
	• •				
Α	Enzyme Superfamily	Family Members with Cysteine at this Position			
	RNA Helicases RIG-I, DHX9/RHA, DHX30, DHX32, DHX34, DHX35, DHX36, DHX57				
	DNA Helicases	HELB			
	AAA+ ATPases	p97/VCP, APAF1, VWA8, RAD51B, RAD17, NVL, ATP6V1A, PSMC4, NSF, PEX6, ATAD1, RNF213, SPATA5, MDN1, SPG7, BCS1L, GNN, WRNIP1			
	ABC Transporters	MDR1, MDR3, MRP, MRP7, CMOAT2, ABCB5, ABCB11, ABCC8, ABCC9,			
		ABCD1, ABCD2, ABCD3, ABCG8			
	Kinesins	KIF19			
	Dyneins	DYNC2H1			
_	Total proteome	43/418 total ATPases			
В					
	4-				
	3-				
	2-				
	1-				
_ I	N -	N			
D	s . —	Ded1 WT Ded1 ES			
	No AP 95°C	time time			
_	A COLORADO				
	teres and teres	a period accord for the provide state of the period of the			
	-	and had had had had had had had had had ha			
		the second s			
Е					
-	¹⁰⁰]				
	80-				
	2	•			
	punomun %				
	5 40-				
	20-	Ded1 ^{ES}			
	0				
	0 10	20 30 40 50			
		Time (min)			
F					
	No AP 95°C	Dbp2 WT Dbp2 ES			
	NOPTOSOC	time time			
—	ساسر بغير =	المتنا أحما ليسا أستا أستا أستا أستا أستا المتا أستا أستا أستا			
	-	and the lot of the second of the tot the test			
		hard hard hard hard hard and hard hard hard hard hard hard hard har			
		One site and state and one and and and and and			
G					
Ŭ	Ded1 WT	🕒 🕲 🏟 🦘 🔸 🕘 🕲 🏟 😵 😥			
	Ded1 S190C				
	Ded1 F144A				
	20011111/	30 °C (2 days) 37 °C (2 days)			
		000 (2 uays) 010 (2 uays)			

Human DEAD-box p	roteins
Human DEAD-box p DDX3X/226-231 DDX1/48-53 elF4a1/78-83 elF4a2/79-84 elF4a3/84-89 DDX3Y/224-229 DDX4/334-339 DDX5/140-145 DDX6/142-147 DDX118/46-51 DDX10/115-120 DDX10/115-120 DDX11/46-51 DDX10/115-120 DDX11/46-51 DDX10/115-22 DDX11/217-222 DDX18/225-230 DDX17/217-222 DDX18/225-230 DDX20/108-113 DDX21/232-237 DDX23/437-442 DDX22/145-150 DDX27/264-269	TGSGKT TGSGKT SGTGKT SGTGKT SGTGKT TGSGKT TGSGKT TGSGKT TGSGKT TGSGKT TGSGKT TGSGKT TGSGKT TGSGKT TGSGKT TGSGKT TGSGKT TGSGKT

С

SUPPLEMENTARY INFORMATION Supplementary Table 1. Data collection and refinement statistics.

	DDX3 (132-607) – AMP-acrylamide
Data collection	
Space group	P 21 21 21
Cell dimensions	
a, b, c (Å)	53.96, 101.09, 105.69
α, β, γ (°)	90, 90, 90
Resolution (Å)	73.05-3.00 (3.16-3.00) ^a
$R_{\text{merge}}, R_{\text{meas}}$ and R_{pim}	0.121 (1.089), 0.135 (1.201), 0.057 (0.500)
$I/\sigma(I)$	8.5 (1.6)
CC _{1/2}	0.996 (0.766)
Completeness (%)	100.0 (100.0)
Redundancy	5.4 (5.6)
Refinement	
Resolution (Å)	73.05-3.00
No. reflections	12100
R _{work} / R _{free}	0.2219/0.2667
No. atoms	
Protein	3378
Ligand/ion (specify/describe)	27
Water	0
<i>B</i> factors	
Protein	87.39
Ligand/ion	107.20
R.m.s. deviations	
Bond lengths (Å)	0.002
Bond angles (°)	0.50

^a Values in parentheses are for highest-resolution shell.

Supplementary Table 2: Yeast strains used in this study

Strain	Genotype	Source
Ded1 WT	MAT a his3 Δ 1 leu2 Δ 0 met15 Δ 0 ura3 Δ 0	Hilliker A et al. (2011)
	ded1::KanMX pKJB001	(1)
HA-Ded1 WT	MAT a his3∆1 leu2∆0 met15∆0 ura3∆0	This study
	ded1::KanMX pKJB002	-
HA-Ded1 S190C	MAT a his3∆1 leu2∆0 met15∆0 ura3∆0	This study
	ded1::KanMX pKJB003	-
Fal1 HetDip	MAT a /MAT aIpha his3∆1/his3∆1	GE Dharmacon (Clone
	$leu2\Delta 0/leu2\Delta 0$ MET15/met15 $\Delta 0$	ID: 23960)
	LYS2/lys2⊿0 ura3∆0/ura3∆0	
	FAL1/fal1::KanMX	
Fal1 WT	MAT alpha his3∆1 leu2∆0 ura3∆0	This study
	fal1::KanMX pKJB004	
HA-Fal1 WT	MAT alpha his3∆1 leu2∆0 ura3∆0	This study
	fal1::KanMX pKJB005	
HA-Fal1 T71C	MAT alpha his3∆1 leu2∆0 ura3∆0	This study
	fal1::KanMX pKJB006	-
Dbp2 HetDip	MAT a /MAT aIpha his3∆1/his3∆1	GE Dharmacon (Clone
	$leu2\Delta 0/leu2\Delta 0$ MET15/met15 $\Delta 0$	ID: 27822)
	LYS2/lys2⊿0 ura3∆0/ura3∆0	
	DBP2/dbp2::KanMX	
Dbp2 WT	MAT a his3∆1 leu2∆0 ura3∆0	This study
	dbp2::KanMX pKJB007	-
HA-Dbp2 WT	MAT a his3∆1 leu2∆0 ura3∆0	This study
	dbp2::KanMX pKJB008	-
HA-Dbp2 S161C	MAT a his3∆1 leu2∆0 ura3∆0	This study
	dbp2::KanMX pKJB009	
Dbp5 HetDip	MAT a /MAT alpha his3∆1/his3∆1	GE Dharmacon (Clone
	<i>leu2∆0/leu2∆0</i> MET15/ <i>met15</i> ∆0	ID: 21822)
	LYS2/lys2∆0 ura3∆0/ura3∆0	
	DBP5/dbp5::KanMX	
Dbp5 WT	MAT alpha his $3\Delta 1$ leu $2\Delta 0$ ura $3\Delta 0$	This study
	dbp5::KanMX pKJB010	
HA-Dbp5 WT	$MATalpha$ his $3\Delta 1$ leu $2\Delta 0$ ura $3\Delta 0$	This study
	dbp5::KanMX pKJB011	
HA-Dbp5 T142C	MAT alpha his3∆1 leu2∆0 ura3∆0	This study
	dbp5::KanMX pKJB011	
HA-elF4A ^{ES}	MATa his $3\Delta 1$ leu $2\Delta 0$ met $15\Delta 0$ ura $3\Delta 0$	This study
	tif1::HA-Tif1 T70C tif2::URA3	

Supplementary	Table 3:	Plasmids	used in t	this study	/

Plasmid	Description	Vector	Insert	Source
pKJB001	Ded1 WT	pRS416	DED1 (-106 to +2727)	Hilliker A
		(URA3/CEN)		et al.
				(2011)
pKJB002	HA-Ded1	pRS413	DED1 (-106 to +2727)/N-	This study
	WT	(HIS3/CEN)	terminal HA-tag	
pKJB003	HA-Ded1	pRS413	DED1 S190C (-106 to	This study
	S190C	(HIS3/CEN)	+2727)/N-terminal HA-tag	
pKJB004	Fal1 WT	pRS416	FAL1 (-607 to +1826)	This study
		(URA3/CEN)		
pKJB005	HA-Fal1 WT	pRS413	FAL1 (-607 to +1826)/N-	This study
		(HIS3/CEN)	terminal HA-tag	
pKJB006	HA-Fal1	pRS413	FAL1 T71C (-607 to +1826)/N-	This study
	T71C	(HIS3/CEN)	terminal HA-tag	
pKJB007	Dbp2 WT	pRS416	DBP2 (-757 to +4107; ∆intron)	This study
		(URA3/CEN)		
pKJB008	HA-Dbp2	pRS413	DBP2 (-757 to +4107;	This study
	WT	(HIS3/CEN)	∆intron)/N-terminal HA-tag	
pKJB009	HA-Dbp2	pRS413	DBP2 S161C (-757 to +4107;	This study
	S161C	(HIS3/CEN)	∆intron)/N-terminal HA-tag	
pKJB010	Dbp5 WT	pRS416	DBP5 (-1029 to +2462)	This study
		(URA3/CEN)		
pKJB011	HA-Dbp5	pRS413	DBP5 (-1029 to +2462)/N-	This study
	WT	(HIS3/CEN)	terminal HA-tag	-
pKJB012	HA-Dbp5	pRS413	DBP5 T142C (-1029 to	This study
	T142C	(HIS3/CEN)	+2462)/N-terminal HA-tag	

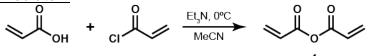
SUPPLEMENTARY FIGURE LEGENDS

Supplementary Figure 1. Development of an 'electrophile-sensitive' mutation in DEAD-box proteins. A. Identification of human ATPases from diverse enzyme families that natively express a P-loop cysteine. **B.** Structural alignment of the P-loop of all human RNA helicases. **C.** Alignment of the P-loop of all human DEAD-box proteins to identify position of electrophile-sensitive mutation (red arrow). **D.** Representative RNA duplex unwinding assay comparing the activity of Ded1^{WT} and Ded1^{ES} (S190C). **E.** Quantification of the fraction of RNA duplex unwound by Ded1^{WT} and Ded1^{ES}. **F.** Representative RNA duplex unwinding assay comparing the activity of Dbp2^{WT} and Dbp2^{ES} (S161C). **G.** Serial dilutions of log-phase cultures of budding yeast strains expressing wild-type, electrophile-sensitive (S190C), or analog-sensitive (F144A) Ded1 grown at permissive (30°C) or restrictive (37°C) temperatures.

Supplementary Figure 2. AMP-acrylates undergo two-step reaction with

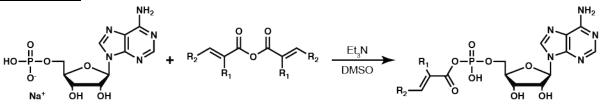
electrophile-sensitive DEAD-box proteins. A. Percent modification of 125nM DDX3^{ES} (S228C) by various concentrations of AMP-acrylate at 4°C. B. Structure of Adefoviracrylate. C. Comparison of the rate of modification of 250nM DDX3^{ES} by 1µM AMPacrylate and 1µM Adefovir-acrylate at 4°C. D. Whole-protein mass spectrometry of DDX3^{ES} with DMSO or 5µM AMP-acrylate at 4°C showing formation of +401 Da adduct after 5min and +54 Da adduct after 300min. E. Quantification of the percentage of DDX3^{ES} and DDX3^{ES} K230M with +54 Da adduct over time. F. Proposed mechanism for the two-step reaction of DDX3^{ES} with AMP-acrylates. The electrophile-sensitive mutation (C228 in DDX3) undergoes a Michael-addition into the electrophilic betacarbon of the acrylate of AMP-acrylate (first-step). AMP is then eliminated from this adduct by addition of a nucleophilic amino acid such as lysine (K230 in DDX3; secondstep) or arginine to form the final product.

Supplementary Figure 3. AMP-acrylates specifically modify electrophile-sensitive DEAD-box proteins in cell lysates. A. Comparison of the rate of modification of DDX3^{ES}, RIG-I WT, and Src WT by 1µM AMP-acrylate at 4°C. **B.** Chemical structure of N-propargylmaleimide (NPM). **C.** Comparison of the rate of modification of DDX3^{WT} and DDX3^{ES} by 1µM NPM. **D.** HA-elF4A^{ES} lysates are treated with 10µM AMP-acrylate followed by 10µM NPM. A click reaction is performed using TAMRA-N₃ and the reaction is analyzed by in gel fluorescence (TAMRA). Loading is analyzed by coomassie staining.


Supplementary Figure 4. AMP-acrylates inhibit electrophile-sensitive DEAD-box proteins. A. RNA duplex unwinding by Dbp2 WT in the presence of 50µM and 12.5µM AMP-acrylate. **B.** RNA duplex unwinding by electrophile-sensitive Dbp2 (S161C) in the presence of serial dilutions of AMP-acrylate starting at 200µM.

CHEMICAL SYNTHESIS

Materials obtained commercially were reagent grade and were used without further purification. N-propargylmaleimide was purchased from Enamine BB. Reactions were monitored by thin layer chromatography (TLC) and/or mass spectrometry (LC-MS)


using a Waters Acquity UPLC/ESI-G2 XS QTOF. All NMR spectra were obtained on a Brucker 400 spectrometer.

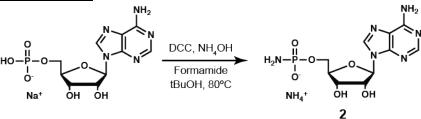
Synthesis of intermediate 1

Acrylic anhydride (intermediate 1). Acrylic acid (Sigma-Aldrich, 205.7µL, 3.0mmol, 1.0eq) was added to a 20mL scintillation vial under Ar(g), followed by tetrahydrofuran (5mL) and triethylamine (418.1µL, 3.0mmol, 1.0eq). The reaction mixture was chilled to 0°C and acryloyl chloride (242.4µL, 3.0mmol, 1.0eq) in tetrahydrofuran (1mL) was added dropwise. The reaction was allowed to warm to room temperature and stirred overnight. The reaction was filtered, evaporated to dryness, then dissolved in ethyl acetate (30mL) and extracted with a solution of saturated sodium bicarbonate. The organic fraction was dried with sodium sulfate, filtered, evaporated to dryness and the resulting oil was used without further purification.

General procedure for the synthesis of AMP-acrylate, AMP-crotonate, and AMPmethacrylate

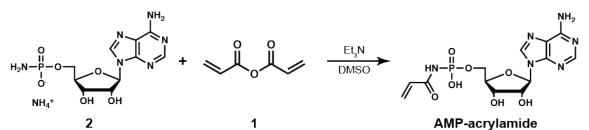
AMP-acrylates

In a 4mL scintillation vial, adenosine 5'-monophosphate sodium salt (Sigma, 25mg, 0.0720mmol) was dissolved in DMSO (1mL) and triethylamine (100 μ L,0.720mmol, 10eq) with sonication and stirring. In a separate vial, the appropriate symmetric acrylic anhydride (0.0792mmol, 1.1eq) was dissolved in DMSO (100 μ L) and added slowly to the reaction vial. After 30min, the reaction was quenched by addition of 1% formic acid (1mL) and purified by reverse phase HPLC (0-30% acetonitrile/water) to yield the pure compound.

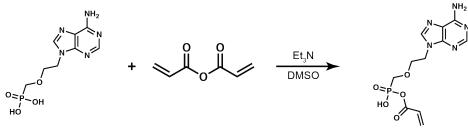

acrylic (((2*R*,3*S*,4*R*,5*R*)-5-(6-amino-9*H*-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2yl)methyl phosphoric) anhydride (AMP-acrylate). White solid, 20.6mg, 71.2% yield. ¹H NMR (400MHz, D₂O) δ 8.48 (s, 1H), 8.33 (s, 1H), 6.31 (dd, *J* = 14.6, 3.5 Hz, 1H), 6.08 (d, *J* = 5.2 Hz, 1H), 6.01 – 5.89 (m, 2H), 4.74 (t, *J*= 5.2 Hz, 1H), 4.45 (t, *J* = 4.5 Hz, 1H), 4.31 (s, 1H), 4.20 (tq, *J* = 9.8, 6.4, 4.5 Hz, 2H). ³¹P NMR (162MHz, D₂O) δ -7.32. ¹³C NMR (100MHz, D₂O) δ 163.57 (d, *J* = 8.2 Hz), 150.49, 148.44, 145.49, 142.17, 134.56, 127.25 (d, *J* = 7.5 Hz), 118.58, 88.00, 83.91 (d, *J* = 8.7 Hz), 74.23, 70.22, 65.59 (d, *J* = 5.7 Hz). [M+H]⁺ *m/z* calculated 402.0809 (100%), 403.0843 (14%), observed 402.0800 (100%), 403.0861 (12%).

(((2*R*,3*S*,4*R*,5*R*)-5-(6-amino-9*H*-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2yl)methyl phosphoric) (*E*)-but-2-enoic anhydride (AMP-crotonate). White solid,

13.66mg, 44.8% yield. ¹H NMR (400MHz, D₂O) δ 8.48 (s, 1H), 8.33 (s, 1H), 6.93 (m, 1H), 6.07 (d, J = 5.3 Hz, 1H), 5.63 (dt, J = 15.5, 1.9 Hz, 1H), 4.75 (t, J = 5.2 Hz, 1H), 4.45 (m, 1H), 4.31 (d, J = 2.9 Hz, 1H), 4.17 (pt, J = 5.6, 2.4 Hz, 2H), 1.74 (dd, J = 6.9, 1.6 Hz, 3H). ³¹P NMR (162MHz, D₂O) δ -7.27. ¹³C NMR (100MHz, D₂O) δ 163.80 (d, J = 8.2 Hz), 150.67, 150.36, 148.43, 145.36, 142.28, 121.00 (d, J = 7.4 Hz), 118.53, 88.01, 84.00 (d, J = 8.5 Hz), 74.17, 70.26, 65.53 (d, J = 5.8 Hz), 17.52. [M+H]⁺ *m/z* calculated 416.0966 (100%), 417.0999 (15%), observed 416.0961 (100%), 417.0987 (12%).


(((2*R*,3*S*,4*R*,5*R*)-5-(6-amino-9*H*-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2yl)methyl phosphoric) methacrylic anhydride (AMP-methacrylate). White solid, 10.0mg, 32.9% yield. ¹H NMR (400MHz, D₂O) δ 8.46 (s, 1H), 8.32 (s, 1H), 6.07 (d, J = 5.3 Hz, 1H), 5.95 (s, 1H), 5.59 (s, 1H), 4.77 (t, J = 5.2 Hz, 1H), 4.46 (m, 1H), 4.30 (m, 1H), 4.19 (ttt, J = 8.4, 5.6, 2.5 Hz, 2H), 1.69 (s, 3H). ³¹P NMR (162MHz, D₂O) δ -7.16. ¹³C NMR (100MHz, D₂O) δ 164.73 (d, J = 8.7 Hz), 150.85, 148.51, 146.02, 142.06, 135.28 (d, J = 6.6 Hz), 128.86, 118.61, 87.97, 83.96 (d, J = 8.5 Hz), 74.04, 70.28, 65.65 (d, J = 5.9 Hz), 16.99. [M+H]⁺ *m*/*z* calculated 416.0966 (100%), 417.0999 (15%), observed 416.0961 (100%), 417.0987 (10%).

Synthesis of Intermediate 2


((2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2yl)methyl hydrogen phosphoramidate (intermediate 2). The protocol for the synthesis of this intermediate was previously described (2). Adenosine 5'monophosphate sodium salt (Sigma, 1041.7mg, 3.0mmol) was dissolved in ammonium hydroxide (2N, 7.5mL) and formamide (5mL). To this solution, a suspension of N,Ndicyclohexylcarbodiimide (DCC, 3095mg, 15.0mmol, 5eq) in tert-butanol (20mL) was added and the resulting two-phase reaction was heated to 80°C. After 2-3hr, the solution becomes homogenous and after an additional 7hrs, the reaction is allowed to cool overnight. Unreacted DCC was removed by filtration and washed with water and the resulting solution was evaporated under reduced pressure to remove volatiles. The resulting solution was extracted with diethyl ether, then the aqueous layer was evaporated to dryness. Acetone was added to the resulting oil and the ammonium salt of the product was isolated by filtration (white gummy solid; 884.3mg, 81.8% yield).

Synthesis of AMP-acrylamide

((2*R*,3*S*,4*R*,5*R*)-5-(6-amino-9*H*-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2yl)methyl hydrogen acryloylphosphoramidate (AMP-acrylamide). In a 4mL intermediate 2 (50mg, 0.138mmol) was dissolved in DMSO (1mL) and triethylamine (48μL, 0.344mmol, 2.5eq) with sonication and stirring. In a separate vial, intermediate 1 (19.1mg, 0.151mmol, 1.1eq) was dissolved in DMSO (100μL) and added slowly to the reaction vial. After 30min, the reaction was quenched by addition of 1% formic acid (1mL) and purified by reverse phase HPLC (0-30% acetonitrile/water) to yield the pure compound (white solid, 4.93mg, 8.5% yield). ¹H NMR (400MHz, D₂O) δ 8.46 (s, 1H), 8.24 (s, 1H), 6.09 (d, J = 1.7 Hz, 1H), 6.05 (d, J = 5.4 Hz, 1H), 5.65 (d, J = 10.4 Hz, 1H), 4.73 (d, J = 5.3 Hz, 1H), 4.44-4.37 (m, 1H), 4.29 (d, J = 2.6 Hz, 1H), 4.09 (tddt, J = 11.7, 9.3, 5.8, 3.0 Hz, 2H). ³¹P NMR (162MHz, D₂O) δ -4.69. ¹³C NMR (100MHz, D₂O) δ 169.48, 153.02, 149.14, 148.70, 141.09, 129.98, 129.20, 118.59, 87.52, 83.91 (d, *J* = 9.0 Hz), 74.19, 70.37, 64.83 (d, *J* = 5.3 Hz). [M+H]⁺ *m/z* calculated 401.0969 (100%), 402.1003 (14%), observed 401.0957 (100%), 402.1006 (11%).

Synthesis of Adefovir-acrylate

Adefovir-acrylate

acrylic ((2-(6-amino-9*H*-purin-9-yl)ethoxy)methyl)phosphonic anhydride (Adefoviracrylate). In a 4mL scintillation vial, 9-[2-(Phosphonomethoxy)ethyl]adenine (PMEA, Adefovir) (AK Scientific, 20mg, 0.0732mmol) was dissolved in DMSO (1mL) and triethylamine (102µL,0.732mmol, 10eq) with sonication and stirring. In a separate vial, intermediate 1 (10.2mg, 0.0805mmol, 1.1eq) was dissolved in DMSO (100µL) and added slowly to the reaction vial. After 2hr, the reaction was quenched by addition of 1% formic acid (1mL) and purified by reverse phase HPLC (0-25% acetonitrile/water) to yield the pure compound (white solid, 18.4mg, 72% yield). ¹H NMR (400MHz, DMSOd6 + Et₃N) δ 8.16 (s, 1H), 8.12 (s, 1H), 7.16 (s, 2H), 6.21 (dd, *J* = 17.2, 1.9 Hz, 1H), 6.12-6.04 (m, 1H), 5.86 (dd, *J* = 10.1, 1.9 Hz, 1H), 4.27 (t, *J* = 5.2 Hz, 2H), 3.85 (t, *J* = 5.2 Hz, 2H), 3.60 (d, *J* = 8.1 Hz, 2H). ³¹P NMR (162MHz, DMSO-d6 + Et₃N) δ 9.67 (t, *J* = 8.0 Hz). ¹³C NMR (100MHz, DMSO-d6 + Et₃N) δ 163.24 (d, *J* = 7.8 Hz), 156.35, 152.73, 149.92, 141.66, 131.84, 130.66 (d, *J* = 3.7 Hz), 118.97, 70.09 (d, *J* = 9.2 Hz), 68.36 (d, *J* = 154.7 Hz), 43.01. [M+H]⁺ *m/z* calculated 328.0805 (100%), 329.0839 (12%), observed 328.0799 (100%), 329.0854 (13%).

SUPPLEMENTARY REFERENCES

- 1. Hilliker, A., Gao, Z., Jankowsky, E., and Parker, R. (2011) The DEAD-box protein Ded1 modulates translation by the formation and resolution of an eIF4F-mRNA complex. *Mol. Cell.* **43**, 962–972
- 2. Chambers, R. W., and Moffatt, J. G. (1958) The synthesis of adenosine-5" and uridine-5" phosphoramidates. *J. Am. Chem. Soc.* **80**, 3752–3756