1	Supplementary information
2	PrgB Promotes Aggregation, Biofilm Formation, and Conjugation through DNA Binding
3	and Compaction
4	
5	Andreas Schmitt ¹ , Kai Jiang ² , Martha I. Camacho ³ , Venkateswara Rao Jonna ¹ , Anders Hofer ¹ ,
6	Fredrik Westerlund ² , Peter J Christie ³ and Ronnie P-A Berntsson ^{1,*}
7	
8	
9	¹ Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå,
10	Sweden
11	
12	² Department of Biology and Biological Engineering, Chalmers University of Technology, SE-
13	41296 Gothenburg, Sweden
14	
15	³ Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin
16	St, Houston, Texas 77030, USA
17	
18	
19	
20	* Corresponding author: <u>ronnie.berntsson@umu.se</u> , +46907865235
21	
22	
23	
24	
25	

26 Tables

27 Table S1. Thermodynamic parameters of ITC experiments

28

Protein	DNA	K _d [μM]	ΔS [kJ/mol/K]	ΔH [kJ/mol]	ΔG [kJ/mol]	n
PrgB ₁₈₈₋₁₂₃₃	19	364.0 ± 73.8	0.24 ± 0.02	52.71 ± 12.24	-18.82 ± 4.73	1
Monomer						
PrgB ₁₈₈₋₁₂₃₃	19	163.6 ± 42.4	0.13 ± 0.03	17.14 ± 3.75	-21.6 ± 5.53	1
Dimer						
PrgB ₂₄₆₋₅₅₈	19	46.2 ± 14.5	0.14 ± 0.05	17.6 ± 2.93	-24.12 ± 7.75	1
Glycerol phosphate		K _d [μM]				
PrgB ₁₈₈₋₁₂₃₃		309.2 ± 55.3	0.12 ± 0.06	15.27 ± 1.62	-20.49 ± 3.58	8
PrgB ₂₄₆₋₅₅₈		276.1 ± 71.2	0.10 ± 0.05	10.04 ± 1.83	-19.76 ± 5.22	8

- 30
- 31 **Table S2.** dsDNA sequences (only 1 strand is shown).
- 32 DNA₁₀
- 33 CGGCCCGGGG
- 34 DNA₁₉
- 35 GGGGGGGGGGGGGGGGGGGGGG
- 36 *oriT*
- 37 TCGCAACATGCTAGCATGTTGCTCCGCTTGCAAAAAGAAA
- 38 DNA₁₀₀
- 40 ACCAATTGTCAAACTAAGGAGACTACTTATTATGTAAAAGAAA
- 41 **DNA**₂₅₀

- 44 GGAGAATAAACAAAAACTAAAACGTCCTATTCAAAGAATAGTTAGACTATCAGAAG
- 45 AAGAAAATAACTTAATCAAACGAAAAATTGAGGAAAGTTTTTTTCCAAACTTTCAAA
- 46 ATTTTGCCTTGCACCTTTTGATT
- 47 **DNA-1**
- 48 Biotin-
- 49 TGAACGAAAAATACGAGCAATTAAACCAGTATTTAAATCAAGTGGCTTCGTTGAAGC

50	AAAGCATTCGAAACGCCAACAACATTGAGCTGGTCAATAGCTCTTTAAACTATTTAA
51	AAAGCTTTACCAGCAACAACTACAACAGCACCACCCAATCGCCCATCTTTAACGCCG
52	TGCAAGCCGTTATCACTTCGGTATTGGGTTTTTTGGAGTCTTTATGCGGG
53	DNA-2
54	CGTTCTTGTTTTAGTTTGGCTTTATTCCCATTAAATACTGATGATAAAATTCAAAAGA
55	TGATTTTATCGTTACAAAAATCAACGCTTCAAAGATAAATAGGTTAAAATACTCCAA
56	AATCTTTTTTTTTTTGGAAATCCAATAAATTTATAGTAAAATTAGGTTCATTGTAA
57	ATATATTATCACTTCATGATATTCTTACAACAAAAAACATTACTTTAAGGAACACTTTT
58	ATGAAAAG-Biotin
59	
60	
00	
61	

Figure S1 GEMMA analysis of PrgB. The two samples are taken from size exclusion chromatography fractions corresponding to dimers and monomers, respectively, and the GEMMA analysis was performed with a protein concentration of 0.05 mg/mL. The determined molecular masses (in kDa) are written above the peaks. The baseline is shifted vertically to fit two experiments in the same graph.

- 70
- 71
- 72
- 73

Figure S2. Size exclusion chromatography of PrgB on an Superdex S200 (10/300) Increase column. The absorption at 280 nm is plotted against the elution volume. **A:** PrgB₁₈₈₋₁₂₃₃ at timepoint 0 (blue solid line), the two peaks at 9.8 and 11.7 ml represent dimeric and monomeric PrgB, respectively. Dashed yellow and green line represent fraction 6 and 9, respectively, both rerun after 24 h. **B:** Chromatogram of PrgB₂₄₆₋₅₅₈, the elution volume of 16.2 ml corresponds to the expected molecular weight of a monomer.

85 Figure S3. A: Surface charge distribution of SspB (PDB code 2WD6) calculated by APBS, scaled

- 86 from -5 (red) to 5 k_bT (blue). Compared to PrgB, the negatively charged pocket in SspB is smaller
- 87 and more constricted (compare with Fig. 2b). B: Superposition of PrgB₂₄₆₋₅₅₈ (orange) and SspB
- 88 (grey).
- 89
- 90

Figure S4. EMSA gels and ITC traces of DNA binding to PrgB. A: EMSA of PrgB₁₈₈₋₁₂₃₃ dimer
with DNA₁₀₀ and DNA₂₅₀. B: EMSA of PrgB₁₈₈₋₁₂₃₃ monomer with DNA₁₀₀ and DNA₂₅₀ C: ITC
trace and curve fit of PrgB₂₄₆₋₅₅₈ binding to DNA₁₉ D: ITC trace and curve fit of PrgB₁₈₈₋₁₂₃₃
monomer to DNA₁₉

Figure S5 2mFo-DFc simulated annealing composite omit-map of the region of PrgB₂₄₆₋₅₅₈ co-crystallized with a 10 bp dsDNA, where extra electron density was observed during refinement. A: Simulated annealing composite omit-map, at σ -level 1.0. **B:** Model of the dsDNA molecule built in the electron density.

Figure S6. ITC traces and curve fits of glycerol phosphate binding to A: PrgB188-1233 and B: PrgB246-558

112 Figure S7. Surface exposed arginine and lysine residues of PrgB₂₄₆₋₅₅₈. The protein is shown in

- 113 grey and all surface exposed arginines and lysines are shown as blue sticks. The orientation of the
- 114 protein is the same as the back view in Fig. 2.
- 115