN cells cultured on 2D.  

 

Supplementary Table 3 | Differentially expressed genes at 5 week between iN cells co-cultured with mouse 

astrocytes in 4.6 mg/ml Matrigel and iN cells co-cultured with mouse astrocytes on 2D.  

 

Supplementary Table 4 | Genes in each cluster for heatmap in Fig. 2c. 

 

Supplementary Table 5 | Genes in each cluster for heatmap in Fig. 3c. 

 

Supplementary Table 6 | Genes ranked based on their squared log fold change in iN cells co-cultured (at total 

cell concentration 20x106 cells/ml) in Matrigel (4.6 mg/ml) compared to the V1C brain region at 19 pcw, 

normalized by the squared log fold change of iN cells co-cultured (at total cell concentration 20x106 cells/ml) 

in CH 4X CRS compared to the V1C brain region at 19 pcw, as well as Gene Ontology results for genes with score 

> 3 and for genes with score < -3. 

 

Supplementary Table 7 | Genes ranked based on their squared log fold change in iN cells co-cultured (at total 

cell concentration 20x106 cells/ml) in Matrigel (4.6 mg/ml) compared to the V1C brain region at 37 pcw, 

normalized by the squared log fold change of iN cells co-cultured (at total cell concentration 20x106 cells/ml) 

in CH 4X CRS compared to the V1C brain region at 37 pcw, as well as Gene Ontology results for genes with 

score > 3 and for genes with score < -3. 

 

Supplementary Table 8 | Genes ranked based on their squared log fold change in iN cells co-cultured (at total 

cell concentration 20x106 cells/ml) in Matrigel (4.6 mg/ml) compared to the DFC brain region at 19 pcw, 

normalized by the squared log fold change of iN cells co-cultured (at total cell concentration 20x106 cells/ml) 

in CH 4X CRS compared to the DFC brain region at 19 pcw, as well as Gene Ontology results for genes with 

score > 3 and for genes with score < -3. 

 

Supplementary Table 9 | Genes ranked based on their squared log fold change in iN cells co-cultured (at total 

cell concentration 20x106 cells/ml) in Matrigel (4.6 mg/ml) compared to the DFC brain region at 37 pcw, 

normalized by the squared log fold change of iN cells co-cultured (at total cell concentration 20x106 cells/ml) 
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in CH 4X CRS compared to the DFC brain region at 37 pcw, as well as Gene Ontology results for genes with 

score > 3 and for genes with score < -3. 

 

Supplementary Table 10 | Genes ranked based on their squared log fold change in iN cells co-cultured (at total 

cell concentration 20x106 cells/ml) in Matrigel (4.6 mg/ml) compared to the A1C brain region at 19 pcw, 

normalized by the squared log fold change of iN cells co-cultured (at total cell concentration 20x106 cells/ml) 

in CH 4X CRS compared to the A1C brain region at 19 pcw, as well as Gene Ontology results for genes with score 

> 3 and for genes with score < -3. 

 

Supplementary Table 11 | Genes ranked based on their squared log fold change in iN cells co-cultured (at total 

cell concentration 20x106 cells/ml) in Matrigel (4.6 mg/ml) compared to the A1C brain region at 37 pcw, 

normalized by the squared log fold change of iN cells co-cultured (at total cell concentration 20x106 cells/ml) 

in CH 4X CRS compared to the A1C brain region at 37 pcw, as well as Gene Ontology results for genes with 

score > 3 and for genes with score < -3. 

 

Supplementary Table 12 | Genes ranked based on their squared log fold change in iN cells co-cultured (at total 

cell concentration 20x106 cells/ml) in Matrigel (4.6 mg/ml) compared to the M1C brain region at 19 pcw, 

normalized by the squared log fold change of iN cells co-cultured (at total cell concentration 20x106 cells/ml) 

in CH 4X CRS compared to the M1C brain region at 19 pcw, as well as Gene Ontology results for genes with 

score > 3 and for genes with score < -3. 

 

Supplementary Table 13 | Genes ranked based on their squared log fold change in iN cells co-cultured (at total 

cell concentration 20x106 cells/ml) in Matrigel (4.6 mg/ml) compared to the M1C brain region at 37 pcw, 

normalized by the squared log fold change of iN cells co-cultured (at total cell concentration 20x106 cells/ml) 

in CH 4X CRS compared to the M1C brain region at 37 pcw, as well as Gene Ontology results for genes with 

score > 3 and for genes with score < -3. 

 

Supplementary Table 14 | Genes in each cluster for heatmap in Supplementary Fig. 13. 

 

Supplementary Table 15 | Description of abbreviations for cell type clusters defined by scRNA-seq in the human 

fetal cortex (Nowakowski et al., 2017).    

 

Supplementary Table 16 | Taqman qPCR probes used to measure relative RNA expression levels of a number of 

genes. 

Gene Name Probe ID 
CXCR4 Hs00607978_s1 
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EPHA3 Hs00739092_m1 
SEMA3C Hs00989373_m1 
UNC5C Hs00186620_m1 
NRG1 Hs01101538_m1 
NTNG1 Hs01552822_m1 
GPX3 Hs01078668_m1 

SST Hs00356144_m1 
DAP Hs01079452_m1 
GFAP Hs00909233_m1 
S100B Hs00902901_m1 
VIM Hs00958111_m1 
ALDH1L1 Hs00201836_m1 

 

 

Supplementary Videos 

Supplementary Video 1 | Z-section sequences of a 3D neural tissue of iN cells cultured in 4.6 mg/ml Matrigel 

for 40 days stained for MAP2 (green, MAP2)(using 10X Objective).  

 

Supplementary Video 2 | Z-section sequences of a 3D neural tissue of iN cells cultured in 4.6 mg/ml Matrigel 

for 40 days stained for MAP2 (green, MAP2)(using 20X Objective).  
 

Supplementary Video 3 | Z-section sequences of a 3D neural tissue of iN cells cultured in 4.6 mg/ml Matrigel 

for 40 days stained for MAP2 (green, MAP2)(using 63X Objective).  
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