Supplementary Table 1. Current epigenetic modifications in TNBC and basal-like tumors

No.	Findings	Samples	Methods	Ref.
	DNA methylation			
1	 3 Methylation clusters, with the most hypomethylated associated with better prognosis and the medium methylated with worst prognosis 17 Potential prognostic regions—lower methylation in low-risk groups 	19 Formalin-fixed paraffin-embedded TNBC tissue and 6 matched normal samples	- Whole genome methylation capture sequencing (MBDCap-Seq)	[23]
	 Methylation of gene bodies WT1 and WT1-AS vs. promoter methylation 			
2	- Methylation of 5 genes (<i>CDKN2B</i> , <i>CD44</i> , <i>MGMT</i> , <i>RB</i> , and <i>p73</i>) and non-methylation of 11 genes (<i>GSTP1</i> , <i>PMS2</i> , <i>MSH2</i> , <i>MLH1</i> , <i>MSH3</i> , <i>MSH6</i> , <i>DLC1</i> , <i>CACNA1A</i> , <i>CACNA1G</i> , <i>TWIST1</i> , and <i>ID4</i>) are specific to TNBC	- 61 Breast cancer tissue samples, includ- ing 28 TNBC	- Methylation profile of 110 CpGI located within 69 cancer-involved genes (MS-MLPA)	[27]
3	- 27%-37% of TNBC samples show <i>BRCA1</i> promoter methylation	377 TNBC samples	 Array Comparative Genomic Hybridisa- tion (aCGH) BRCA1 promoter methylation 	[31]
4	 BRCA1 and ESR1 methylation in TNBC compared to non-TNBC miR-4417, miR-590-5p higher expression in TNBC 	278 Formalin-fixed paraffin-embedded breast cancers containing 79 TNBC	 Promoter methylation (MS-MLPA) of 24 tumor suppressor genes qRT-PCR for miR expression 	[32]
5	 EGR1 downregulation inversely correlated to methylation 16 TNBC specific genes show altered DNA methylation, including <i>IGF1</i> and <i>IL6ST</i> Higher methylation of <i>SPRY2</i>, <i>EGR1</i>, <i>GREB1</i>, <i>ITIH5</i>, <i>LRRC17</i> and lower methylation of <i>AMIGO</i> are associated with better survival 	23 Primary TNBC samples, 12 matched lymph node metastases, 11 matched normal adjacent tissues	- 450 K DNA methylation BeadChip array analysis (Illumina)	[37]
6	 BRMS1 downregulated by DNA methylation in TNBC cell lines and breast cancer samples Inverse correlation with lymph node metastasis 	 TNBC cell lines MDA-MB-231, HCC- 1937, MDA-MB-435 and normal breast tissue MCF-10A 42 Paired normal and TNBC tissue sam- ples 	- RT-PCR - Methylation specific PCR	[38]
7	- Cancer stem cells are regulated by hypomethylation of specific CpG sites of genes associated with stem cell properties <i>CD44</i> , <i>CD133</i> , and <i>Musashi-1</i> (<i>MSII</i>), promoter methylation being lower in TNBC	 4 TNBC cell lines (MDA-MB-231, BT- 549, BT-20, and HCC1937) and 5 non- TNBC cell lines (MCF-7, T47D, ZR-75-1, ZR-75-30, and SK-BR-3) 91 Invasive ductal carcinomas, including 32 TNBC 	- Methylation analysis (MassARRAY Epi- TYPER sequencing)	[39]
8	 5 Distinct DNA methylation groups Group 5-most hypomethylated-associated with basal-like tumors 80% TP53 mutations in basal-like tumors Loss of <i>RB1</i>, <i>BRCA1</i> in basal-like tumors 	- Primary breast tumor samples and germ- line DNA from 825 patients (802 samples for DNA methylation)	 DNA methylation Exome sequencing mRNA arrays miRNA sequencing Reverse-phase protein arrays 	[40]
9	 -Specific methylation patterns corresponding to luminal A, B and basal-like subtypes, the most hypomethylated being basal-like and most hypermethylated luminal B - BRCA2 carriers tumors more methylated than BRCA1 - RASSF1, GSTP1 unmethylated in basal-like tumors - ARHGDIB, GRB7, SEMA3B methylated in basal-like tumors 	- 189 Fresh frozen primary breast tumors and 4 normal breast tissue samples	Array based methylation assay for 1505 CpG loci corresponding to 807 cancer related genes	[41]

No.	Findings	Samples	Methods	Ref.
10	 Methylation of 6 genes (CDH1, CEACAM6, CST6, ESR1, LCN2, and SCNN1A) in basal-like cell lines Aberrant DNMT3b expression Elevated total DNA methyltransferase activity 	12 Breast cancer cell lines (BT20, BT549, Hs578T, MCF7, MDA-MB-231, MDA-MB-415, MDA-MB-435S, MDA-MB-436, MDA-MB-453, MDA- MB-468, SKBR3, and ZR-75-1) and normal breast epithelial cell line MCF12A	 Gene expression (RT-PCR), promoter methylation of 64 genes DNA methyltransferase machinery as- sessment (total DNMT activity and ex- pression of DNMT1, DNMT3a, and DN- MT3b proteins) 	[44]
11	 Enhanced effect of doxorubicin, paclitaxel and 5-fluorouracil after DNMT3b inhibition Re-expression of methylated genes, including ESR1 	MDA-MB-453, BT549, Hs578T cell lines	 Treatment with 5-aza RNAi-mediated DNMT3b mediated knockdown and treatment with doxoru- bicin, paclitaxel and 5-fluorouracil 	[45]
	Noncoding RNAs			
12	 TNBC classification by mRNA and IncRNA profiling 4 clusters: immunomodulatory (IM), luminal androgen receptor (LAR), mesenchymal-like (MES) and basal- like and immune suppressed (BLIS) 	165 TNBC samples	- Transcriptome profiling (human tran- scriptome microarrays)	[46]
13	 IncRNAs with differential expression were found in TNBC, with no functional correlations so far 	3 Pairs of TNBC and adjacent non-tumor tissues plus 12 paired samples for vali- dation	 IncRNA expression microarray qRT-PCR validation 	[47]
14	 IncRNAs with differential expression were found in TNBC Possible association between ER, ANKRD30A and Inc RNA LINC0099 	3 Pairs of TNBC and adjacent non-tumor tissues plus 48 paired samples for vali- dation	 IncRNA expression microarray qRT-PCR validation Bioinformatics analysis for IncRNA functions (gene ontology) 	[48]
15	- IncRNA <i>MALAT1</i> promotes metastasis of TNBC and may be useful as a prognostic marker in lymph-node negative patients	 TCGA microarray data set (493 breast cancer samples) Normal breast cell line MCF10A and breast cancer cell lines -TNBC subtype: MDA-MB-231, Hs578T, HCC1806; HER2+ subtype: SKBR3; luminal subtype: MCF7, T-47D for interrogating functional roles 	- MALAT1 expression (qRT-PCR)	[49]
16	- HOTAIRM1 is upregulated in basal-like tumors	658 Infiltrating breast ductal carcinomas, including 126 basal-like samples (from the TCGA breast cancer RNA-Seq data)	- Bioinformatic analysis	[50]
17	- IncRNA FOXCUT is overexpressed in basal-like tumors	 - 55 Primary breast cancer samples, including 25 basal-like - MDA-MB-231 and MDA-MB-468 cell lines 	- Expression profile (RT-qPCR and siRNA transfection)	[51]
18	 IncRNA HOTAIR is up-regulated in MCF-7-TNR cells (basal-like derivative of the luminal-like MCF-7), BT- 549 and MDA-MB-157 and plays a role in maintaining the basal-like phenotype 	MCF-7-7TNR, MC-7, BT-549 and MDA-MB-157 cell lines	- HOTAIR expression and siRNA inhibition	[53]
19	- IncRNA HOTAIR expression is repressed by combined treatment of lapatinib plus imatinib through β -catenin downregulation	 MCF-7, T47D, BT474, MDA-MB-468, MDA-MB-231, ZR-75–1, SK-BR3, SUM159 and HCC1806 cell lines 21 Formalin-fixed paraffin-embedded primary breast tumor tissue, including 11 TNBC 	 Lapatinib+imatinib treatment of TNBC cell lines (MDA-MB-231, MDA-MB-468, HCC1806, and SUM159) HOTAIR expression 	[54]

No.	Findings	Samples	Methods	Ref.
20	 Upregulation of miR-493 and miR-155 correlate with better outcome Downregulation of miR-30e and miR27a correlate with poor outcome 	173 Paraffin-embedded TNBC samples	- miRNA expression profiling	[55]
21	- miR-10b and miR-26a can downregulate <i>BRCA1</i> expression in MDA-MB-231 (TN) and MCF7 (luminal) cell lines	9 Sporadic human breast cancer cell lines of which 7 TNBC and 1 normal breast tissue sample	- miRNA expression profiling	[56]
22	- BRCA1 expression positively correlates with miR-146a and leads to downregulation of <i>EGFR</i>	Breast cancer cell lines including 3 TNBC, SKOV3 ovarian cancer cell line and HMLE, MCF10A mammary epithelial cell lines	- miRNA profiling - miR knockdown - Protein expression studies - Mammosphere formation assay	[57]
23	- miR-146a and miR-146b-5p downregulate <i>BRCA1</i> in TNBC	 3 Normal mammary cell lines and 15 breast cancer cell lines, including 3 TNBC 76 Primary breast tumor tissues 167 Breast tumor tissues 	 miRNA target prediction algorithms miR-146a/b-5p expression and inhibition studies 	[58]
24	- miR-4417, miR-590-5p higher expression in TNBC	278 Formalin-fixed paraffin-embedded breast cancers containing 79 TNBC	- qRT-PCR for miR expression	[32]
25	 miR-200c downregulation correlates with locus meth- ylation and is associated with lymph node metastasis in TNBC Low levels of miR-200c are associated with high lev- els of ZEB1 transcription factor which promotes EMT miR-200c/ZEB1 axis as target for metastatic TNBC 	 - 51 TNBC samples - TCGA data set - MDA-MB-231 and MDA-MB-157 cell lines for functional analysis 	- qRT-PCR and methylation analysis	[59]
26	- miR-200b suppresses TNBC migration and metastasis by inhibiting protein kinase $C\alpha$	 MCF-7, T-47D, BT-474, MDA-MB-453, SKBR-3, MDA-MB-468, BT-20, Hs578T and BT-549 cell lines Mouse mammary xenograft tumor model 	 miR-200b expression and knockdown studies In vitro and in vivo migration and metastasis studies respectively 	[60]
27	- miR-200a modulates TNBC migration through regulat- ing the EPHA2 oncogene	 Breast cancer dataset for mRNA levels of EPHA2 and corresponding patient sur- vival HC11, MDA-MB-231, SUM159 cell lines 	 miR200a transfection study miRNA expression analysis Proliferation and migration assays 	[61]
28	- Overexpression of miR-200b-3p and miR-429-5p in- hibits the proliferation, migration, and invasion of TNBC cell lines	MDA-MB-231 and HCC1937 TNBC cells	 miR transfection Proliferation, migration and invasion assays 	[62]
	Histone modifications			
29	 Distinct H3K36me3 patterns in the TNBC cell lines AR pathway genes active especially in claudin-low TNBC cell lines, while AR pathway regulators had lower expression levels in basal-like AFAP1-AS1 found as TNBC specific gene marked by the active H3K4me3 and H3K79me2 modifications 	 2 Normal immortalized cell lines, 76NF2V and MCF10A 2 Luminal A lines, MCF7, ZR751 2 Luminal B lines, MB361, UACC812 2 HER2 lines SKBR3, AU565, HCC1954 2 Basal TNBC cell lines, MB468 and HCC1937 2 Claudin low TNBC cell lines, MB231 and MB436 	 ChIP-Seq, GRO-Seq and RNA-Seq analysis siRNA mediated depletion of AFAP1- AS1 in MDA-MB-231 and HCC1937 	[64]

(Continued to the next page)

No.	Findings	Samples	Methods	Ref.
30	- BCL11A interacts with histone methyltransferase (PRC2) and histone deacetylase (NuRD and SIN3A) complexes and contributes to maintenance of a chemoresistant breast cancer stem cell population in TNBC including basal-like	 Microarray data sets Immortalized non-tumourigenic mouse EpH4 and human HMLE cell lines TNBC cell lines 4T1 (mouse), MDA231, SUM159 and HMLER (human) Immune compromised mice BCL11A conditional knockout and knock-in mice 	 BCL11A overexpression studies and mammosphere assay shRNA knockdown of BCL11A Modified cells' injection to assess tumor formation TNBC-like tumor promotion by DMBA staining 	[65]
31	- <i>KAT5</i> (histone acetylase inhibitor), <i>DOT1L</i> (H3K79 methylator) and <i>G9a</i> (histone methyltransferase) downregulation induce E-CAD expression to promote an epithelial phenotype	- MDA-MB-231 cell line	- siRNA library screening for EMT regula- tors (729 chromatin modifying targets)	[74]
32	- Overexpression of macroH2A1.1 correlates with claudin-low subtype and TNBC poor outcome	- GEO, EMBL-EBI and publisher databases - MCF-7, MDA-MB231, ZR-75, MDA-MB436 and Hs578T cell lines	 Biostatistical correlation studies on in- trinsic molecular subclasses of breast cancer and molecular characteristics of EMT Protein quantification, qRT-PCR 	[75]
33	 3 Groups of histone modification patterns Hypomodified cluster, characterized by moderate to low levels of lysine acetylation (H3K9ac, H3K18ac, and H4K12ac), lysine (H3K4me2 and H4K20me3), and arginine methylation (H4R3me2) associated with basal-like and HER2+ subtypes 	- 880 Invasive breast carcinomas	 Tissue microarray, immunohistochemis- try Immunofluorescence and western blot- ting for validation 	[21]
34	 Differential H3K4me2 & H3K27me3 methylation between CSC and non-CSC suggest Wnt & GnRH signaling pathways are responsible for aggressiveness in TNBC 	- MDA-MB-231 cell line - BALB/c nude+ mice	 Invasion and xenotransplantation assays RN-seq, WGBS and CHIP-seq analysis 	[77]
35	 HDACi suberoylanilide hydroxamic acid (vorinostat) and sodium butyrate inhibit cell proliferation, induce apoptosis and downregulate transcription of mutant p53 in TNBC cell lines 	- TNBC cell lines MDA-MB-231 and BT-549	 Transfection studies Cell cycle and apoptosis assays 	[79]
36	 HDACi panabinostat induces hyperacetylation of histones H3 and H4, decreases proliferation and survival, and induces apoptosis in TNBC cell lines and decreases tumor size <i>in vivo</i> 	 TNBC cell lines MDA-MB-157, MDA-MB-231, MDA-MB-468, BT-549 Orthotopic MDA-MB-231 and BT-549 mouse xenograft models 	 Histone acetylation assays Proliferation assay and cell cycle analysis Protein expression studies 	[83]
37	 HDACi vorinostat enhances the growth inhibitory ability of PARP inhibitor olaparib in TNBC cells with overex- pression of PTEN and <i>in vivo</i> in an MDA-MB-231 mouse model 	 Human breast cancer cells (MDA-MB-157, -231, -453, -468, BT-549, MCF7, T47D, SK-BR-3, HCC70, HCC1143, and Hs578T) Breast cancer xenograft mouse model 	 Cytotoxic assay and cell cycle analysis <i>PTEN</i> transfection Proliferation, apoptosis and autophagy analysis 	[84]
38	- Combination of vorinostat and immune checkpoint in- hibitors (PD-1 and CTLA-4 blockade) on mice models of TNBC lead to decreased tumor growth and pro- longed survival	 Human breast cancer cell lines, including 1 TNBC Mouse breast cancer cells <i>In vivo</i> model of mouse breast cancer cell line similar to TNBC 	 PD-L1 expression analysis Co-culture with peripheral blood mono- nuclear cells <i>In vivo</i> therapy of mouse model with vorinostat, anti-PD-1 blockade or both drugs 	[86]
39	 HDACi entinostat decreases the ability of TNBC to form lung metastasis in an <i>in vivo</i> mouse model and reduces tumor formation from patient derived xeno- grafts 	Breast cancer cell lines including 1 TNBCMDA-MB-231 mouse xenograftPatient derived xenograft	 Protein and miRNA expression analysis Mammosphere formation assay Tumor formation and metastasis development <i>in vivo</i> 	[87]

(Continued to the next page)

No.	Findings	Samples	Methods	Ref.
40	- Vorinostat has the ability to prevent brain metastasis of TNBC <i>in vivo</i>	- Mouse model of 231-BR brain trophic subline of the MDA-MB-231 TNBC cell line	 Pharmacokinetic and pharmacodynamic studies of vorinostat uptake in the brain Histone acetylation, cell cycle and apop- tosis analysis <i>in vitro</i> and <i>in vivo</i> 	[88]
41	- Histone methyltransferase hSETD1A positivity corre- lated with worse outcome	- 159 TNBC samples	 Protein expression studies—immuno- histochemistry, qRT-PCR 	[90]

TNBC=triple-negative breast cancer; RT-PCR=reverse transcription polymerase chain reaction; qRT-PCR=quantitative RT-PCR; mRNA=messenger RNA; miRNA=microRNA; RNAi=RNA interference; lncRNA=long noncoding RNA; ER=estrogen receptor; TCGA=The Cancer Genome Atlas; siRNA=small interfering RNA; EMT=epithelial-to-mesenchymal transition; AR=androgen receptor; HER2=human epidermal growth factor receptor 2; shRNA=small hairpin RNA; DMBA=7,12-dimethylbenz(a)anthracene – a potent carcinogen; CSC=cancer stem cells; HDACi=histone deacetylase inhibitors; PARP=poly (ADP-ribose) polymerase.