### **Supplementary Information for:**

Immunological correlates of mycobacterial growth inhibition describe a spectrum of tuberculosis infection

# Authors

Matthew K. O'Shea<sup>1,2\*</sup>, Rachel Tanner<sup>1</sup>, Julius Müller<sup>1</sup>, Stephanie A. Harris<sup>1</sup>, Danny Wright<sup>1</sup>, Lisa Stockdale<sup>3</sup>, Elena Stylianou<sup>1</sup>, Iman Satti<sup>1</sup>, Steven G. Smith<sup>3</sup>, James Dunbar<sup>4</sup>, Thomas E. Fletcher<sup>5</sup>, Martin Dedicoat<sup>6</sup>, Adam F. Cunningham<sup>7</sup>, Helen McShane<sup>1</sup>.

# Author affiliations

<sup>1</sup>The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK. <sup>2</sup>Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK. <sup>3</sup>Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK.

<sup>4</sup>The Friarage Hospital, Northallerton, Yorkshire, UK.

<sup>5</sup>Liverpool School of Tropical Medicine and Hygiene, Liverpool, UK.

<sup>6</sup>Heart of England Foundation Trust, Birmingham, Birmingham, UK.

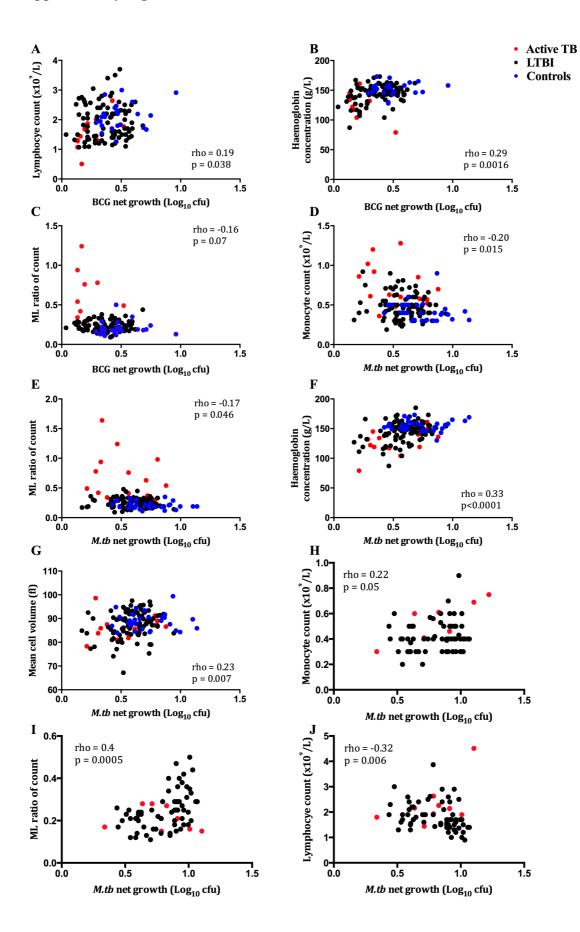
<sup>7</sup>Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.

| Supplementary Table 1. Pre- and post-treatment hematology parameters of study participants. |
|---------------------------------------------------------------------------------------------|
|---------------------------------------------------------------------------------------------|

|                                        | Pre-treatment       |                     |                     |          |      |    | Post-treatment      |                     |          |      |
|----------------------------------------|---------------------|---------------------|---------------------|----------|------|----|---------------------|---------------------|----------|------|
| Laboratory parameter<br>Median [IQR]   | State of infection  |                     |                     | P values |      |    | State of infection  |                     | P values |      |
|                                        | Active TB<br>n=19   | LTBI<br>n=129       | Controls<br>n=35    | P1       | P2   | P3 | Active TB<br>n=11   | LTBI<br>n=78        | P4       | Р5   |
| Total leucocytes (x10 <sup>9</sup> /L) | 7.38 [5.85-9.03]    | 6.80 [5.64-8.20]    | 7.30 [5.80-8.40]    | ns       | ns   | ns | 5.62 [4.63-6.98]    | 5.37 [4.80-6.57]    | *        | **** |
| Neutrophils (x10 <sup>9</sup> /L)      | 5.28 [2.99-7.24]    | 4.1 [3.01-5.10]     | 4.3 [3.34-5.20]     | ns       | ns   | ns | 2.64 [2.11-4.02]    | 3.00 [2.50-3.65]    | **       | **** |
| Lymphocytes (x10 <sup>9</sup> /L)      | 1.46 [1.28-1.87]    | 1.90 [1.50-2.36]    | 2.00 [1.70-2.40]    | *        | **   | ns | 1.93 [1.57-2.26]    | 1.70 [1.42-2.16]    | ns       | **   |
| Monocytes (x10 <sup>9</sup> /L)        | 0.63 [0.57-0.92]    | 0.42 [0.37-0.50]    | 0.40 [0.32-0.50]    | ****     | **** | ns | 0.46 [0.40-0.61]    | 0.40 [0.30-0.50]    | **       | *    |
| ML ratio                               | 0.49 [0.32-0.78]    | 0.24 [0.19-0.29]    | 0.19 [0.17-0.28]    | ****     | **** | ns | 0.21 [0.16-0.28]    | 0.23 [0.18-0.29]    | **       | ns   |
| Eosinophils (x10 <sup>9</sup> /L)      | 0.16 [0.07-0.3]     | 0.17 [0.1-0.27]     | 0.2 [0.1-0.23]      | ns       | ns   | ns | 0.18 [0.14-0.30]    | 0.10 [0.10-0.20]    | ns       | **** |
| Basophils (x10 <sup>9</sup> /L)        | 0.04 [0.02-0.07]    | 0.04 [0.0-0.1]      | 0.0 [0.0-0.1]       | ns       | ns   | ns | 0.04 [0.03-0.05]    | 0.0 [0.0-0.06]      | ns       | **** |
| Haemoglobin (g/L)                      | 135.0 [119.0-150.3  | 148.0 [139.0-155.5] | 154.0 [147.0-158.0] | *        | ***  | *  | 159.0 [139.0-166.0] | 147.5 [138.0-155.5] | **       | *    |
| Mean cell volume (fL)                  | 85.9 [83.1-88.5]    | 89.1 [84.9-92.5]    | 88.3 [85.8-90.6]    | ns       | ns   | ns | 87.8 [84.5-88.7]    | 89.9 [86.6-92.9]    | ns       | ns   |
| Platelets (x10 <sup>9</sup> /L)        | 324.5 [210.0-521.5] | 233.5 [204.0-272.5] | 243.0 [212.8-270.8] | *        | ns   | ns | 250.0 [208.0-326.0] | 227.0 [194.5-249.5] | *        | **** |

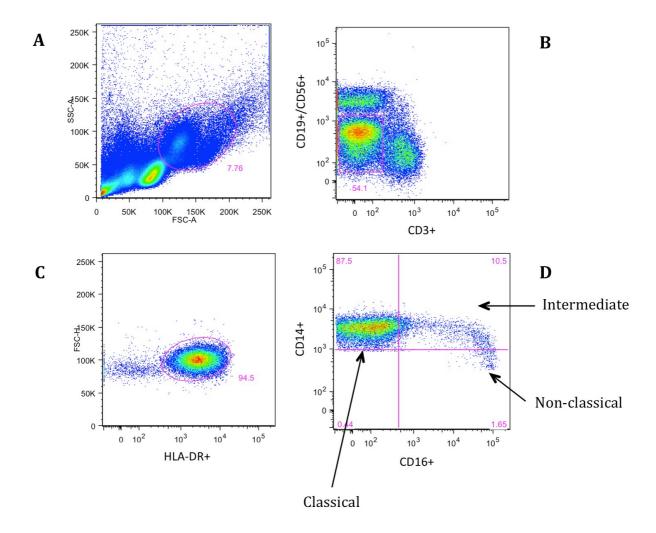
After testing for normality, P values for pre-treatment haematology parameters were calculated using a Kruskal-Wallis test with Dunn's correction for multiple comparisons between infection states as follows: P1=Active TB vs LTBI; P2=Active TB vs Healthy controls; P3=LTBI vs Healthy controls.

P values were subsequently calculated using a Wilcoxon matched-pairs signed rank test between pre- and post-treatment haematology parameters as follows: P4=Active TB pre- vs post-treatment; P5=LTBI pre- vs post-treatment.


\* represents a p-value of <0.05, \*\* a p-value of <0.005, \*\*\* a p-value of <0.0005 and \*\*\*\* a p-value of <0.0001.

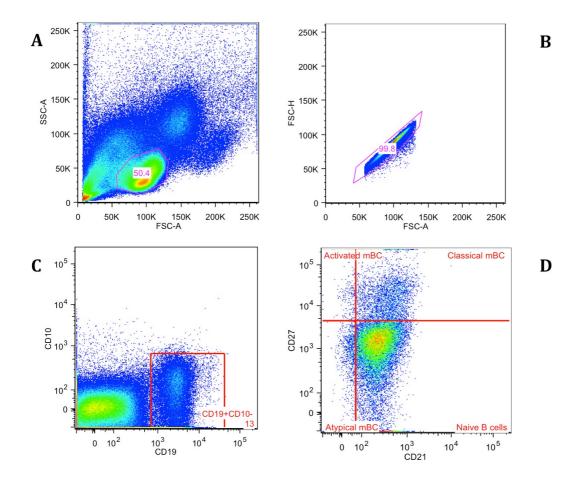
LTBI=latent TB infection; IQR=interquartile range; ns=non-significant; ML=monocyte-to-lymphocyte.

| Supplementary Table 2. Correlation between MGIT <i>M.tb</i> net growth and serum |
|----------------------------------------------------------------------------------|
| cytokine/chemokine concentrations (Spearman's rho correlation coefficient).      |


| Cytokine/chemokine | rho    | P value  |
|--------------------|--------|----------|
| Gro                | -0.316 | 2.32E-04 |
| TGF-α              | -0.286 | 9.22E-04 |
| PDGF-BB            | -0.257 | 3.02E-03 |
| PDGF-AA            | -0.242 | 5.27E-03 |
| IP-10              | -0.220 | 1.17E-02 |
| MDC                | -0.184 | 3.58E-02 |
| MIP-1b             | 0.163  | 6.33E-02 |
| MIP-1a             | 0.152  | 8.24E-02 |
| FGF-2              | -0.144 | 1.02E-01 |
| IL-4               | -0.129 | 1.43E-01 |
| VEGF               | -0.099 | 2.62E-01 |
| IL-8               | 0.093  | 2.89E-01 |
| sCD40L             | 0.084  | 3.37E-01 |
| IL-6               | -0.084 | 3.41E-01 |
| IL-17A             | -0.064 | 4.65E-01 |
| EGF                | 0.059  | 5.01E-01 |
| MCP-1              | 0.057  | 5.15E-01 |
| Eotaxin            | -0.055 | 5.34E-01 |
| IFN-γ              | -0.045 | 6.12E-01 |
| IL-5               | -0.035 | 6.89E-01 |
| RANTES             | 0.007  | 9.41E-01 |
| IL-7               | 0.006  | 9.49E-01 |
| TNF-α              | -0.004 | 9.61E-01 |

### **Supplementary Figure 1.**




# Supplementary Figure 1. *Ex vivo* mycobacterial control correlates with *in vitro* haematological markers. The relationship between baseline and post-treatment mycobacterial net growth and haematology parameters was investigated. After testing for normality, Spearman's correlations were calculated between pre-treatment haematology data and the whole blood BCG (3A-C) and *M.tb* H37Rv (3D-G) MGIT results. Associations were found between BCG net growth and lymphocyte count (A), haemoglobin concentration (B) and monocyte-to-lymphocyte (ML) ratio (C). Significant correlations were also found between *M.tb* H37Rv net growth and monocyte count (D), ML ratio (E), haemoglobin concentration (F) and mean cell volume (G). Spearman's correlations showed significant associations between post-treatment *M.tb* H37Rv net growth and monocyte count (J). Red circles = active TB, black = LTBI and blue = healthy controls.

## Supplementary Figure 2.



**Supplementary Figure 2. Monocyte gating strategy.** Cells were visualized by size (SSC-A vs FSC-A) and a large gate was drawn around the monocyte cloud, excluding most cell debris (A). After selecting live cells, CD3+, CD19+ and CD56+ cells were all excluded (B). From the double negative cells, HLA-DR+ cells were then selected (C) and were discriminated on a bivariate scatter plot of CD14+ vs CD16+ (D). Double negative cells on this plot were removed as non-monocytes. Monocyte subsets were defined as CD14++CD16- (classical), CD14++CD16+ (intermediate), or CD14+CD16+ (non-classical) on the basis of FMO gating [3]. The proportion of each subset of the total monocyte population was calculated.

# Supplementary Figure 3.



**Supplementary Figure 3. B cell gating strategy.** Cells were visualized by size (SSC-A vs FSC-A) and a large gate was drawn around the lymphocyte cloud, excluding most cell debris (A). Singlets and live cells were then selected (B). After selecting for mature B cells (CD19+CD10-) (C), B cells subsets were discriminated on a bivariate scatter plot of CD27+ vs CD21+ (D). B cells were defined CD27+CD21- (activated mBC), CD27+CD21+ (classical mBC), CD27-CD21+ (naïve mBC) and CD27-CD21- (atypical mBC) on the basis of FMO gating [4]. Mature B cells were calculated from the total lymphocyte population and other subsets as a proportion of mature B cells.