
Reviewers' Comments:  
 
Reviewer #1:  
Remarks to the Author:  
The manuscript by Rusch and colleagues addresses an important question on the benefits of 
including WGS to the existing CLIA NGS testing. The data is well presented though short in details 
in several areas. While the authors have taken a stance that including WGS is beneficial, the data 
presented does not seem to render convincing evidence along those lines. They should also 
provide a solid counter argument without any bias, unlike the small text presented in the 
discussion, on where and why one could skip WGS. Overall lack of analysis and lack of solid 
evidence to support the claims is discouraging and diminishes the importance of this study.  
 
Major Issues:  
1. Currently most ongoing precision oncology efforts do not incorporate whole genome sequencing 
or even whole exome sequencing due not only to time constraint, as noted by the authors, but 
also to cost-benefit considerations. The time factor is only superficially noted by the authors. They 
state in the Discussion “Presently, generation of a curated mutation report from raw Total 
Sequencing data takes approximately 8 days, making it possible to achieve our ultimate goal of 
returning results in between 28 and 42 days from initial sample acquisition.” The authors should 
indicate the actual number of days it took them “from biopsy to the final report” and compare 
against equivalent timeframe reported in other clinical sequencing efforts to provide a realistic 
sense of the extra time involved.  
 
2. Cost is a consideration as well, including not only sequencing cost but also data-storage and 
analysis costs. Even as a systematic analysis may not be in the scope of the present study, some 
indication of cost with and without WGS/WES rather than targeted gene panel should be provided 
for reference.  
 
3. A key claim of the study is summarized in the discussion as “We showed that, independently, 
WGS detected 90% of P/LP variants compared to only 35% by WES and 20% by RNA-Seq”. This 
huge discrepancy is possibly accounted for in a large measure because the authors do not use 
WES data for CNA analyses. The reason cited for this is not convincing at all and almost certainly 
not shared by the NGS community at large. Numerous published clinical sequencing studies have 
routinely used WES, and much more commonly, targeted gene panel sequencing, to assess and 
report clinically actionable CNAs (Oritz, Pediatr Blood Cancer 2016; Hyman, Drug Discovery Today 
2015; Cheng, J Mol Diag 2015; Robinson, Cell 2015; Mody, JAMA 2015; Hovelson, Neoplasia 
2015; Roychowdhury, Sci Trans Med 2011; Frampton, Nat Biotechnol 2013; Ross, J Clin Pathol 
2014; Ross, JAMA Oncol 2015; He, Blood 2016; Lee, J Clin Pathol 2016; Ross, Cancer 2016; 
Wheler, Cancer Res 2016; Chmielecki, Cancer Res2017). CNAs are eminently detectable by WES/ 
targeted panels, except for arm level/whole chromosome copy number aberrations, which are also 
amenable to analyses with larger targeted panels (Lonigro, Neoplasia 2011; Pritchard, J Mol Diagn 
2014). For a fuller assessment, the authors should perform CNA analysis with WES data and 
highlight the clinically actionable/ informative CNAs that could be called only by WGS.  
 
4. The depth of coverage for WES in this study is pegged at >100x on average for both normal 
and tumor samples (Methods, Results, Supp Table 3). This is at the low end of coverage for clinical 
sequencing- particularly for samples with low tumor content. Interestingly, in Table 3, 29 tumor 
samples are noted with less than 100X coverage for WES. Of these, 5 samples have tumor content 
less than 50%, not specified for another 4 samples. Since clinical sequencing by definition pertains 
to analysis of individual cases, limited coverage of so many cases cannot be reconciled by 
averaging over the entire cohort. Also, this limited coverage rather than any intrinsic limitation of 
WES data over WGS data may account for some of the noted lack of sensitivity. Increasing the 
WES coverage is relatively less demanding than WGS to compensate for it.  
 
5. Detection of internal tandem duplications (ITD) such as in FLT3 or NOTCH are highlighted as 



problematic and analyzed using an ITD specific Cicero data analysis tool. However, FLT3-ITD, as 
well as other informative indels, have been reported through various standard somatic indel 
analysis pipelines using targeted exome panels (Mody, JAMA 2015; He, Blood 2016; Chmielecki, 
Cancer Res 2017). Furthermore, the detection of indels can be corroborated with parallel analyses 
of RNA sequencing data and does not need WGS.  
 
6. WGS data is cited as a useful companion for detection of gene fusion break-points. As an 
example, PDGFRA gene fusion in a high grade glioma is cited (Figure 2b). However, after a 
description of complex rearrangements involving three chromosomes, it is mentioned that in this 
case PDGFRA is amplified with ~22 copies. In this context, the significance of the gene fusions is 
not clear. Can the authors comment as to what fraction of PDGFRA expression is accounted for by 
the fusion? Or possibly, these fusions merely represent by-products of focal amplification of 
PDGFRA and are thus not particularly relevant. The authors should point out if this sample displays 
outlier expression of full length PDGFRA or only the chimeric transcript.  
 
7. In the Table 6 summarizing “all pathologic findings”, the authors should include coverage/read 
support for SNVs and indels detected in PGCP/current study to help assess if sensitivity/specificity 
of detection is simply contingent upon coverage, not an intrinsic limitation of the sequencing 
platform.  
 
8. Among “novel findings due to the inclusion of WGS”, the GLI2 amplification, TP53 indel or the 
DNMT3A deletion (Figure 6), or Notch 1-ITD (Supp Figure 7) do not strike one as inherently 
undetectable by WES or even targeted panels. On the other hand, the failure to detect high level 
amplification of MYCN in a retinoblastoma sample is quite intriguing. The fact that the clinical 
sample analyzed here was different from the PGCP sample could be a plausible explanation, but is 
extenuated by the “almost perfect agreement” in the CNAs observed on chromosome 13 (Figure 
5b).  
 
9. The authors need to perform copy number analysis on WES data to make a fair comparison. 
They can perhaps try either “Falconx”, PureCN (PMC5157099) or Sequenza”, and see what works 
best. Though they cite an old reference (ref 37) in the discussion as a reason for not performing 
this analysis, several independent groups have been able to obtain this information from WES. 
Hence without these numbers from WES, the key data presented in Figure 5a (direct comparison 
between platforms) is highly misleading.  
 
10. The failure to detect FXR1-BRAF in a low grade glioma in the WGS data due to low tumor 
content is understandable, however, it is not mentioned if this fusion was not detected in RNA-seq 
data as well. That would be a bigger concern. Elsewhere, it is concerning that fusions including 
KMT2A-MLLT3, ETV6-RUNX1, KIAA1549-BRAF etc. were not detected. Can the authors provide 
data to support the claim that this is due to low expression and not suboptimal yield of RNA-seq 
data?  
 
11. According to Supplemental Table S6 only two SNV/indels were not detected by WES (SH2B3 
and FLT3). So in terms of the SNVs/Indels detection, WES performance is comparable to WGS in 
terms of LP/P events detection. The big difference then arises only because of amplification and 
deletions and SVs called from WGS, for which as stated above the numbers are not provided in 
this manuscript as CNV analysis are not done for WES.  
 
12. Sample SJMLL001 WES data has very high PCR duplication rate, probably due to sample 
quality issue, though the WGS library has good WC, and perhaps is the reason why FLT3 mutation 
was not detected by WES. Did the authors try repeat the WES library prep? What is the reason for 
low coverage in the SH2B3 indel sample (SJBALL021900)? Can the authors show the coverage in 
these regions?  
 
13. The WES indel/SNV callers seem to give consistently higher number of calls than their WGS 



which is surprising (Suppl Figures 3 and 4). Is there a particular reason for this? Was the WES 
caller less stringent? This systemic discrepancy is probably reflected in the table in Suppl Figure 
4b.  
 
14. It appears that most notable SVs presented in the figures are all supported by fusion evidence 
from RNAseq. Here again while WGS does provide the evidence/details of the underlying genomic 
event, whether it adds to the calls among actionable/P/LP over RNAseq is not clearly presented?  
 
15. Why did the authors use older versions for several programs? For example, BWA current 
version is 7.2 and Picard current version is 2.92. Did the authors see any difference between these 
versions?  
 
16. From a per patient perspective, how many of the 78 cases benefit from WGS? Can the authors 
discuss this in detail? This could very well be the basis of recommending a multi-tiered 
CLIA/sequencing approach where cost/time can be reduced for reporting. For example, WES 
(Tumor/normal) and RNAseq (Tumor) can be performed in the first round. Samples with more 
complex genome can be identified and recommended for WGS.  
 
 
 
Reviewer #2:  
Remarks to the Author:  
Rusch et al provide their experience of genomic profiling by total sequencing of whole-genome, 
whole exome, and whole transcriptome. The group has pioneered adoption of the advanced 
integrative next-generation sequencing to the field and there is inherent value in publishing their 
experience as more groups move along this path. There are several concerns of presentation that 
need to be addressed. The paper at times the paper reads as a branding or marketing presentation 
for a branded "Total Sequencing" which is unfortunate given the insight the results could provide 
and given total sequencing is a loaded phrase. The reporting of statistics was unclear and 
unfortunately seemed inconsistent. There was also insufficient discussion of the impact of 
sequencing depth on sensitivity, precision, and false negative rate given the low coverage 
sequencing typically expected for lower tumor content samples.  
 
Major Concerns  
 
Area 1. I found the branding of “Total Sequencing” to be unnecessary, ambiguous, and misleading 
given the phrase is highly loaded. It makes the paper ambiguous – should I review it on whether 
this is “total sequencing” or should I review the method “Total Sequencing”? I am choosing not to 
review on whether this is total sequencing, since it so clearly is not total sequencing, but rather 
optimized sequencing for deep exonic regions, mRNA, and relatively low pass cancer WGS. If the 
authors insist on it, could they more clearly (such as by a trademark symbol) distinguish this as 
branding? Even within regions that are well covered, triplicate expansions, inversions, and 
unphased DNA are just a couple of examples of categories that are missed. For example, there are 
several well-known repeat expansions that would be expected in these samples – the methods 
used do not manage expansions. The paper ends with Higher WGS coverage would further 
improve – which undermines total sequencing.  
 
Area 2. I found the summary statistics very confusing and inconsistent, and at times it seemed as 
selective reporting. Typically, sensitivity, specificity, and precision are provided in one table. These 
values are presented in a series of figures and tables. However, it seems the reportable range is 
changing. It is best to present these such that one can assess these values together, such as to 
avoid biases through selection of reportable range idea for each measure. For example, 4A 
appears to have 84 indels. Figure 3 (Precision) has 112 e-indel. I’m sure it’s consistent, but this is 
some other examples have me wondering what the values are.  
 



There needs to be more detail on the calculation of sensitivity, specificity, precision, FDR. Are the 
metrics cited in the abstract presented for other variant classes/types. For example, synonymous 
variants, intronic variants, transcription start-site variants, and many other classes that are critical 
part of discovery and these do not seem to be considered in the reported accuracy measurements. 
How were true negatives determined? For example, in the cases were the tumor content was 
below 10% one would expect a large number of false negatives. Very specifically, the reportable 
range and the means by which true negatives were estimated need to be described. I wasn’t sure 
for example if a manual rescue represents a true negative, false negative, or no result.  
 
Area 3. Coverage is a critical aspect that is not quantitatively assessed in terms of a classic limits 
of detection analysis. The authors provide specificity and sensitivity, and discuss in great detail the 
importance of coverage. In practice for many clinical sequencing in CAP/CLIA environments the 
coverage they are sequencing is quite low and prone to false negatives. The various excel files 
highlight numerous examples where estimated tumor purity is less than 40%, less than 20%, and 
less than 10. The other concern is that the paper puts a major focus on whole-genome sequencing 
at relatively low coverage (30x) for mixed tumor/normal specimens, without going into the loss of 
sensitivity. Most clinical labs focusing on tumor sequencing often sequence to 400x -1,000x depth 
to examine lower tumor purity. The reported samples have a large portion of lower tumor content 
(50% are less than 50% tumor content), and so this discussion is relevant here. The authors 
should describe the dependence of sensitivity on tumor content of example.  
 
 
 
Reviewer #3:  
Remarks to the Author:  
The authors performed “total sequencing”, which includes whole genome (WGS), whole exome 
(WES) and whole transcriptome (WTS) sequencing, of 78 pediatric cancer patients. Their analysis 
pipeline detects, integrates, and cross-validates variants from each sequencing technique 
(platform). Experimental validation was performed to measure the accuracy of “total sequencing”. 
It claims that there is a critical need for using WGS in cancer screening in conjunction with WES 
and WTS.  
 
The cross-validation method itself is not entirely novel, e.g. using WES to validate WGS 
(https://www.ncbi.nlm.nih.gov/pubmed/22178993) or using SV predictions to validate RNA fusions 
(http://www.sciencedirect.com/science/article/pii/S00928674120102 27). The article maybe of 
interest to the clinical community to learn more about the utility of sequencing using multiple 
techniques. In the research community it is not an uncommon approach as cost is not a major 
concern but discovery unlike in a clinical setting that diagnostics have to be done routinely and 
have to be interpretable/actionable.  
 
It is commonly known to the community that the biggest limitation of WES and gene panel is on 
SV/CNV detection. There were also numerous suggestions to complement WES with WGS to fill 
that gap; e.g. using a low-cost, shallow WES for SV-driven tumors 
(http://www.cell.com/trends/genetics/abstract/S0168-9525(16)30070 -1). On the other hand, 
WES or gene panel provides a more economic solution to sequence to very high depth (thousands 
of coverage) to detect low allele frequency variants in cancer, particularly in highly non-pure 
samples such as ctDNA. In that regard, Fig 4a in the article also showed that WES-only approach 
has higher sensitivity than WGS-only approach. Adding another sequencing can certainly validate 
the variants from WES; however, it is unclear in the article that how much more value it is for 
further validating detected, clinically actionable/interpretable variants which are usually having 
very high sensitivity and specificity in diagnostic assays. For other or rare variants that can only be 
detected by WGS, it is not clear how interpretable they are, as previously described e.g. in 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4484824/. 
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Reviewer #1 (Remarks to the Author): 
 
The manuscript by Rusch and colleagues addresses an important question on the 
benefits of including WGS to the existing CLIA NGS testing. The data is well 
presented though short in details in several areas. While the authors have taken a 
stance that including WGS is beneficial, the data presented does not seem to render 
convincing evidence along those lines.  
 
[Response] We thank the reviewer for their comments. We have re-worked areas of the 
manuscript to highlight the value that WGS adds as part of a multi-platform test. Replies 
to specific points with examples are discussed below. 
 
They should also provide a solid counter argument without any bias, unlike the 
small text presented in the discussion, on where and why one could skip WGS. 
Overall lack of analysis and lack of solid evidence to support the claims is 
discouraging and diminishes the importance of this study.  
 
[Response] To address the reviewer’s concern, we have performed a combined WES and 
RNA-Seq analysis to develop a solid counter argument against the three platform 
(WGS/WES/RNA-Seq) analysis described in the manuscript. This included the copy 
number variations obtained from WES, an analysis which was not performed in the prior 
version. We then summarized the performance of WES+RNA-Seq in the updated version 
of Figure 5a. 
 
Major Issues: 
 
1. Currently most ongoing precision oncology efforts do not incorporate whole 
genome sequencing or even whole exome sequencing due not only to time constraint, 
as noted by the authors, but also to cost-benefit considerations. The time factor is 
only superficially noted by the authors. They state in the Discussion “Presently, 
generation of a curated mutation report from raw Total Sequencing data takes 
approximately 8 days, making it possible to achieve our ultimate goal of returning 
results in between 28 and 42 days from initial sample acquisition.” The authors 
should indicate the actual number of days it took them “from biopsy to the final 
report” and compare against equivalent timeframe reported in other clinical 
sequencing efforts to provide a realistic sense of the extra time involved.  
 
[Response] We acknowledge that the analysis of turnaround time is limited in our current 
study.  In a typical clinical genomics workflow, individual cases are analyzed end-to-end 
either individually or in small batches, without interruption.  Analysis of our clinical pilot 
samples was performed during the development of the automation infrastructure.  As 
such, the analysis was performed in large batches and was not performed end-to-end.  
Therefore, we were unable to directly measure turnaround time.  However, we inferred 
turnaround time by adding the time spent on the individual analyses. 
 
To provide statistics based on direct measurements of turnaround time, we gathered data 
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from our current clinical genomics service - which uses the same pipeline described in 
this study.  We have added this information to the discussion. We are now confident that 
this inferred time is accurate, as we are presently able to turn around samples in a median 
of 31 days from biopsy/surgery to report. This compares fairly well to published reports 
listing tumor exome analysis in 2-5 weeks (Rennert et al. 2016), and < 21days for 
integrated panel/selected transcriptome (Zehir et al. 2017). We have incorporated the 
following text in the Discussion section, p.20 paragraph 2: 
 

Generation of a curated mutation report from raw sequencing data was estimated to 
take 8 days based on batch analysis of the samples used in the study.  Allowing for 
time library preparation and sequencing, we extrapolated a clinical turnaround time of 
28-42 days. We have since deployed three-platform sequencing as a clinical service 
and achieved a median turnaround time of 31 days from sample receipt to report, 
which is comparable to a median turnaround time of 3 weeks reported in two recent 
clinical genomic studies that employed tumor exome sequencing (Rennert et al. 2016) 
or integrated panel/selected transcriptome sequencing (Zehir et al. 2017). 

 
 
2. Cost is a consideration as well, including not only sequencing cost but also data-
storage and analysis costs. Even as a systematic analysis may not be in the scope of 
the present study, some indication of cost with and without WGS/WES rather than 
targeted gene panel should be provided for reference.  
 
[Response] Since actual costs were not measured during the study, we estimated cost 
based on data volume, reagent costs, and cloud storage costs in the revision.  Analytical 
costs were not evaluated since all analysis was performed using local resources owned by 
the institution.  As such, there were no direct charges for the analysis.  It would be 
extremely difficult to accurately estimate actual cost based on amortizing capital 
expenditures and data center operating costs, so such an analysis was considered to be 
out-of-scope for this study. We have, however, incorporated the following text in the 
Discussion section, p.21 paragraph 3: 
 

The disadvantages of three-platform sequencing are the computing infrastructure 
required for data storage and analysis, and the cost of sequencing. Data retained from 
each paired patient sample occupies 150-200 Gb and, in line with our clinical 
laboratory protocols, must be rapidly accessible for 6 months which is estimated to 
cost $25 per case in a cloud computing platform. For this pilot study, sequencing was 
carried out using Illumina HiSeq 2000/2500 machines at a cost of $25,000/case 
($18,000 for 30x WGS). However, costs have since been reduced to $8,600/case 
($6,600 for 45x WGS) on our clinical service as samples are now sequenced by 
HiSeq 4000 machines.  We anticipate that technology development will further 
reduce the cost for both computing and sequencing. As treatment of a pediatric 
cancer typically costs hundreds of thousands of dollars, the precision of integrative 
genomic profiling offered by three-platform sequencing outweighs the extended time 
for secondary validation and the potential for missing ~20% pathogenic variants in 
pediatric cancer. 

 
We anticipate that technology development will further reduce the cost for both computing and 
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sequencing. For example, the estimated cost of three-platform sequencing using the most recent 
Illumina NovaSeq will be $3,800-$6,500 per case.  This was not included in the text, as it was 
calculated from reagent costs provided by Illumina which are unpublished. 
 
3. A key claim of the study is summarized in the discussion as “We showed that, 
independently, WGS detected 90% of P/LP variants compared to only 35% by WES 
and 20% by RNA-Seq”. This huge discrepancy is possibly accounted for in a large 
measure because the authors do not use WES data for CNA analyses. The reason 
cited for this is not convincing at all and almost certainly not shared by the NGS 
community at large. Numerous published clinical sequencing studies have routinely 
used WES, and much more commonly, targeted gene panel sequencing, to assess 
and report clinically actionable CNAs (Oritz, Pediatr Blood Cancer 2016; Hyman, 
Drug Discovery Today 2015; Cheng, J Mol Diag 2015; Robinson, Cell 2015; Mody, 
JAMA 2015; Hovelson, Neoplasia 2015; Roychowdhury, Sci Trans Med 2011; 
Frampton, Nat Biotechnol 2013; Ross, J Clin Pathol 2014; Ross, JAMA Oncol 2015; 
He, Blood 2016; Lee, J Clin Pathol 2016; Ross, Cancer 2016; Wheler, Cancer Res 
2016; Chmielecki, Cancer Res2017). CNAs are eminently detectable by WES/ 
targeted panels, except for arm level/whole chromosome copy number aberrations, 
which are also amenable to analyses with larger targeted panels (Lonigro, Neoplasia 
2011; Pritchard, J Mol Diagn 2014). For a fuller assessment, the authors should 
perform CNA analysis with WES data and highlight the clinically actionable/ 
informative CNAs that could be called only by WGS.  
 
[Response] To address reviewer’s concern on lack of CNA analysis on WES, we used 
the Sequenza algorithm (Favero et al. 2015), as recommended by the reviewer in 
comment #9, to call copy number segments from WES; this is now described on p.9 
paragraph 2 and in the Methods section on p.29 paragraph 2. We compared P/LP copy 
number segments and LOH regions identified by WGS with those derived from WES and 
incorporated results into an updated version of Supplementary Table 6 (Supplementary 
Table 7A in the revised manuscript). 

Our analysis showed that the WES could reliably identify arm-level abnormalities 
as well as many sub-arm changes, increasing the diagnostic yield of WES alone or 
WES+RNA-Seq to 60% and 78% of P/LP variants, respectively. We incorporated CNAs 
found by exome into a new version of Fig 5 (shown below in our response to Reviewer 
1’s comment #9 which concerns ITDs). 

However, WES-based CNA analysis tended to miss some of the focal 
abnormalities. We compared CNAs that were missed by WES (i.e. false negative calls) 
with those that were detected by both WGS and WES in a new Supplementary Figure 7, 
shown below. CNAs missed by WES but found by WGS generally spanned smaller 
genomic regions and contained fewer exons. This suggests that CNAs affecting small 
and/or exon-poor regions would be challenging to detect using WES due to insufficient 
markers for robustly measuring read-depth changes - even if the algorithm utilizes off-
target reads. WGS, on the other hand, is able to detect these CNAs as the algorithm we 
developed tallies 100-bp windows genome wide for measuring read-depth change (Chen 
et al. 2015).  
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Supplementary Figure 7. Comparison of P/LP sub-arm CNAs detected or 
missed by WES CNA analysis.  Each panel shows the distribution of CNAs 
detected by both WGS and WES (Found; n=18) or detected by WGS and missed by 
WES (Missed, n=36) a) Distribution of CNA genome size (log2 of segment size in 
basepairs) b) Distribution of number of exons within CNAs c) Distribution of the 
number of basepairs of exonic regions covered by the CNA. Wilcox Rank Sum test 
showed significant differences in the distributions with p-values of p-value = 
0.002253, 0.003404 and 0.005525 respectively. 

 
We include changes to the diagnostic yields of WES and WES+RNA throughout the 
manuscript and specifically on p.15 paragraph 3, along with some notable misses with 
the following text: 
 

We compared three platform sequencing with the current gold standard of combined 
WES and RNA-Seq. For the purposes of this study, we evaluated the approach on 
research basis rather than as a full CLIA validation. Combined WES and RNA-Seq 
identified 78% (188/242) of P/LP variants. The lower yield relative to three-
platform sequencing was mostly driven by focal and exon-poor CNVs (n=36) that 
were not detected in our exome-only copy number analysis (Supplementary Fig. 7, 
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Supplementary Table 8). Notable misses included focal and intragenic disruptions 
of CDKN2A, CREBBP, ETV6, MYB, NF1, NR3C2, PAX5, PTEN, RB1 and TP53 
(Supplementary Table 7A and Supplementary Fig. 7). 

 
An additional challenge in WES-based CNA analysis is the lack of supporting 

evidence from structural variation breakpoints to corroborate read-depth changes; 
therefore, it is difficult to differentiate true positives from false predictions when a CNA 
has a low magnitude of read-depth change or has a small segment size. Of the twelve 
additional committee-reviewable CNAs identified by WES, none were verified by WGS. 
These likely false positive CNAs, along with information of detected and missed CNAs 
are recorded in a new Supplementary Table 8.  
 
4. The depth of coverage for WES in this study is pegged at >100x on average for 
both normal and tumor samples (Methods, Results, Supp Table 3). This is at the low 
end of coverage for clinical sequencing- particularly for samples with low tumor 
content. Interestingly, in Table 3, 29 tumor samples are noted with less than 100X 
coverage for WES. Of these, 5 samples have tumor content less than 50%, not 
specified for another 4 samples. Since clinical sequencing by definition pertains to 
analysis of individual cases, limited coverage of so many cases cannot be reconciled 
by averaging over the entire cohort. Also, this limited coverage rather than any 
intrinsic limitation of WES data over WGS data may account for some of the noted 
lack of sensitivity. Increasing the WES coverage is relatively less demanding than 
WGS to compensate for it.  
 
[Response] We thank the reviewer for suggesting an evaluation on false negatives on 
WES versus WES coverage, which will be useful to determine whether low-coverage 
WES data or WES platform was the culprit.  

First, we would like to clarify that tumor purity for all 29 samples with <100X 
WES coverage were recorded on column M of the original Supplementary Table 3. As 
the same column was used to present both tumor purity of the tumor specimen and 
tumor-in-normal contamination of the germline specimen, it may have caused confusion 
regarding the purity status. We have modified this table so that tumor purity is now 
presented in column Q and the proportion of tumor-in-normal contamination in column I. 
The reviewer should be able to see that the tumor purity for the remaining 24 samples 
ranged from 0.62 to 1.00. 

We focused the evaluation of WGS-only findings on point mutations (e.g. SNV 
and indels) as they were routinely analyzed by both platforms while performance of CNA 
analysis by WGS versus WES has already been presented in our response to the 3rd point 
raised by reviewer 1. Of the 7 P/LP variants missed by WES, none was present in the five 
samples (e.g. SJDSRCT030016, SJIFS030022, SJLGG026, SJLGG036, 
SJMPNST030013) that had low tumor purity and <100X WES coverage. Of the 7 
variants missed by WES, 3 had low coverage at the site uniformly across all WES 
samples and we incorporated the cohort-level coverage statistics along with local GC 
content of these variants (e.g. SH2B3 R216fs, FLT3 D835Y, and CEBPA E59*) in a new 
Supplementary Figure 3, shown below. As the average of WES read count is 
approaching 0 across all samples, it shows that these variants were missed due to the 
capture efficiency of WES instead of coverage. Of the remaining four variants, NF1 
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T2263_Y2264fs was missed due to diminished capture efficiency for the mutant allele 
(only one read for mutant allele present in WES despite an average WES coverage of 
106X compared to 14 in WGS with an average WGS coverage of 38X). Missing of 
NRAS Q61K, TET2 A1381T and ASXL1 R693* were caused by lack of sufficient high-
quality reads in WES at the variant sites. 

 

 
 

Supplementary Figure 3. WGS and WES coverage of three genes with P or LP 
SNVs or indels missed by WES.  Plots show the WGS (blue) and WES (gray) 
coverage, averaged over all 78 germline samples, along the genes FLT3, SH2B3, and 
CEBPA.  The gene model and GC content are depicted below the coverage graph, as 
in Supplementary Figure 1.  Arrows indicate the location of P or LP SNVs/indels 
that were found by WGS but missed by WES.  Each of these locations is well 
covered in WGS but systematically uncovered in WES. 

 
We also performed a “reverse” experiment by evaluating 13 point mutations that were 
missed by WGS and found by WES. These WES-only variants were all cross-validated 
by WGS and only 3 out of 13 have mutant allele fraction (MAF) above 0.1 (range 0.01-
0.17). Therefore, increasing WGS coverage may increase the power for detecting these 
variants in WGS. We have included a brief synopsis of this trend in the section of 
“Detection of diverse types of pathogenic and likely pathogenic variants” on p.13, 
paragraph 1. We expanded this discussion in Supplementary Note 2, entitled 
“Pathologic and likely pathologic mutations not detected by WES”: 
 

A total of seven pathologic or likely pathologic somatic SNVs/indels were discovered 
by WGS alone.  Of those seven two (FLT3 and SH2B3) had no support in WES, and 
five had insufficient support in WES for de novo detection (Supplementary Table 
7C).  We manually inspected each of the seven to determine the cause for non-
detection in WES.  Four out of the seven sample also had whole exome sequencing 
from various research studies.  For these four, we combined the reads from the 
clinical and research experiments and ran the resulting data through the analytical 
pipeline to determine if additional coverage would allow the variants to be detected 
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by WES.  The results are given in Supplementary Table 7C.  In brief, three of the 
seven were in regions of systematically low coverage and would therefore be 
unlikely to be recovered by additional coverage (one had additional reads, and it was 
not detected with additional coverage).  One appeared to be caused by poor capture 
of the indel-harboring fragments and would also be unlikely to be recovered by 
additional sequencing.  The other three showed no signs of systematic WES-related 
problems and we all recovered with additional reads. 

 
 
5. Detection of internal tandem duplications (ITD) such as in FLT3 or NOTCH are 
highlighted as problematic and analyzed using an ITD specific Cicero data analysis 
tool. However, FLT3-ITD, as well as other informative indels, have been reported 
through various standard somatic indel analysis pipelines using targeted exome 
panels (Mody, JAMA 2015; He, Blood 2016; Chmielecki, Cancer Res 2017). 
Furthermore, the detection of indels can be corroborated with parallel analyses of 
RNA sequencing data and does not need WGS. 
 
[Response] In the original manuscript, we stated that “ITDs ranged from 24 to 96 bp 
were detected by several different combinations of WGS (either as an indel or a CNA), 
WES and/or RNA-Seq”. This statement does not imply that ITD could only be detected 
by WGS or RNA-Seq. Indeed, CICERO on WES found 6/7 P/LP ITDs including 5/5 
FLT3-ITDs. This result was not included in the original submission, but in the revised 
manuscript we have included WES CICERO results in column K of Supplementary 
Table 7A, and we also reported WES ITD results on p.14 paragraph 2. The diagnostic 
yields shown in a revised Fig. 5 also reflects this addition and we have included a 
comment in the Methods section on p.29, paragraph 2 stating that WES ITD analysis as 
part of the analytical process. 

We do want to reiterate our observation that not all ITDs can be detected by WES 
or by standard indel detection methods. Specifically, WES may miss large ITDs that span 
multiple exons (e.g. the kinase domain ITD of FGFR1 in low grade glioma, Zhang et al. 
2013) or ITDs that span an intron-exon boundary. The NOTCH ITD highlighted in 
the section of “Novel findings due to the inclusion of WGS” was such a case. In the 
revised manuscript, we clarified on p.17, paragraph 3 that the mutant NOTCH1 ITD 
allele was entirely absent from the raw exome capture data, thus cannot be detected 
regardless of the computational analysis approach used (e.g. CICERO ITD or 
standard indel analysis such as Pindel).  

We next explored the Reviewer’s suggestion of using WES and RNA-Seq cross 
validation as a strategy for detecting ITDs and indels. Comparing genome-wide 
Cicero-ITD predictions from WES and RNA-Seq identified 275 and 620 potential 
ITDs respectively. However, only a small minority of predictions (7) had cross 
platform support and these included all P/LP ITDs except for NOTCH1 (discussed 
above). 

 We explored the same WES+RNA-Seq cross validation strategy for indel 
detection. For the 31 P/LP/U indels detected by WGS and/or WES listed in 
Supplementary Tables 7A/B, only 25 could be cross-validated using RNA-Seq 
either through a directly equivalent mutation call (11/25) or a “fuzzy” match with a 
slightly different indel being called (6/25) or manual inspection and rescue of 
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aligned RNA-Seq reads (8/25). The remaining 6/31 indels (19%) had no supporting 
RNA evidence. From this analysis, we conclude that indel calling from exome with 
cross-validation from RNA-Seq is a viable strategy but may be more susceptible to 
false negative calls than three platform sequencing due to low expression/nonsense 
mediated decay of the target gene. We include variant allele counts from RNA-Seq 
for P/LP variants in Supplementary Table 7B, column R and explanatory notes 
in column U. 
 
 
6. WGS data is cited as a useful companion for detection of gene fusion break-
points. As an example, PDGFRA gene fusion in a high grade glioma is cited (Figure 
2b). However, after a description of complex rearrangements involving three 
chromosomes, it is mentioned that in this case PDGFRA is amplified with ~22 
copies. In this context, the significance of the gene fusions is not clear. Can the 
authors comment as to what fraction of PDGFRA expression is accounted for by the 
fusion? Or possibly, these fusions merely represent by-products of focal 
amplification of PDGFRA and are thus not particularly relevant. The authors 
should point out if this sample displays outlier expression of full length PDGFRA or 
only the chimeric transcript.  
 
[Response] In the original manuscript, Fig. 2C showed that amplification only 
affected part of PDGFRA but did not state explicitly that the 3-chromosome SV was 
subsequently amplified resulting in a 22-66 copy fusion gene amplicon. In the 
revised manuscript p.9, paragraph 3, we clarified this point by stating that the 
amplicons only encompass the 3’ end of PDGFRA with the 5’ end being non-
amplified by incorporating the following: 
 

An example of integrative DNA-RNA SV analysis is demonstrated in the detection 
of a complex PDGFRA gene fusion in a high-grade glioma (Fig. 2b).  This sample 
contained a high-level complex amplification that included exons 10-23 of PDGFRA 
with exons 1-9 being excluded from the amplified region. 

 
 The fusion lacked the PDGFRA extracellular domains encoded by exons 1-9. 
We also revised the display of PDGFRA protein domains in Fig. 2b based on a 
published data (Dai et al. 2013) to make the extracellular and juxtamembrane 
domains more evident. The revised Fig. 2b also labels the number of wild-type RNA 
splice junction reads at PDGFRA exon 9-10 (n=727) in parallel with the number of 
fusion junction reads linking DIP2C exon 1 to PDGFRA exon 10 (n=33), exon 11 
(n=149), and exon 12 (n=26). This shows, surprisingly, that the expression of 
amplified region of PDGFRA is not strongly correlated to the level of DNA 
amplification (estimated to be 22-66 copies). This was because fusion gene 
expression was driven by the DIP2C promoter, and wild-type DIP2C expression is 
much lower than wild-type PDGFRA (approximately 10%, of PDGFRA; data not 
shown). As all of the fusion isoforms contained the exon 12-encoded PDGFRA 
juxtamembrane domain but lacked intact extracellular domains, this suggests that 
DIP2C-PDGFRA fusion is likely to function as a constitutively active kinase similar to 
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the known KDR-PDGFRA fusion and PDGFRAΔ8, 9 previously reported in 
glioblastoma (Ozawa et al. 2010). We hypothesize that, because the fusion transcript 
was driven by the weaker DIP2C promoter, high-level of amplification of DIP2C-
PDGFRA ensured the fusion protein was present at a sufficient level to be oncogenic. 
We incorporated these points into the following Supplementary Note 3 entitled 
“Expression of DIP2C-PDGFRA fusion gene”: 

 
As shown in Figure 2b, the PDGFRA amplification encompassed only the 3’ end of 
PDGFRA and omitted the extracellular domains encoded by exons 1-9. Counting of 
wildtype and fusion junction reads from RNA-Seq showed 727 wild-type exon 9-10 
junctions, implying expression of wild-type PDGFRA was higher than that of fusion 
gene whose RNA junction reads numbered 26 and 149 from DIP2C exon 1 and 
PDGFRA exons 10 and 11 respectively. This showed, surprisingly, that the expression 
of amplified region of PDGFRA was not strongly correlated with the level of DNA 
amplification. Further investigation showed that DIP2C has generally low expression 
in High Grade Glioma with FPKM of <14 in non-amplified PCGP samples (data is 
available at https://pecan.stjude.org/proteinpaint/DIP2C). Given that the weak DIP2C 
promoter drove fusion gene expression, we hypothesize that amplification was 
necessary to achieve a sufficient level of DIP2C-PDGFRA for oncogenic action. 
Similar rearrangements of PDGFRA including KDR-PDGFRA and PDGFRAΔ8, 9 
that lack intact extracellular domains show PDGFRA kinase activation (Ozawa et al. 
2010) and appear to be oncogenic even at relatively low expression levels. For 
example, Brennan et al. (2013) used a >10% of total PDGFRA expression to call a 
sample positive for the rearrangement in their analysis of RNA-Seq generated from 
glioblastoma samples from The Cancer Genome Atlas (TCGA) project. 

 
We also include here an excerpt from Fig. 2 showing the above-mentioned annotations: 
 

 
 

Figure 2b. The fusion transcripts are shown in protein view (b) with the domains 
marked in color and the vertical dotted lines marking the boundaries of each exon 
with chimeric RNA read counts indicated above the PDGFRA ideogram and 
wildtype exon 9-10 read counts below. 

 
In response to this comment and others below, we calculated FPKM values for all genes 
in all samples and annotated the P/LP variants in Supplementary Table 7A with the 
FPKM values.  The comprehensive expression analysis used to populate this table used 
GENCODE v19 as the source of gene models, as described in the Methods.  In the 
original manuscript FPKM values on p.16 were computed using UCSC refFlat as the 
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gene model. We have corrected this discrepancy in the revised manuscript. 
 
7. In the Table 6 summarizing “all pathologic findings”, the authors should include 
coverage/read support for SNVs and indels detected in PGCP/current study to help 
assess if sensitivity/specificity of detection is simply contingent upon coverage, not 
an intrinsic limitation of the sequencing platform.  
 
[Response] We have added an additional Supplementary Table, 7B, with the read 
counts for SNVs and indels listed the original Supplementary table S6.  Note that due to 
the addition of new supplementary tables to address reviewer feedback, the original 
Supplementary Table 6 is now Supplementary Table 7A. 

Our response to the 4th point raised by the Reviewer #1 contains the additional 
analysis and Supplementary Figure 3, shown above, and clarifies that the variants 
missed by WES were caused by platform limitation rather than coverage along with a 
synopsis of variants detected only by WES. 
 
 
8. Among “novel findings due to the inclusion of WGS”, the GLI2 amplification, 
TP53 indel or the DNMT3A deletion (Figure 6), or Notch 1-ITD (Supp Figure 7) do 
not strike one as inherently undetectable by WES or even targeted panels.  
 
[Response] The focus of our SJMB030020 discussion was not GLI2 amplification - 
which is easily detected - but an intragenic TP53 deletion in the matched germline 
sample. Notably, this deletion was missed by Exome CNV in paired tumor/normal 
configuration and also by running the MB germline sample against an unrelated germline 
sample. This 22 kb deletion was below the resolution of Exome CNA prediction. 
Similarly, the 50 kb DNMT3 intragenic deletion was missed by Exome CNA. We 
clarified the unique contribution of WGS in the revision, adding comments to p.16 
paragraph 2 and to p.17 paragraph 2. 
 The new Supplementary Figure 8, created in response to the reviewer’s request 
for Exome CNV analysis, compares the CNAs missed by WES with those that were 
discovered by both platforms. The results show that CNAs affecting small and/or exon-
poor regions would be challenging to detect using WES due to insufficient markers for 
robustly measuring read-depth changes. The two deletions (TP53 and DNMT3A) referred 
to by the reviewer belong to this category. 

The NOTCH1-ITD was entirely absent from WES data. The ITD region was at 
the extreme edge of the captured region and coverage dropped off sharply into the intron. 
This is not surprising as the intronic regions are not targets for exome capture. We 
include comments to this effect on p.17, paragraph 3. We consider all three cases to be 
good, specific examples of the added value of WGS and are able to verify that the results 
remain valid even with the inclusion of Exome CNA analysis.  
 
 
 
 
On the other hand, the failure to detect high level amplification of MYCN in a 
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retinoblastoma sample is quite intriguing. The fact that the clinical sample analyzed 
here was different from the PGCP sample could be a plausible explanation, but is 
extenuated by the “almost perfect agreement” in the CNAs observed on 
chromosome 13 (Figure 5b).  
 
[Response] Heterogeneity of the amplification between samples is the most likely 
explanation for the missing MYCN amplification. The focal high amplitude amplification 
in this sample implied an episomal amplification of MYCN. Since episome content is 
known to differ between cells within the same tumor, being well-described in 
medulloblastoma, for example (Ellison et al. 2011), we think this is a reasonable 
explanation for why the PCGP sample contained the amplification but the sample in the 
present study did not. We have expanded on the above explanation in Supplementary 
Note 4 entitled “Heterogeneity of MYCN Amplifications in SJRB051” included below: 
 

The inconsistency between RB1 rearrangement and MYCN amplification implies that 
these events occurred at different times during tumor evolution. The DNA specimen for 
this study was extracted from a different vial from PCGP (Supplementary Table 3, 
column K); however the bi-allelic RB1 re-arrangements are present in both specimens, 
suggesting that disruption of RB1 was an early event present in every tumor cell. In 
contrast, the MYCN amplification is likely to be a later event that is present in a subset 
of tumor cells. Given the high copy number and focal nature of the PCGP sample’s 
MYCN amplification, episomal amplification via double minutes is a likely 
explanation (VanDevanter et al. 1990). Differing levels of oncogene amplification 
between cells of the same tumor has been previously reported in pediatric glioma 
(Paugh et al. 2011) and heterogeneity of MYC-bearing double-minutes has been 
previously reported in our study of medulloblastoma (Robinson et al. 2012).  

 
9. The authors need to perform copy number analysis on WES data to make a fair 
comparison. They can perhaps try either “Falconx”, PureCN (PMC5157099) or 
Sequenza”, and see what works best. Though they cite an old reference (ref 37) in 
the discussion as a reason for not performing this analysis, several independent 
groups have been able to obtain this information from WES. Hence without these 
numbers from WES, the key data presented in Figure 5a (direct comparison 
between platforms) is highly misleading.  
 
[Response]. We thank the reviewer for the suggestion on the methods for WES CNA 
analysis. We reviewed all three methods and selected Sequenza as it provided utilities to 
build reference genome mappability and GC window content. We also evaluated CNVkit, 
another recently published exome CNV algorithm that utilizes off-target reads to improve 
resolution (Talevich et al. 2016). Although we do not include the results from CNVkit, 
the comparison of Sequenza and CNVkit was very good; hence we felt comfortable using 
Sequenza as our Exome CNV algorithm. We have updated the text to include an 
explanation of our Sequenza pipeline used in contrast with our WGS copy number 
analysis including a comment in the Methods section on p.29 paragraph 2 and 
throughout the “Detection of diverse types of pathogenic and likely pathogenic variants” 
section on p.12-15. We have also removed reference [37] from the manuscript. In the 
revised manuscript, Fig. 5a has been updated and now incorporates results from WES 
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CNV analysis (blue and orange segments) and ITDs (green segments) as shown below: 
 

 
 
Figure 5 Detection of pathogenic or likely pathogenic variants by three platform 
sequencing. (a) Number of variants detected by each platform either alone or in 
combination. 

 
 
10. The failure to detect FXR1-BRAF in a low grade glioma in the WGS data due to 
low tumor content is understandable, however, it is not mentioned if this fusion was 
not detected in RNA-seq data as well. That would be a bigger concern.  
 
[Response] Neither WGS SV nor RNA-Seq SV detected the known FXR1-BRAF fusion. 
We added a comment to this effect on p.13 paragraph 1. We also added Supplementary 
Note 6 containing further details: 
 

Neither WGS SV nor RNA-Seq SV detected the known FXR1-BRAF fusion as 
documented in Supplementary Table 7A. Manual inspection of the aligned WGS data 
recovered two breakpoint reads, insufficient for an SV call by our pipeline. The 
average WGS coverage in the tumor was 36.8X (Supplementary Table 3) and the 
coverage at the two breakpoint regions was 54X and 36X. Manual inspection of 
aligned RNA-Seq reads at expected positions of exon fusion recovered one fusion 
read, also insufficient for the pipeline to call. The fusion was initially discovered by 
WGS in our research project, PCGP. The PCGP WGS coverage for this tumor was 
65X and the BRAF fusion was detected by 3 junction reads and the estimated variant 
allele frequency (MAF) of 0.04 (Zhang et al. 2013). In RNA-Seq, FPKM for FXR1 
and BRAF is 7.4 and 6.8 respectively. Therefore, we would conclude that the failure 
to identify the fusion in WGS and RNA-Seq was caused by the low MAF (0.04) of the 
fusion in a sample with low tumor purity.   

 
Elsewhere, it is concerning that fusions including KMT2A-MLLT3, ETV6-RUNX1, 
KIAA1549-BRAF etc. were not detected. Can the authors provide data to support 
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the claim that this is due to low expression and not suboptimal yield of RNA-seq 
data?  
 
[Response] The RNA-Seq coverage data presented in Supplementary Table 4 
shows SJLGG020, SJMLL019 and SJETV093 had 43-47% of the exons with >20X 
coverage with the average of the entire cohort as 47%. Therefore, the RNA-Seq 
coverage of all three samples was within the normal range for the study.  
 The FPKM values listed on Supplementary Table 7A show that KIAA1549 is 
expressed at a low level in SJLGG020 (FPKM of 4.31 and 10.01 for KIAA1549 and 
BRAF respectively). Low expression of KIAA1549, whose promoter drives the 
fusion, provides a good explanation for the absence of detectable KIAA1549-BRAF 
fusions transcripts in RNA-Seq, particularly as an estimated 70% of KIAA1549 
expression would come from the wildtype haplotype based on estimated tumor 
purity from WGS data (Supplementary Table 3). Expression of KMT2A-MLLT3 in 
SJMLL019 (FPKM of 7.93 and 2.64 respectively) shows low expression of MLLT3. 
Even if all MLLT3 expression came from the fusion transcript, an FPKM of 2-3 
implies low expression. Expression of ETV6-RUNX1 in SJETV093 (FPKM of 27.53 
and 25.02 respectively) were not as low as the previous two examples, however RT-
PCR showed that the fusion transcript itself was expressed at a low level. In 
summary, all of the fusions that RNA-Seq missed were expressed at low levels in 
tumor samples. We added a comment describing these findings on p.14, paragraph 
3 within the “Detection of diverse types of pathogenic and likely pathogenic 
variants”. These data as well as RT-PCR experiments are presented in 
Supplementary Note 5, entitled “Additional Analysis on Gene Fusions Detected 
only by WGS”: 
 

We performed reverse transcriptase PCR (RT-PCR) to quantify expression levels 
of KMT2A-MLLT3 in SJMLL019 and ETV6-RUNX1 in SJETV093. Using standard 
procedures, we calculated ETV6-RUNX1 and KMT2A-MLLT3 expression relative to 
the house keeping gene, GAPDH in samples SJETV093 and SJMLL019 respectively 
as well as in positive control cell lines. The ETV6-RUNX1 fusion expression was 
approximately two logs lower than the level of GAPDH in both the control cell line 
and in SJETV093. KMT2A-MLLT3 showed a similar pattern with the expression of 
the fusion in the control cell line 1.5-2.0 logs lower than GAPDH. In SJMLL019, the 
expression of the fusion was approximately 5 logs lower than the expression of 
GAPDH (or 3 logs lower than the cell line fusion expression level). For reference, 
common fusions assayed on our lab including RUNX1-RUNXT1, TCF3-PBX1 and 
BCR-ABL are typically less than one log-fold lower than GAPDH. Cycle threshold 
(Ct) values are shown in Supplementary Table 10. 

 
11. According to Supplemental Table S6 only two SNV/indels were not detected by 
WES (SH2B3 and FLT3). So in terms of the SNVs/Indels detection, WES 
performance is comparable to WGS in terms of LP/P events detection.  The big 
difference then arises only because of amplification and deletions and SVs called 
from WGS, for which as stated above the numbers are not provided in this 
manuscript as CNV analysis are not done for WES.  
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[Response] There were 7 P/LP SNV/indels detected by WGS-only and 13 detected by 
WES-only (Supplementary Table 7A) because the variants marked “Rescue” in this 
Table had sufficient read count for cross-validation but not for de novo detection. We 
have clarified the meaning of this column in the table legend and in the Methods section 
on p.26, paragraph 1 - Assessment of analytical performance. These seven variants have 
all been addressed above in our response to comment #4. We agree with the value of 
performing CNV analysis on WES, and we have addressed this issue in the preceding 
comments #3 and #9). 
 
 
12. Sample SJMLL001 WES data has very high PCR duplication rate, probably due 
to sample quality issue, though the WGS library has good QC, and perhaps is the 
reason why FLT3 mutation was not detected by WES. Did the authors try repeat 
the WES library prep?  What is the reason for low coverage in the SH2B3 indel 
sample (SJBALL021900)? Can the authors show the coverage in these regions?  
 
[Response] The high WES duplication rate in SJMLL001 was due to sub-optimal 
libraries. Unfortunately, we were not able to repeat the library preparation for this case as 
input DNA was limited. Although the duplicate rate was high, the coverage statistics 
were calculated for the de-duplicated bam file and we clarify this in the revised Methods 
section of “Data Quality Control” on p.27, paragraph 2. Notably, the SJMLL001 WES 
tumor file had 100X coverage and was not an outlier as the mean WES coverage was 
110X in this study (Supplementary Table 3). 
 Both the FLT3 and SH2B3 mutations were in regions that were poorly covered by 
WES across all 78 samples.  We have added a Supplementary Figure 3 (shown above in 
our response to point #4) detailing the coverage of the entire gene as well as at the variant 
site across the entire cohort. We have also added additional details to Supplementary 
Tables 3 and 4 to show amounts of input DNA/RNA and more in-depth mapping 
statistics.  Details about all 7 SNVs/indels missed by WES, including FLT3 and SH2B3, 
were also addressed in the response to the Reviewer’s comment #4 above. 
 
 
13. The WES indel/SNV callers seem to give consistently higher number of calls 
than their WGS which is surprising (Suppl Figures 3 and 4). Is there a particular 
reason for this? Was the WES caller less stringent? This systemic discrepancy is 
probably reflected in the table in Suppl Figure 4b.  
 
[Response] We applied the same methods using the same parameters for calling somatic 
SNVs and indels using WGS and WES, therefore the difference in the variant calling by 
WGS and WES is not due to the use of less stringent method for WES as asked by the 
Reviewer. 

The number of somatic SNVs and indels presented in the original Supplementary 
Figures 3 & 4 was based on variants in exons (i.e. e-SNVs and e-indels). To respond to 
the comment of this Reviewer and that of Reviewer 2, we have modified Fig. 3 to 
incorporate the validation process and added Supplementary Tables 6A-D with statistics 
for both the SNVs and indels using the 18 samples that were also analyzed by WGS and 
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capture validation as part of the pediatric cancer genome project (PCGP). This will 
address the concern raised by Reviewer 2 that false positive and false negative rates were 
calculated based on different sets of samples.  

We have added Supplementary Note 1 entitled “SNV/indel call rate in WES” 
discussing the higher call rate of SNVs and indels in WES.  In brief, the higher call rate 
in WES is driven by low-quality calls in low-complexity regions: 

 
As shown in Figure 3 and Supplementary Tables 6A-D, prior to quality 
filtering and cross-validation, there was a higher calling rate in WES than WGS 
for SNVs and more so for indels using the same threshold for variant detection 
(Zhang et al. 2012, Edmonson et al. 2011). Specifically, if we count only indels 
that had sufficient coverage in capture validation for ascertaining somatic 
mutation verification status as presented in Supplementary Table 6B, there are 
a total of 404 WES-only indels and 24 WGS-only indels. Of the 404 WES-only 
indels, only 14 (3.5% of 404) were of high quality while the vast majority 
(93.3%, 377 out of 404) were in highly repetitive regions of short tandem 
repeats (STR) or homopolymers of which nearly all (96.8%, 365/377) have low 
mutant allele fraction (MAF) of <0.1. Less than 4% of the WES-only indels 
were verified by custom capture. By contrast, of the 24 WGS-only indels, the 
majority (91.7%, 22/24) were of high quality and only a subset (33.3%, 8/24) 
were in repetitive regions. The majority (16 out of 24; 66.7%) of WGS-only 
indels were verified by custom capture even though many (15 out 24, 62.5%) 
had low MAF (<0.1). 

 
The higher error rate of WES-only indels have been reported previously in a study 
that compared the indel genotype calls from WGS and WES in HapMap sample 
NA12878 (Fang et al. 2014). Our study confirmed the previous observation as the 
low validation rate (<4%) of those WES-only indels; the large majority of which 
had low MAF and were predominantly located in highly repetitive regions. 

 
 
14. It appears that most notable SVs presented in the figures are all supported by 
fusion evidence from RNAseq. Here again while WGS does provide the 
evidence/details of the underlying genomic event, whether it adds to the calls among 
actionable/P/LP over RNAseq is not clearly presented? 
 
[Response] We thank the reviewer for this comment and have worked to improve the 
presentation of the data. In 7 cases, only one platform detected a gene fusion with RNA-
Seq missing three and WGS missing four. The three RNA-Seq misses are discussed 
above as part of the response to the Reviewer’s comment #10. 
 We had understated in the text the difficulty of predicting fusion genes from 
transcriptome data alone, especially for novel fusions. A recent survey of fusion 
prediction algorithms showed that even the best performing missed approximately 15% 
of known fusions but also made considerable numbers of additional predictions (Kumar 
et al. 2016). 
 When a fusion is well known, e.g. BCR-ABL1, it is easy to identify among a 
large number of false positive calls. However, fusions such as KDM6A-PTK2B, which 
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has not been well described, are much more difficult to call with certainty using RNA-
Seq alone because typically many putative exon-exon fusions can be reported by an 
RNA-seq detection algorithm. In these cases, corroboration from DNA sequencing data 
with a copy number change point or SV junction in partner genes is required to ascertain 
the validity of a fusion transcript. Without such information, secondary validation 
becomes a necessary step adding to the cost and turnaround time. 
 Second, positional effects (i.e. enhancer hijacks) such as TCR-LMO2 and TCR-
NKX2-1 in our samples are difficult to identify using RNA-Seq alone as they do not fuse 
disparate exons together but bring an enhancer into proximity of an oncogene. In these 
cases, having WGS support is required to differentiate cis-activation caused by 
translocations from trans-activation caused by aberrant expression in a regulatory gene. 
We added the following comment to p.14 paragraph 3 within the “Detection of diverse 
types of pathogenic and likely pathogenic variants” section to make clear the additional 
yield of P/LP SVs found by a multiplatform approach. 
 

For gene-fusing SVs, 83% (35/42) had two-platform support while 17% (7/42) were 
supported by only one platform. Specifically, WGS enabled detection of fusions with 
low expression (e.g. KMT2A-MLLT3, ETV6-RUNX1 and KIAA1549-BRAF) - which 
we confirmed by inspecting RNA-Seq expression values of partner genes 
(Supplementary Table 7A) and by performing RT-PCR (Supplementary Note 5) - 
whereas RNA-Seq recovered potentially repeat-associated and complex rearrangements 
difficult to detect or interpret using genomic DNA alone (e.g. RUNX1-RUNXT1, 
BCL11A-GRIP2, FYCO1-RAF1 and KMT2A-AFF1). Thus, relying on RNA alone 
would have caused us to miss 3/42 gene fusions (7%). Additionally, WGS allowed us 
to unambiguously identify two T-cell receptor rearrangements, TCR-LMO2, with no 
RNA junction support but high expression and TCR-NKX2-1 with an RNA junction 
1.3kb downstream of the target gene. 

 
15. Why did the authors use older versions for several programs? For example, 
BWA current version is 7.2 and Picard current version is 2.92. Did the authors see 
any difference between these versions?  
 
[Response] We used the BWA backtrack algorithm (aln/sampe) due to the length of our 
reads and because the CREST and Cicero algorithms require the soft-clip signature that is 
created by backtrack but not bwa mem. As seen in the bwa changelogs, the 0.6 and 0.7 
lines have almost no changes to bwa aln. Furthermore, at the time the analysis was run, 
the 0.6 and 0.7 versions were not yet stable. We use Picard only for sorting, merging, and 
marking duplicates, and these straightforward functions have not changed significantly.  
We have added these explanatory remarks to the Methods on p.28, paragraph 2: 

 
DNA reads were mapped using the backtrack algorithm (“aln” and “sampe” steps) of 
BWA 0.5.9 56.  At the time the mapping was performed, BWA 0.5 was the latest 
stable version of BWA, as 0.6 and 0.7 were being released with frequent bug fixes.  
The changelogs of BWA versions 0.6 and 0.7 do not list any significant change to 
BWA backtrack.  Aligned files were merged, sorted and de-duplicated using Picard 
tools 1.65 (broadinstitute.github.io/picard/).   

 
16. From a per patient perspective, how many of the 78 cases benefit from WGS? 
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Can the authors discuss this in detail? This could very well be the basis of 
recommending a multi-tiered CLIA/sequencing approach where cost/time can be 
reduced for reporting. For example, WES (Tumor/normal) and RNAseq (Tumor) 
can be performed in the first round. Samples with more complex genome can be 
identified and recommended for WGS. 
 
[Response] From Figure 5 and Supplementary Table 7A, we show that including WGS 
as part of a three platform NGS test detected an additional 51 P/LP variants, 22% of the 
total P/LP variant count, otherwise stated as a 27% increase on the number of variants 
detected by a combination of Exome and RNA-Seq. On a per patient basis, 37/78 (47%) 
had one or more additional P/LP finding detected by the three platform test when 
compared to P/LP findings from Exome + RNA-Seq. We were cautions in reporting these 
numbers in the original manuscript as our pilot samples were somewhat pre-selected to 
contain known driving events. However, we agree that this is an important question and 
we add comments in the Discussion section on p.18 paragraph 2 to address it. 
 We also note that this 22% figure is probably an over simplification. As 30% of 
SNVs and INDELS had a MAF of <20%. WES variant prediction in the 5-20% range 
continues to be challenging, and if only WES was used (or even with cross validation 
from RNASeq) there may still be a high burden of apparently high quality false positive 
calls. 
 A tiered approach might result in saving on sequencing cost; however, novel 
findings are likely to require validation and may not meet the turn-around-time required 
for real-time clinical practices. We have included this point in the discussion section on 
p.21, paragraph 1 stating that: 
 

As treatment of a pediatric cancer typically costs hundreds of thousands of dollars, the 
precision of integrative genomic profiling offered by three-platform sequencing 
outweighs the extended time for secondary validation and the potential for missing 
~20% pathogenic variants in pediatric cancer. 
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Reviewer #2 (Remarks to the Author): 
 
Rusch et al provide their experience of genomic profiling by total sequencing of 
whole-genome, whole exome, and whole transcriptome. The group has pioneered 
adoption of the advanced integrative next-generation sequencing to the field and 
there is inherent value in publishing their experience as more groups move along 
this path. There are several concerns of presentation that need to be addressed. The 
paper at times the paper reads as a branding or marketing presentation for a 
branded "Total Sequencing" which is unfortunate given the insight the results could 
provide and given total sequencing is a loaded phrase. The reporting of statistics 
was unclear and unfortunately seemed inconsistent. There was also insufficient 
discussion of the impact of sequencing depth on sensitivity, precision, and false 
negative rate given the low coverage sequencing typically expected for lower tumor 
content samples. 
 
[Response] We thank the reviewer 2 for pointing out the value of genome-wide 
sequencing as an important direction for clinical genomics initiatives. In the revision, we 
replaced “Total Sequencing” with “Three Platform Sequencing”, improved 
consistency in data presentation and enhanced our analysis and discussion on the impact 
of sequencing depth. The detailed responses are provided in each of the three areas 
pointed by the reviewer.  
 
Major Concerns 
 
Area 1. I found the branding of “Total Sequencing” to be unnecessary, ambiguous, 
and misleading given the phrase is highly loaded. It makes the paper ambiguous – 
should I review it on whether this is “total sequencing” or should I review the 
method “Total Sequencing”? I am choosing not to review on whether this is total 
sequencing, since it so clearly is not total sequencing, but rather optimized 
sequencing for deep exonic regions, mRNA, and relatively low pass cancer WGS. If 
the authors insist on it, could they more clearly (such as by a trademark symbol) 
distinguish this as branding? Even within regions that are well covered, triplicate 
expansions, inversions, and unphased DNA are just a couple of examples of 
categories that are missed. For example, there are several well-known repeat 
expansions that would be expected in these samples – the methods used do not 
manage expansions. The paper ends with Higher WGS coverage would further 
improve – which undermines total sequencing.  
 
[Response] In the original manuscript, we used “Total” sequencing to refer to the 3-
platform genome-wide sequencing employed in our study because it was concise and was 
named for the historic Total Therapy trials run at our institution. As the reviewer pointed 
that the use of the “Total” can be perceived as a branding, we replaced “Total” 
sequencing with “three platform” sequencing throughout the revised manuscript. 
 
 
Area 2. I found the summary statistics very confusing and inconsistent, and at times 
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it seemed as selective reporting. Typically, sensitivity, specificity, and precision are 
provided in one table. These values are presented in a series of figures and tables. 
However, it seems the reportable range is changing. It is best to present these such 
that one can assess these values together, such as to avoid biases through selection of 
reportable range idea for each measure. For example, 4A appears to have 84 indels. 
Figure 3 (Precision) has 112 e-indel. I’m sure it’s consistent, but this is some other 
examples have me wondering what the values are. 
 
There needs to be more detail on the calculation of sensitivity, specificity, precision, 
FDR. Are the metrics cited in the abstract presented for other variant classes/types. 
For example, synonymous variants, intronic variants, transcription start-site 
variants, and many other classes that are critical part of discovery and these do not 
seem to be considered in the reported accuracy measurements. How were true 
negatives determined?  
For example, in the cases were the tumor content was below 10% one would expect 
a large number of false negatives. Very specifically, the reportable range and the 
means by which true negatives were estimated need to be described. I wasn’t sure 
for example if a manual rescue represents a true negative, false negative, or no 
result. 
 
[Response] We acknowledge that the statistics presented in the previous manuscript were 
too complex. As described in the section titled “Sensitivity and Specificity” in the 
original manuscript, we calculated sensitivity based on 19 cases that were analyzed by 
various molecular pathology methods, our prior research program, PCGP, and the current 
study because it enabled us to identify false negatives. We calculated the positive 
predictive value (PPV, used interchangeably with specificity in the original manuscript) 
using all 38 samples that were subjected to capture validation because we wanted to 
calculate PPV by using a larger number of samples (38 instead of 19).  

The reviewer pointed out that this approach could leave the impression of 
selective reporting. Therefore, in the revision, we decided to only include 18 PCGP-
overlapping cases for reporting of the validation statistics. One of the original 19 cases 
was not included in this analysis because we found out during revision that capture 
validation was not performed in the original PCGP study. Focusing on these 18 cases 
allowed us to present all of the pertinent data in one place. This takes the form of a 
revised Fig. 3 (shown below), an abridged version of Fig. 4 and new Supplementary 
Tables 6A-6D that contain all of the variants we attempted to validate and their 
validation outcome. This simplification/consolidation led to removal of the original 
Supplementary Figs. 3 and 4 from the manuscript. 
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Figure 3. Sensitivity and positive predictive value of somatic variant detection based on 
capture validation of 18 cases with PCGP data. (a) Design of capture validation for 
measuring sensitivity and PPV of our analytical pipeline using somatic exonic 
SNV/indel detection as an example. (b) Summary of PPV for each variant type. Exonic 
indel and SNV are based on cross-validated results, whereas non-exonic SNV are based 
on WGS only; as such, they are reported separately.  Our test does not report non-exonic 
indels, so they are omitted. (c) Summary of sensitivity for each variant type.  For 
SNV/indel, most of the variants are detected by both platforms; of those that are only 
detected by one platform, results for WGS and WES were comparable, with slightly 
more detected by WGS. 

 
In response to the reviewer’s comment on “estimation of true negatives”, we adopted a 
more precise term - “positive predictive value” (PPV) - which measures (number of true 
positive mutations)/(num. of true positive mutations + num. of false positive mutations) 
instead of “specificity”. We intentionally did not attempt to measure specificity because it 
would require evaluating the number of true/actual negatives across the entire exonic 
region, which can lead to deceptively high measures. Therefore, we replaced the term 
specificity with PPV throughout the revised manuscript and renamed the “Sensitivity and 
Specificity” section to “Analytical performance of somatic variant detection” on page 10. 

 For calculation of sensitivity, the false negatives are those that were verified by 
custom capture but were not detected or were filtered out by cross-validation in the 
clinical pilot study. This was clarified in the Methods section on p.26 by including the 
following text: 

 
Sensitivity and positive predictive value (PPV) where calculated using the set of variants 
that underwent capture validation and were covered after sequencing and alignment. We 
assessed PPV (true predicted positives divided by total predicted positives) rather than 
specificity (true predicted negatives divided by actual negatives) because the extremely 
high number of assessable positions inflates specificity beyond utility.  For calculation 
of sensitivity, a variant was counted as a false negative in the clinical pilot study if it 
was not detected or was detected but filtered out by cross-validation. 

 
The perception that we included samples with <10% tumor purity was caused by a 
confusing presentation in our original Supplementary Table 3 as we put paired statistics 
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of purity/tumor-in-normal contamination in the same column. We have reformatted the 
table so that this and all other sample-specific information is in different columns for 
tumor and germline.  It now clearly shows that all samples have tumor purity exceeding 
20%. We clarified in the Methods section that “rescue” was a tag indicating the platform 
yielded sufficient evidence for cross-validation but not automated discovery. Therefore, 
when we discuss variants detectable by a single platform (e.g. WGS-alone or WES-
alone), “rescue” is considered a false negative for that platform. We include the following 
clarification in the Methods section on p.27, paragraph 1: 

 
In Supplementary Table 7A, variants that had support in a platform that was insufficient 
for detection but sufficient to cross-validate a call from another platform were labeled as 
Rescue.  These variants are considered false negatives in the rescue platform alone. 

 
To provide more details on the calculation of sensitivity and PPV, we modified Fig. 3 to 
present the analytical and experimental process for calculating sensitivity and PPV based 
on capture validation results obtained from the 18 validation cases. The variant counts 
used for sensitivity and PPV calculation are now presented in a new Supplementary 
Table 6D. Although the conclusions remain unchanged, the precise number of variants 
varies slightly from the previous version due to the changes in the samples included for 
the analysis and manual correction of validation status of several variants. The revised 
manuscript also enlarges our description of the validation capture experiment as part of 
the “Hybrid Capture Validation Section” section of the Methods on p.25-26: 

 
For Capture Validation (CapVal), we used the following algorithm to determine the 
validation status:  First we obtained the mutant and reference allele counts for each 
marker in the corresponding sample, requiring a minimum base quality of 15 for SNVs 
and 5 for indels.  A marker with 0 mutant reads and >20 total reads in tumor sample is 
called “Wildtype”. A Fisher’s Exact test was then performed on the tumor and normal 
CapVal read counts. When mutant reads are present in the normal samples, markers with 
Fisher’s Exact P value >= 0.05 or P value <= 0.05 and normal MAF >= 0.2 were called 
germline.  Markers with P value <= 0.05 are called “Somatic”.  To account for tumor-in-
normal contamination (e.g. case SJHGG003_A), we required tumor MAF >0.05 if 
mutant reads were observed in the normal sample for “Somatic” calls. In addition, we 
manually inspected markers with P-value greater than 0.05 and adjusted the validation 
status to “SOMATIC” for 4 indels (annotated with an asterisk (*) in Supplementary 
Table 6B, due to reduced coverage in germline DNA or tumor-in-normal contamination 
(e.g. IFFO1.M364fs in SJHGG003_A). Since homopolymer artifacts are frequently 
observed in WES/CapVal, we also required >=10 mutant reads in the CapVal data if the 
homopolymer marker was discovered by WES only, regardless of the CapVal depth.   

 
As a result, 88 indels were called “SOMATIC” after validation, of which 3 were from 
PCGP. We identified 89 indels from our Clinical pipeline, of which 84 indels were 
covered in CapVal, and 83 validated as “SOMATIC”. This corresponds to a sensitivity 
of 94.3% (83/88) and a PPV of 98.8% (83/84).  Similarly, 695 SNVs were called 
“SOMATIC” after validation, of which 34 were from PCGP.  We identified 794 SNVs 
from our Clinical pipeline, of which 662 were covered in CapVal, and 653 were 
validated somatic.  This corresponds to a sensitivity of 94% (653/695) and a PPV of 
98.6% (653/662). For non-exonic SNVs (other SNVs), we are able to calculate PPV but 
not sensitivity because capture validation was performed only for variants detected and 
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passed the filters in the clinical pilot study.  
 
 

The metrics cited in the abstract included all the variant classes (e.g. synonymous 
variants, intronic variants). However, we only placed them into the two broad categories - 
exonic variants and other (i.e. non-exonic) variants. This is because we can use WGS-
WES for cross validation for variants in the exonic regions but not those in non-exonic 
regions. Not surprisingly the “other” SNV validation rate is slightly lower (97%) than the 
exonic SNVs (99%), so we put a range of validation rate (97-99%) in the revised abstract. 
We have also included Supplementary Tables 6A-6C in the revision - which lists each 
exonic SNV/indel (with their classifications such as silent, missense etc) and SV and 
associated validation status. Since we have ~13,000 other SNVs with capture validation 
data, we decided to host this data set online via St Jude Cloud instead of submitting it as a 
large supplementary table. 
 
 
Area 3. Coverage is a critical aspect that is not quantitatively assessed in terms of a 
classic limits of detection analysis. The authors provide specificity and sensitivity, 
and discuss in great detail the importance of coverage. In practice for many clinical 
sequencing in CAP/CLIA environments the coverage they are sequencing is quite 
low and prone to false negatives. The various excel files highlight numerous 
examples where estimated tumor purity is less than 40%, less than 20%, and less 
than 10. The other concern is that the paper puts a major focus on whole-genome 
sequencing at relatively low coverage (30x) for mixed tumor/normal specimens, 
without going into the loss of sensitivity. Most clinical labs focusing on tumor 
sequencing often sequence to 400x -1,000x depth to examine lower tumor purity. 
The reported samples have a large portion of lower tumor content (50% are less 
than 50% tumor content), and so this discussion is relevant here. The authors 
should describe the dependence of sensitivity on tumor content of example. 
 
[Response] The reviewer’s comment regarding many samples with very low tumor 
purity (less than 20% or 10%) is likely caused by an unclear presentation of tumor purity 
in Supplementary Table 3. In the original table, we had used column M to present the 
tumor purity for a tumor sample which has high percentage as well as tumor-in-normal 
contamination for a matching normal sample which has very low tumor content. To avoid 
this confusion, we now split the column M so that “tumor purity” and “tumor-in-normal 
contamination” are shown in two separate columns (I and Q) in the revised 
Supplementary Table 3. We also clarified in the main text on p.6 paragraph 1 that the 
average tumor purity was 0.81 (range 0.21-1.00), and 14% (11 out of the 78) of the tumor 
specimens have purity <0.5. The “low purity” samples (i.e. <20% or <10% tumor 
content) referred to by the reviewer in the previous version of the manuscript are actually 
matching normal samples that had tumor-in-normal contamination.  
 
To address the reviewer’s concern regarding the reduced power of 30X WGS for 
discovery of mutations with low mutant allele fraction (MAF), we included a power 
analysis in the revision (Supplementary Fig. 4). We compared the power for detecting 
somatic variants using the threshold implemented in our pipeline.  The comparison 
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includes WGS-alone with 3-read, WGS+WES cross-validation (3 reads in WES + 1 
WGS read and vice versa), and WES-alone with 10 reads for the variant allele (required 
for our pipeline as well as other published clinical pipelines for discovery/filtering for 
high-confidence variants in WES or gene panel) (Fang et al. 2014). We show that by 
using the cross-validation pipeline with 30X WGS and 100X WES, we are able to detect 
SNV/indels present with a MAF of 0.1 with >95% probability. By contrast 200X WES 
alone only gains <5% more power for detecting variants present at this MAF. 30X WGS-
alone (requiring 3X mutant allele coverage) and 100X WES-alone (requiring 10X mutant 
allele coverage) only have 59% and 55% power for detecting variants at MAF <0.1. We 
did not go beyond 200X coverage in this analysis because our platform was genome-wide 
(WGS or exome) instead of a gene panel, and published WES coverage applied in a 
clinical setting is generally between 150 and 200X (Van Allen et al. 2014). A projected 
power for variant detection for 45X WGS was also included because this is the threshold 
used for our production clinical laboratory sequencing pipeline since the completion of 
the pilot study. 
 

 
 

Supplementary Figure 4. Limit of detection analysis.  The probability of detecting a 
variant with sufficient read evidence to make a call in WES and WGS is shown in black 
and green lines.  We chose 100X WES and 30X WGS for our current study, 200X WES 
based on prior literature 61, and 45X WGS based on improvements made to our clinical 
genomics program after this pilot study completed.  The blue lines show the probability 
of detection by at least 3 reads in WGS or WES and at least one read in the other 
platform, which is the standard used by this pipeline. Details of the calculations are in the 
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Supplementary Methods section. 
 
We include an account of details of our limit of detection analysis in the Supplementary 
Methods section on p.69-70 as presented below: 
 

To assess the power to detect variants for our study design, we assumed a constant 100X 
for WES and 30X for WGS, and used binomial distribution to calculate the probability of 
observing >= 3 reads in one platform (as automatic detection) and observing >=1 reads in 
the other platform (as being observed for validation purpose), for underlying MAFs 
ranged from 0.01 to 0.5, which correspond to cancer cell fraction of 2% to 100% in 
diploid regions. To calculate the probability of one variant being detected and validated, 
we multiply the probability of automatic detection in one platform (i.e., >= 3 mut reads) 
and the probability of observing the mutant reads in the other platform (i.e., >=1 mut 
read), by assuming independence between samplings during WES and WGS sequencing. 
In addition, we performed re-sampling analysis to cross justify the above theoretical 
analysis, using NRAS G12D locus from case SJBALL021900 (with purity of 92%, and 
no sign of tumor in normal contamination, 53/110 in tumor WES, 19/45 in tumor WGS). 
For each predefined MAF, α, we sampled reads from tumor bam with probability α/0.92 
and from normal bam with probability 1-α /0.92 with replacement. 100 reads were 
sampled from tumor for WES and 30 reads from tumor for WGS. 

 
In addition to the power calculation, we evaluated P/LP SNVs and indels that were 
detected by a single platform. Interestingly, 9 out of the 13 WES-specific variants (all 
cross-validated by WGS) were below 0.1 MAF, consistent with the expectation that 30X 
WGS alone has reduced power for detecting low MAF variants. By contrast, the majority 
of the 7 WGS-only variants have issues with WES capture. Of the 17 tumors with single-
platform variants, 2 (12%) had <50% purity. Since only 11/78 tumors (14%) have purity 
lower than 50%, there is no enrichment for missing low MAF variants in low-purity 
samples in the current analysis. This shows that most of the low-MAF single-platform 
mutations were present in subclones of a tumor with high purity.  
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Reviewer #3 (Remarks to the Author): 
 
The authors performed “total sequencing”, which includes whole genome (WGS), 
whole exome (WES) and whole transcriptome (WTS) sequencing, of 78 pediatric 
cancer patients. Their analysis pipeline detects, integrates, and cross-validates 
variants from each sequencing technique (platform). Experimental validation was 
performed to measure the accuracy of “total sequencing”. It claims that there is a 
critical need for using WGS in cancer screening in conjunction with WES and WTS.  
 
The cross-validation method itself is not entirely novel, e.g. using WES to validate 
WGS (https://www.ncbi.nlm.nih.gov/pubmed/22178993) or using SV predictions to 
validate RNA fusions 
(http://www.sciencedirect.com/science/article/pii/S0092867412010227). The article 
maybe of interest to the clinical community to learn more about the utility of 
sequencing using multiple techniques. In the research community it is not an 
uncommon approach as cost is not a major concern but discovery unlike in a 
clinical setting that diagnostics have to be done routinely and have to be 
interpretable/actionable. 
 
[Response] Cross-validation is a useful research tool and we are among the first to 
evaluate the feasibility and utility of cross validation in a CAP/CLIA environment. We do 
not wish to give the impression that cross-validation was our own invention, so we have 
added the suggested references to Lam et al. (2011) and Govindan et al. (2012) to the 
Introduction on p.4, paragraph 3. We have also explored value of cross validation as it 
pertains to limit of detection in response to Reviewer #2 and in the new Supplementary 
Fig 4, shown above. We have addressed concerns about cost as part of our response to 
Reviewer #1’s comments above. 
 
 
It is commonly known to the community that the biggest limitation of WES and 
gene panel is on SV/CNV detection. There were also numerous suggestions to 
complement WES with WGS to fill that gap; e.g. using a low-cost, shallow WES for 
SV-driven tumors (http://www.cell.com/trends/genetics/abstract/S0168-
9525(16)30070-1). On the other hand, WES or gene panel provides a more 
economical solution to sequence to very high depth (thousands of coverage) to detect 
low allele frequency variants in cancer, particularly in highly non-pure samples 
such as ctDNA. In that regard, Fig 4a in the article also showed that WES-only 
approach has higher sensitivity than WGS-only approach. Adding another 
sequencing can certainly validate the variants from WES; however, it is unclear in 
the article that how much more value it is for further validating detected, clinically 
actionable/interpretable variants which are usually having very high sensitivity and 
specificity in diagnostic assays.  
 
[Response] The original Figure 4a (now Figure 3c - in response to feedback from 
Reviewer #2) showed sensitivity, with the bars divided into categories for those detected 
by both WGS and WES, only WGS, and only WES. The WGS-only approach actually 

https://www.ncbi.nlm.nih.gov/pubmed/22178993
https://na01.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0092867412010227&data=01%7C01%7Cjinghui.zhang%40stjude.org%7Cc1b31d936c63409e7ed108d4b8bb9d39%7C22340fa892264871b677d3b3e377af72%7C0&sdata=iEJY62Ik40FHvxYXRsf9874nNqin%2BP94RDPG62klaoc%3D&reserved=0
https://na01.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.cell.com%2Ftrends%2Fgenetics%2Fabstract%2FS0168-9525&data=01%7C01%7Cjinghui.zhang%40stjude.org%7Cc1b31d936c63409e7ed108d4b8bb9d39%7C22340fa892264871b677d3b3e377af72%7C0&sdata=NACyAcJ418aebu6xhcD5ocoX7us501RsOF5QmIdWQPE%3D&reserved=0
https://na01.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.cell.com%2Ftrends%2Fgenetics%2Fabstract%2FS0168-9525&data=01%7C01%7Cjinghui.zhang%40stjude.org%7Cc1b31d936c63409e7ed108d4b8bb9d39%7C22340fa892264871b677d3b3e377af72%7C0&sdata=NACyAcJ418aebu6xhcD5ocoX7us501RsOF5QmIdWQPE%3D&reserved=0
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had a slightly higher sensitivity than WES-only, although difficult to see in the graph.  
We have clarified this in the figure legend that: 
 

(c) Summary of sensitivity for each variant type. For SNV/indel, most of the variants 
are detected by both platforms; of those that are only detected by one platform, 
results for WGS and WES were comparable, with slightly more detected by WGS. 

 
We have made all of the validation data available in new Supplementary Tables 6A-C.  
In addition, we would not advocate a WGS-only approach, as we feel that it is best to use 
WGS and WES in combination. 
 
Regarding the ability of WGS to add value by detecting clinically actionable/interpretable 
variants, there are 7 pathogenic/likely pathogenic SNVs/indels found in this study that 
were not detected by WES, shown in Supplementary Table 7A (previously 
Supplementary Table 6).  Of those 7, we would expect that 3-4 could not be recovered by 
WES alone with higher coverage based on manual inspection of the 7 variants, and based 
on adding additional WES reads from research sequencing of the same samples.  We 
have updated the “Detection of diverse types of pathogenic and likely pathogenic 
variants” section in the main text p.12, paragraph 2, and added details in 
Supplementary Note 2 entitled “Pathologic and likely pathologic mutations not detected 
by WES”, included below and in Supplementary table 7C. 
 

A total of seven pathologic or likely pathologic somatic SNVs/indels were discovered 
by WGS alone.  Of those seven two (FLT3 and SH2B3) had no support in WES, and 
five had insufficient support in WES for detection (Supplementary Table 7C).  We 
manually inspected each of the seven to determine the cause for non-detection in WES.  
Four out of the seven sample also had whole exome sequencing from various research 
studies.  For these four, we combined the reads from the clinical and research 
experiments and ran the resulting data through the analytical pipeline to determine if 
additional coverage would allow the variants to be detected by WES.  The results are 
given in Supplementary Table 7C.  In brief, three of the seven were in regions of 
systematically low coverage and would therefore be unlikely to be recovered by 
additional coverage (one had additional reads, and it was not detected with additional 
coverage).  One appeared to be caused by poor capture of the indel-harboring 
fragments and would also be unlikely to be recovered by additional sequencing.  The 
other three showed no signs of systematic WES-related problems and we all recovered 
with additional reads. 

 
 
For other or rare variants that can only be detected by WGS, it is not clear how 
interpretable they are, as previously described e.g. 
in https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4484824/. 
 
We are conscious of the variant of uncertain significance problem. In addition to being 
detected, variants must also be interpreted. At present, this is a major challenge to the 
field. Regardless of the technology used to detect them, we need more sequenced samples 
to enable us to better interpret rare variants - especially in areas that are poorly captured 
in WES testing. In our study, we saw that combining data from multiple platforms, most 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4484824/
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notably WGS and transcriptome actually helped us with the interpretation of variants by 
removing any ambiguity about their functional consequence. The PDGFRA, NOTCH1 
and DNMT3A are used as illustrative examples of this. 
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Reviewers' Comments:  
 
Reviewer #1:  
Remarks to the Author:  
The authors have provided a through response to reviewers' comments with many additional 
analyses and an excellent point-by-point response to questions. The manuscript should be 
acceptable for publication. I have no additional concerns.  
 
 
 
Reviewer #2:  
Remarks to the Author:  
The resubmitted manuscript by Rushch et al addresses an important question, but largely fails to 
providing convincing evidence that is meaningful and leaves open considerable confusion about the 
statistics due to lack of clarity in the methods. The revised manuscript addresses points raised by 
the reviewers but there are conserns. Overall there wasn’t sufficient evidence found for the 
primary conclusion: “The results of our study emphasize the critical need for incorporation of WGS 
in NGS-based screening approaches, particularly in the context of pediatric oncology.” For 
example, WGS was done relatively low coverage and the benefit could be added ambiguity - how 
was this dealt with? Overall, the data just don’t support the conclusion and lack of clarity of how 
statistics and final calls were obtained leave in doubt the validity of statistics. Specifically, it is 
unclear that the statistics consistently refer to the same set of calls. Sensitivity and PPV should be 
presented clearly within a table for each variant class for each assay separately. Then Sensitivity 
and PPV should be presented with the means of identifying the “Combined” calls. Manual calls 
should be clearly addressed so that we understand the extent of changes from automated 
methods. The methods were largely unclear and the reviewer was very uncertain how certain 
datasets were generated.  
 
Detail  
 
The use of manual calling brings into a lot of questions about scalability, and selective reporting of 
statistics. They need to provide greater detail on the times they over-ruled the algorithm produced 
calls or selected a call based on data that is different from the default algorithm.  
 
One big concern is around statistics, and as presented they are confusing. By definition – PPV 
must be lower for the union of 3 non-identical variant sets that have some variants in column. 
Why is this not the case? Why are not the calls laid out by platform with their individual PPV’s? The 
union will contain all the false positives from all methods – and thus false positives grow, while 
true positives remain the same. PPV increases with combined calls unless they are doing 
something more. If they are addressing this, it wasn't apprent in the method.  
 
The title implies clinical sequencing – is this all from fixed pipelines within clinical tests or are 
these research calls within a CAP/CLIA lab. Figure 1 and much of the text bring various concerns – 
particularly that there are research calls being used mainly. How do they validate Chroomothripsis 
calls? How do they evaluate limits of detection of ploidy? These just don’t seem like assays that 
have undergone an analytical validation as a clinical test.  
 
The paper still refers to total sequencing which the author acknowledges this is not.  
 
Figure 3 is unclear and should be broken out by test such as within a table. Particularly Figure C is 
not helpful, and the caption does not make sense for Figure 3B  
 
Supplementary Figure 4 and the limits of detection is done incorrectly and biased. They do not use 
the same calling methods as they do within the paper, instead referring to detection by at least 3 
reads – which would lead to other false positive.  



 
 
 
Reviewer #3:  
Remarks to the Author:  
The turnaround/cost discussion and the mentioning of the pathogenic and likely pathogenic 
variants discovered specifically in WGS are useful, and addressed my original concerns. Overall, 
the study analyzed a good number of patients in the cohort and demonstrated the value of a 
multi-platform sequencing approach with an integrative analysis that increase the precision of 
diagnosis. The study should be of interest to the community. Whether the extra value and the 
interpretability are worth the extra cost will be left to the community to judge, but at least 
translation research will benefit from the findings and approach.  
 
Minor comments  
- In line 1312, it says Four out of the seven sample, it should be "seven samples"  
- Total sequencing is now changed to "three platform sequencing", which I believe should be 
"three-platform" sequencing  
- On Fig 1a, it still says "total sequencing" instead of "three-platform sequencing", which should be 
consistent with the rest of the article. 



Reviewers' comments: 
 
Reviewer #1 (Remarks to the Author): 
 
The authors have provided a through response to reviewers' comments with many additional analyses 
and an excellent point-by-point response to questions. The manuscript should be acceptable for 
publication. I have no additional concerns. 

[Author Response] We are grateful for the reviewer’s insightful comments during the first 
review which have led to major improvements in the current manuscript. We would like to thank the 
reviewer for acknowledging the importance of our study.  
 
Reviewer #2 (Remarks to the Author): 
The resubmitted manuscript by Rushch et al addresses an important question, but largely fails to 
providing convincing evidence that is meaningful and leaves open considerable confusion about the 
statistics due to lack of clarity in the methods. The revised manuscript addresses points raised by the 
reviewers but there are conserns. Overall there wasn’t sufficient evidence found for the primary 
conclusion: “The results of our study emphasize the critical need for incorporation of WGS in NGS-based 
screening approaches, particularly in the context of pediatric oncology.” For example, WGS was done 
relatively low coverage and the benefit could be added ambiguity - how was this dealt with? Overall, the 
data just don’t support the conclusion and lack of clarity of how statistics and final calls were obtained 
leave in doubt the validity of statistics. Specifically, it is unclear that the statistics consistently refer to the 
same set of calls. Sensitivity and PPV should be presented clearly within a table for each variant class for 
each assay separately. Then Sensitivity and PPV should be presented with the means of identifying the 
“Combined” calls. Manual calls should be clearly addressed so that we understand the extent of changes 
from automated methods. The methods were largely unclear and the reviewer was very uncertain how 
certain datasets were generated. 

[Author Response] To address this general comment, we have split it into four segments (a-d) 
separated by the gray highlight so that we can address each specifically. Changes to the manuscript in 
response to this reviewer are also highlighted in yellow in the revised manuscript. 
 
[Reviewer 2 General comment a] The resubmitted manuscript by Rushch [sic] et al addresses an 
important question, but largely fails to providing [sic] convincing evidence that is meaningful and leaves 
open considerable confusion about the statistics due to lack of clarity in the methods. The revised 
manuscript addresses points raised by the reviewers but there are conserns [sic]. 

[Author Response] We have listed all somatic variants used for calculating statistics in 
Supplementary Table 6A-C and all P/LP variants in Supplementary Table S7A-B. To our knowledge, other 
published clinical genomics papers rarely publish all somatic variant data discovered in each case 
(Frampton et al, 2013; Roychowdhury et al, 2011; Parson et al, 2016; Harris et al 2016)—some only 
report summary data while others only report pathogenic variants. Additionally, we have taken the 
unusual step of making all data freely available on the cloud for those who wish to replicate our analysis. 
Therefore, not only is our analysis robust, we also provide the data at various level (including raw 
sequencing data, called somatic variants and summary data) to provide transparency and to enable 
reproducibility of our analysis. Examples will be given in our responses to other questions from this 
reviewer.  
 
[Reviewer 2 General comment b] Overall there wasn’t sufficient evidence found for the primary 
conclusion: “The results of our study emphasize the critical need for incorporation of WGS in NGS-based 
screening approaches, particularly in the context of pediatric oncology.” For example, WGS was done [at] 
relatively low coverage and the benefit could be added [sic] ambiguity - how was this dealt with? Overall, 



the data just don’t support the conclusion and lack of clarity of how statistics and final calls were 
obtained leave in doubt the validity of statistics.  

[Author Response] Our main conclusion, as stated in the discussion, is “As treatment of a 
pediatric cancer typically costs hundreds of thousands of dollars, the precision of integrative genomic 
profiling offered by three platform sequencing outweighs the extended time for secondary validation and 
the potential for missing ~20% pathogenic variants in pediatric cancer”. The conclusion of 20% false-
negative rate in reporting pathogenic variants by skipping WGS is based on the analysis presented in the 
section of “Diagnostic Yield of two versus three platform sequencing”. The reviewer is, presumably, 
agreeing to the 20% of missed variants as there is no critique raised regarding this number in the 
summary statement or in the specific comments. Therefore it is not clear the specific concerns that led 
to the reviewer’s assessment on “Overall, the data just don’t support the conclusion”.  

Regarding the question “For example, WGS was done relatively low coverage and the benefit 
could be added ambiguity - how was this dealt with?”, first we want to clarify that the 30X WGS is by no 
means a relatively low coverage as low-pass WGS in clinical is defined as 5X to 15X (Roychowdhury et al. 
2011). If the “ambiguity” in the reviewer’s comment refers to potential false positives, our result 
presented in Figure 3b has shown that our variant calling, based on cross-validation between WGS and 
WES, is highly accurate. If the “ambiguity” refers to sensitivity, our power calculation presented at 
Supplementary Fig. 4 has shown that by our current approach (30X WGS+100X WES), we are able to 
detect 95.7% of the variation with VAF >=0.1.  

Our power calculation did show that by increasing WGS to 45X, we will increase the power for 
detection to 99.1%. For the ongoing clinical service work, we have implemented 45X WGS coverage 
(partly due to the reduced sequencing cost by HiSeq 4000), which was noted in the legend of 
Supplementary Fig. 4. To be more specific on the added benefit of increasing WGS from 30X to 45X, we 
included the following sentence in the revision in Discussion: “The increase in WGS coverage from 30x to 
45x in clinical service, when integrated with 100x WES data, is expected to improve the power for 
detecting variants with variant allele frequency ≥0.1 from 95.7% to 99.1% (Supplementary Fig. 4).”  

Regarding the comment on “lack of clarity of how statistics and final calls were obtained leave in 
doubt the validity of statistics”, the summary data presented in Supplementary Table S6D listed the 
count in each variant class and how validation statistics were calculated. Each count can be tracked to 
the matching variant record in Supplementary Table S6A-C. Details on variant calling were documented 
in the section of “Mapping and SNV/indel Calling” in Methods. To further improve clarity, we moved 
“variant filtering” from this section to a new section “SNV/Indel Filtering and Cross-validation” in the 
revision. This will provide a one-to-one mapping between the steps described in Fig. 3, Methods, and 
variant data presented in Supplementary Tables S6.  More details are described in our response to 
Reviewer 2 Specific comment 1 
 
[Reviewer 2 General comment c] Specifically, it is unclear that the statistics consistently refer to the 
same set of calls. Sensitivity and PPV should be presented clearly within a table for each variant class for 
each assay separately. Then Sensitivity and PPV should be presented with the means of identifying the 
“Combined” calls. 

[Author Response] As we stated in the section “Analytical performance of somatic variant 
detection”, we used “18 cases that had been sequenced in the PCGP and had validation sequencing by 
custom capture” to measure sensitivity and PPV. Although the exact samples and their exact variants of 
these 18 cases are presented in Supplementary Table S6A (for SNV), S6B (for indels) and S6C (for SVs), 
we realized that we never explicitly listed these samples in a single table. To improve clarity, we revised 
Supplementary Table S3 by including a new column “column B: inclusion for variant detection sensitivity 
and PPV analysis” to show the samples used for this analysis.  

We respectfully disagree with the reviewer that “sensitivity and PPV should be presented within 
a table for each variant class for each assay separately”. Integrating variant calls from WGS and WES by 



the “cross-validation filtering” step outlined in Fig. 3a is what we implemented for clinical sequencing 
and also the main strength of our analytical approach. By using this approach, we were able to achieve 
high accuracy in variant calling sufficient to satisfy CLIA/CAP guidelines and two on site CAP inspections.  

Presenting PPV and sensitivity for each assay (i.e. sequencing platform) without the integration 
process of “cross-validation filtering”, as recommended by the reviewer, would reflect the performance 
of published computation algorithms used in our workflow. These statistics were already presented in 
prior publications (Edmonson et al, 2011; Wang et al 2011; Chen et al 2015), therefore is out-of-scope 
for the present study and will be misleading as statistics generated from a single platform is 
incompatible with the multi-platform integrated analysis implemented in our study.  

To further emphasize the importance of “cross-validation/filtering” in our study, we revised the 
section of “Mapping and SNV/indel Calling” in Methods by extracting the content related to cross-
validation/filtering into a separate section “SNV/Indel Filtering and Cross-validation”. Given the 
importance of cross-validation in our analysis, we also expanded the description of cross-validation in 
this new section. 

The summary statistics presented in Supplementary Table S6D are the final result generated 
from the “cross-validation and filtering” step that we implemented to integrate data from multiple 
platforms. This result was used as the baseline (i.e. predicted positives) for sensitivity and PPV analysis. 
In the revision, we further clarified that by modifying Figure 3 and by extending the Figure 3 legend. 
Details are presented in our response to specific questions below. These changes should further clarify 
that integrative analysis is not equivalent to “Combining” variant calls from multiple data sets.  

Additionally, for any reader who is interested in obtaining summary statistics for a single 
platform, he or she can calculated the statistics based on the data in Supplementary Tables 6A-C where 
we record each variant, its discovery platform(s) by automated analysis, and filtering status based on 
our cross-validation filtering pipeline. For example, if a researcher is interested in knowing the sensitivity 
of exonic SNV detection on WGS platform alone, by restricting column A to “SOMATIC” and “SOMATIC*” 
and column B to “WGS_ONLY, WGS+WES” in Supplementary Table 6A, one could see that there are a 
total of 591 validated somatic variants by WGS. As the total number of true positive SNVs is 695 if we 
select all variants, we would be able to ascertain that the sensitivity for WGS platform is 591/695 (85%). 
To calculate the sensitivity of our integrative analysis pipeline for 3-platform sequencing, restricting 
column A to “SOMATIC” and “SOMATIC*” and selecting “PassFilter” in column C will give a total number 
of 653 which shows a sensitivity of 653/695 (94%). The column C is only relevant for 3-platform 
sequencing as the cross-validation filter utilizes multi-platform data. In the revision, the instructions for 
obtaining statistics for unfiltered variants is included in “Supplementary Note 7: Comparison of 
validation statistics on variants that passed the cross-validation filter with unfiltered variants”. 

 
A segment of Supplementary Table S6A is shown below to illustrate this process. 

 
 
 
 



[Reviewer 2 General comment d] Manual calls should be clearly addressed so that we understand the 
extent of changes from automated methods. The methods were largely unclear and the reviewer was 
very uncertain how certain datasets were generated. 

[Author Response] We do NOT manually call variants. The new section of “SNV/Indel filtering 
and cross-validation” in Methods should clarify this point. The details are describe in our response to 
“Reviewer 2 Specific comment 1”. 
 
[Reviewer 2 Specific comment 1] The use of manual calling brings into a lot of questions about 
scalability, and selective reporting of statistics. They need to provide greater detail on the times they 
over-ruled the algorithm produced calls or selected a call based on data that is different from the default 
algorithm.  

[Author Response] We did not manually call variants—all variants were called and filtered by 
automated pipelines as described in the section of “Mapping and SNV/indel Calling” as well as in the 
new section of “SNV/Indel Filtering and Cross-validation” in Methods. Manual review was used to 
verify exonic mutations (SNVs and indels) but NOT to make variant calls. For non-exonic mutations, we 
did not perform manual review as these variants are not reportable in the current clinical sequencing 
program.   

Furthermore, we want to emphasize that manual inspection of called variants is a standard 
practice in molecular pathology labs. For example, a recent publication by MSKCC on Tumor molecular 
profiling (Zehir et al, Nat Med. 2017 Jun;23(6):703-713) also described the need for manual review as 
follows: “DNA isolated from tumor tissue and, in 98% of  cases,  matched  normal  peripheral  blood  was  
subjected  to hybridization  capture and  deep-coverage  NGS  to  detect  somatic mutations, small 
insertions and deletions, CNAs and chromosomal rearrangements, all of which were manually 
reviewed". 

We did not record how often a variant call, which passed the automated computational process 
involving Bambino call, quality filtering and cross-validation, was rejected by manual review. However, 
the 2% difference on the validation rate between exonic SNVs (99%) which involves manual review and 
non-exonic SNVs (97%) which relies on the automated process alone suggest that manual review may 
have improved PPV by 2%. 

In the revised manuscript we described the manual review process in the new section of 
“SNV/Indel Filtering and Cross-validation” in Methods as follows: “Manual review was performed for 
exonic variants that passed the above mentioned computation filtering. Non-exonic variants were not 
manually reviewed. Given the 2% difference on the validation rate between the manually-reviewed 
exonic SNVs (99%) and automatically computed non-exonic SNVs (97%), we estimate that manual review 
improves PPV by 2%.” 

Throughout the manuscript we report the statistics on variants that were computed from our 
analytical pipelines which include the cross-validation filtering. We respectfully disagree with the 
reviewer that this is “selective reporting”. 
 
[Reviewer 2 specific comment 2] One big concern is around statistics, and as presented they are 
confusing. By definition – PPV must be lower for the union of 3 non-identical variant sets that have some 
variants in column. Why is this not the case? Why are not the calls laid out by platform with their 
individual PPV’s? The union will contain all the false positives from all methods – and thus false positives 
grow, while true positives remain the same. PPV increases with combined calls unless they are doing 
something more. If they are addressing this, it wasn't apprent [sic] in the method. 

[Author Response] As outlined in our response to [Reviewer 2 General comment c], variants 
presented to our clinical analysts are those that passed the “cross-validation filtering” implemented as 
part of our clinical sequencing analysis pipeline. Therefore, use of filtered variants for calculate PPV is 
appropriate as it matches to the real implementation of our clinical pipeline. We have documented this 



in the manuscript as follows: “To determine positives for calculating PPV, we used final variant calls, 
which were the product of quality filtering, cross-validation analysis, and manual review for all mutation 
types except for non-exonic SNVs” in section of “Analytical performance of somatic variant detection”.   

Presenting PPV of a single-platform (requested by reviewer 2 in the general comment) or that of 
the union of WGS/WES would be inappropriate as our study did NOT take the union of variants 
generated from WGS/WES and assess their clinical relevance. In the revision, we further clarified that 
only WGS and WES were used for SNV/indel detection in the section of “Mapping and SNV/indel 
Calling” in Methods while RNA-seq was used for cross-validation filter of SNV/indel as outlined in the 
new section of “SNV/Indel Filtering and Cross-validation”. This new section should also clarify that the 
final variants are not the union of WGS and WES but variants cross-validated by WGS and WES. 

In the design of experimental validation by capture sequencing we did include the union of 
WGS, WES and those previously validated in our research project PCGP to develop a “truth” data set for 
assessing sensitivity of our clinical pipeline as shown in Figure 3a. Some of the real somatic variants 
detected by a single platform could have been filtered by the “cross-validation filtering” and they were 
counted as false negatives for our clinical pipeline. For example, in Supplementary Table 6A, there are a 
total of 8 somatic exonic SNVs that were detected by a single platform (WGS or WES) but did not pass 
“cross-validation filter” and were thus considered false negatives in our calculation of sensitivity. The 
truth data set also included an additional 34 SNVs that were detected only in our research project PCGP. 
This design was presented in Figure 3a and details on the number used for calculating PPV and 
sensitivity are described in the section of “Hybrid Capture Validation” in Methods.  

As described in our response to [Reviewer 2 General comment c], a curious reader can easily 
obtain PPV for a single platform or the union of WGS/WES by using the data on Supplementary Tables 
6A-C. We do feel strongly that the PPV should be based only on the filtered results in the manuscript as 
it reflects the strength of our cross-platform integrative analysis. Therefore, we choose not to present 
any statistics in the single-platform or in the union of WGS/WES without cross-validation filtering. In the 
revised manuscript we included instructions on how to obtain statistics of unfiltered variants for readers 
who are interested in such statistics. The instruction is included in the section of “Comparison of 
validation statistics on variants that pass cross-validation filter with unfiltered variants” in 
Supplementary Note 7. The example included in Supplementary Note 7 should allow the reviewer to 
see the difference between the statistics calculated from unfiltered variants versus those that pass 
cross-validation filter. 
 
 
[Reviewer 2 specific comment 3] The title implies clinical sequencing – is this all from fixed pipelines 
within clinical tests or are these research calls within a CAP/CLIA lab. Figure 1 and much of the text bring 
various concerns – particularly that there are research calls being used mainly. How do they validate 
Chroomothripsis [sic] calls? How do they evaluate limits of detection of ploidy? These just don’t seem like 
assays that have undergone an analytical validation as a clinical test. 
  [Author Response] The entire workflow is part of the clinical validation of the testing which 
includes wet bench through the determination of the final calls and patient report.  At the conclusion of 
that work, the entire process was written up as the validation which was reviewed on the next CAP 
inspection that we had after the validation was signed off on. The CAP inspector felt that the work and 
analysis performed met all the requirements of CAP at that time.  At that point, it became a CAP/CLIA 
validated test.  This was also done prior to the current CAP requirements as this work was completed 
prior to the current guidelines.  At the time the work was performed, we had far surpassed any 
requirements in the CAP checklist. The WES CNV analysis was not part of the clinical testing as we 
incorporated this analysis for comparison with WGS CNV analysis. We clarified that in the revised 
manuscript in the section of “SV/CNV/Fusion Calling” in Methods.  



The ploidy test was included for CAP inspection through the comparison with data generated by 
cytogenetic lab and there are a total of 9 such events documented in Supplementary Table S2. 
Chromothripsis was used as an annotation for ploidy report and we followed guidelines by Korbel and 
Campbell (2013). We have clarified this in the revised legend of Figure 1.  
 
[Reviewer 2 specific comment 4] The paper still refers to total sequencing which the author 
acknowledges this is not. 
  [Author Response] We changed the term “Total Sequencing” to three-platform sequencing 
throughout the manuscript. As reviewer 3 points out, we missed a single instance in the body Figure 1a. 
This was an oversight on our part and has been corrected in the revision. 
 
[Reviewer 2 specific comment 5] Figure 3 is unclear and should be broken out by test such as within a 
table. Particularly Figure C is not helpful, and the caption does not make sense for Figure 3B 

[Author Response] We assume that the reviewer is requesting to have PPV/sensitivity be 
measured by each sequencing platform (i.e. “by test”) based on prior comments. We have presented 
the rational for presenting PPV and sensitivity using the variants that pass the cross-validation filter in 
our response to Reviewer 2 General comment c, i.e. our analysis pipeline is based on integrating WGS 
and WES data for cross-validation instead of making a union of variant calls from the two platforms. As 
described in previous response, we included instruction on how to calculate statistics for unfiltered 
variants in a new section of “Supplementary Note 7: Comparison of validation statistics on variants 
that pass cross-validation filter with unfiltered variant”.  

We have described the use of “cross-validation filtered” variants in the analysis of PPV in the 
section of “Analytical performance of somatic variant detection”. In the revision we expanded the legend 
of Figure 3a to further clarify the filtered variants are considered “predicted positive”. We also provided 
additional details on the need to separate non-exonic (other) SNV from exonic SNV as a separate 
category in the revised legend of Figure 3b. The added content in the legend, although generally a 
repetition of what we presented in the main text in the section of “Analytical performance of somatic 
variant detection”, should improve the clarity of Figure 3.  

Figure 3c aims to depict the sensitivity of 3-platform sequencing, which is important for clinical 
assay, therefore we respectfully disagree with the reviewer that it is “not helpful”. The sensitivity of the 
assay is a critical result of the study and we invested tremendous amount of effort in capture validating 
all the raw variant calls (including those that were filtered out or not detected in our pipeline so that we 
can ascertain the sensitivity. We maintain that it is important for sensitivity to appear in a main figure. 
Based on the reviewer’s comment, we recognize that categorizing validated variants by WGS, WES or 
PCGP in Figure 3a may cause confusion and we removed this component in Figure 3a. Instead, we added 
description of “WGS+WES”, “WGS”, “WES” and “Missed” to the legend of Figure 3c.  

An in-depth explanation of the methods and data behind the figure is given in the Results, 
Methods, supplementary tables, and the newly added Supplementary Note 7. Although the full content 
cannot be presented in a figure caption, we have revised Figure 3 and the caption to improve clarity. We 
maintain that it is important for sensitivity of three-platform sequencing to appear in a main figure. 
 
[Reviewer 2 specific comment 6] Supplementary Figure 4 and the limits of detection is done incorrectly 
and biased. They do not use the same calling methods as they do within the paper, instead referring to 
detection by at least 3 reads – which would lead to other false positive.  
 

[Author Response] Figure S4 legend reads “The blue lines show the probability of detection by 
at least 3 reads in WGS or WES and at least one read in the other platform, which is the standard used 
by this pipeline.” This simulation is based on the same criteria that we used for automated call defined 
in Methods “The variant allele required a minimum of three supporting reads” and the minimum of 1 



read from another platform for cross validation as defined in the section of “SNP/Indel filtering and 
cross-validation”. In the revision, we expanded the Figure S4 legend by changing “which is the standard 
used by this pipeline” to “which is the standard used by the automated detection and cross-validation 
filtering pipeline” to improve clarity. 

Figure S4 was generated from a theoretical analysis; and we were able to perform a re-sampling 
analysis to justify the above theoretical analysis using NRAS G12D locus from case SJBALL021900. This 
was presented in the section of “Limit of Detection Analysis” in Supplementary Methods.  
 
Reviewer #3 (Remarks to the Author): 
The turnaround/cost discussion and the mentioning of the pathogenic and likely pathogenic variants 
discovered specifically in WGS are useful, and addressed my original concerns. Overall, the study 
analyzed a good number of patients in the cohort and demonstrated the value of a multi-platform 
sequencing approach with an integrative analysis that increase the precision of diagnosis. The study 
should be of interest to the community. Whether the extra value and the interpretability are worth the 
extra cost will be left to the community to judge, but at least translation research will benefit from the 
findings and approach. 

[Author Response] We thank the reviewer for his/her understanding of the importance of our 
study which involves integrative analysis of multi-platform sequencing in a clinical setting.  
 
Minor comments 
- In line 1312, it says Four out of the seven sample, it should be "seven samples" 

[Author Response] We made the correction to “seven samples” in the revised manuscript. 
 
- Total sequencing is now changed to "three platform sequencing", which I believe should be "three-
platform" sequencing 

[Author Response] We made the correction throughout the text to “three-platform”. 
 
- On Fig 1a, it still says "total sequencing" instead of "three-platform sequencing", which should be 
consistent with the rest of the article. 

[Author Response] We thank the reviewer for pointing out this omission and have revised Fig. 
1a to convert “total sequencing” to “three-platform sequencing”. 
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Reviewers' Comments:  
 
Reviewer #2:  
Remarks to the Author:  
The manuscript is much improved. No additional comments. 
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