
Supplementary Information

Phoenics: A Bayesian Optimizer for Chemistry

Florian Häse,† Loïc M. Roch,† Christoph Kreisbeck,† and Alán Aspuru-Guzik∗,†,‡

†Department of Chemistry and Chemical Biology, Harvard University, Cambridge,

Massachusetts, 02138 USA

‡Senior Fellow, Canadian Institute of Advanced Research, Toronto, Ontario M5G 1Z8,

Canada

E-mail: alan@aspuru.com

S.1 Analytic objective functions

We benchmarked the performance of the global optimization algorithm Phoenics on a total

of 15 analytic objective functions. Nine of these objective functions have a continuous

co-domain and are commonly used to benchmark algorithms developed for unconstrained

optimization problems. The remaining six benchmark functions have a discrete co-domain

and were specifically designed for this study. We provide Python implementations for all 15

benchmark functions on a GitHub repository.1

The nine analytic benchmark functions with continuous co-domain were chosen based

on their different features: they differ in the number of local minima, number of global

minima and the dimensionality of the parameter space for which they are defined. Details

are summarized in Tab. S.1. Fig. S.1 displays contour plots of all objective functions for a

two dimensional parameter space.

All of the benchmark functions with discrete co-domain project the parameter space

1

alan@aspuru.com

onto integer values in the [0, 4] interval. Contour plots for these benchmark functions are

displayed in Fig. S.1 for a two dimensional parameter space, although all of the six functions

generalize to higher dimensions as well. Note, that the global minimum of these functions is

not a unique point in parameter space, but rather an entire region.

Figure S.1: Contour plot of the two dimensional instances of the objective functions with
discrete co-domain used for benchmarking Phoenics, RF and GP optimizers. Python imple-
mentations of these objective functions are available on GitHub.1

S.2 Random search results

The employed analytic benchmark functions (see Sec. S.1) differ drastically in their shape.

While some functions, like the Ackley function or the Schwefel function feature narrow local

funnels around their global minima, other functions such as Branin and Dejong have rather

broad funnels. The benchmark functions also differ greatly in the range of their co-domain

spaces. Instead of reporting the deviation of the current best to the global minimum during

an optimization run we therefore compare the optimization algorithms to random searches

2

Table S.1: Analytic objective functions with continuous co-domain used for benchmarking
Phoenics, RF and GP optimizers. Python implementations of these objective functions are
available on GitHub.1

Objective function Domain range Global minimum (2d) generalizable

Ackley xi ∈ [−32, 32] 0.00 yes
Branin xi ∈ [−5, 15] 0.397887 no
Camel xi ∈ [−3, 3] −1.0316 no
Dejong xi ∈ [−5, 5] 0.00 yes
Ellipsoid xi ∈ [−5, 5] 0.00 yes
Michalewicz xi ∈ [0, 3] −1.801 no
Rastrigin xi ∈ [−5, 5] 0.00 yes
Rosenbrock xi ∈ [−2, 2] 0.00 yes
Schwefel xi ∈ [−500, 500] −418.9829d yes

on the same objective functions.

In one random search run we evaluated each objective function 104 times at positions

uniformly sampled from the domain space. The lowest achieved function value averaged over

100 random searches with different random seeds serves as the benchmark value for each

optimization algorithm. For each algorithm, we record the number of function evaluations

needed to discover a point in parameter space which yields a function value lower than the

average lowest value encountered in the random searches. The average lowest values for all

objective functions in two dimensions are summarized in Tab. S.2.

Table S.2: Lowest achieved function values averaged over 100 independent random searches
with 104 function evaluations per run. The reported values were used to benchmark Phoenics,
RF and GP optimizers.

Loss function Minimum Lowest encounter

Ackley 0.00 1.942
Branin 0.397887 0.406
Camel −1.0316 −1.028
Dejong 0.00 2.560 · 10−3

Ellipsoid 0.00 3.467 · 10−3

Michalewicz −1.801 −1.794
Rastrigin 0.00 4.498 · 10−1

Rosenbrock 0.00 4.718 · 10−3

Schwefel −837.978 −834.688

Loss function Minimum Lowest encounter

Linear funnel 0 0.00
Narrow funnel 0 0.66
Double well 0 0.36
Disc. Ackley 0 0.66
Disc. Michalewicz 0 0.64
Disc. Valleys 0 0.18

3

S.3 Architecture of the Bayesian neural network

The BNN architecture for all benchmarks in this study consisted in three layers. The di-

mensionality of the input layer was given by the dimensionality of the parameter space k.

We chose to model all hidden layers with 50 units. As described by Eqs. 1 to 3, all layers

but the last were connected by hyperbolic tangents; the last layer using a sigmoid activation

function

φ1 = tanh(x · w0 + b0), (1)

φ2 = tanh(φ1 · w1 + b1), (2)

φ3 = sigmoid(φ2 · w2 + b2), (3)

φout ∼ N (φ3, τn). (4)

Priors for weights and biases of the BNN architecture were chosen to be normal distri-

butions with zero mean µi = 0 and unit standard deviation σi = 1

wi ∼ N (µi, σi), (5)

bi ∼ N (µi, σi). (6)

The output layer φ3 is used to predict the distributions of means of Gaussian distributions

with precisions τn, which depend on the number of observations n (see Eq. 4). The precision

τn of these Gaussian distributions are sampled from a Gamma distribution τn ∼ Γ(α, β)

with prior hyperparameters α = 12n2 and β = 1, where n is the number of observations.

With this choice of parameters the precision of the Gaussian distribution increases with the

number of observations. Details on the particular choice are provided in Sec. S.4. Note that

the parameter space is rescaled to the unit hyper-cube prior to training the model.

The BNN is trained via Bayesian inference (see background). During the training proce-

dure, we update distribution parameters µi and σi on the Gaussian distributions for weights

4

and biases as well as parameters α and β on the Gamma distribution from which the precision

τn is drawn. We collectively refer to all of these model parameters as θ.

S.4 Precision

In this work we propose to approximate a given objective function with a prior constructed

from Gaussian distributions. Given a set of n observations Dn of pairs of parameter points

and corresponding objective function values, the approximation to the objective function is

constructed from n Gaussians. The locations of the Gaussian distributions are drawn from

a BNN trained to predict the locations of observed parameter points. Precisions τ of these

Gaussians, however, are drawn from a Gamma distribution parametrized via a probability

density function as presented in Eq. 7, where Γ denotes the Gamma function.

f(x;α, β) =
βαxα−1e−βx

Γ(α)
for x > 0 and α, β > 0 (7)

The prior for this Gamma distribution is chosen to be α = 12n2 and β = 1 for a given

set Dn of n observations. With this choice of hyperparameters the expectation value for the

prediction is 〈τ〉 = 12n2. The prefactor 12 in the expectation value of the precision ensures

that in the case of only a single observation the standard deviation of the approximating

Gaussian distribution matches the standard deviation of a uniform distribution along a single

dimension of the unit hyper-cube. Starting out from an uninformative uniform prior we

therefore gradually increase our believe about the parameter space with this particular choice

of the prefactor. The dependence of the hyperparameter α on the number of observations

guarantees that the precision of the Gaussian distributions increases with more observations,

i.e. the standard deviation of the Gaussian decreases. This decrease in the standard deviation

with the number of observations is necessary for the convergence of the approximative model

to the objective function in the limit of an infinite number of observations.

Several different protocols could be applied to increase the precision of the Gaussian

5

distributions with the number of observations. In a scenario in which a dataset consisting

of n observations is approximated by a single Gaussian distribution, the precision of the

Gaussian increases as the square root of the number of observed points, i.e. τ ∝
√
n.

Likewise we can consider a case in which we sample a random variable from the sum of

Gaussian distributions. Assuming each of the Gaussian distributions has the same standard

deviation σ0, the standard deviation of the random variable is given by
√
nσ0.

Based on these two considerations we studied the performance of Phoenics with three

different protocols for increasing the precision of the Gaussians with the number of obser-

vations: increasing the expected value of the precision with the number of observations as

(i) 〈τ〉 ∝ n, (ii) 〈τ〉 ∝ n2 and (iii) 〈τ〉 ∝ n3 given on the prior considerations. Results of

the benchmark runs with Phoenics and the three different schedules on selected objective

functions are reported in Tab. S.3. We report the minimum number of required objective

function evaluations to reach values lower than the average lowest value encountered after

104 random evaluations of the objective function (see Sec. S.2).

Table S.3: Minimum number of required objective function evaluations to reach values lower
than the average lowest value encountered after 104 random evaluations of the objective
function. For each simulation, the precision of the Gaussian distributions was increased with
a different schedule based on the number of observations n. Lowest number of required
evaluations for each objective function are printed in bold.

Protocol Ackley Dejong Schwefel dAckley

〈τ〉 ∝ n 39 ± 4 29 ± 2 137 ± 10 176 ± 8

〈τ〉 ∝ n2 19 ± 1 21 ± 2 108 ± 10 179 ± 4

〈τ〉 ∝ n3 43 ± 1 43 ± 1 126 ± 6 186 ± 4

We find, that the 〈τ〉 ∝ n2 schedule for shrinking approximating Gaussian distributions

performs the best out of the proposed shrinking schedules across all objective functions.

Slower increases in the precision of the Gaussian distributions like in the 〈τ〉 ∝ n sched-

ule seem to create persistent regions in parameter space for which the acquisition function

predicts unfavorable objective function values and does not sufficiently enhance exploration.

In contrast, the 〈τ〉 ∝ n3 schedule shrinks Gaussian distributions too quickly such that

6

acquired knowledge cannot be exploited sufficiently and the algorithm behaves more like

random search. Based on these findings, Phoenics adopts the 〈τ〉 ∝ n2 as shrinking sched-

ule.

S.5 Convergence of the approximation to the objective

function

We suggest to approximate an objective function f via a kernel average α of observed function

values fk, where kernels pk depend in the associated parameter points xk (see main text for

details).

α(x) =

n∑
k=1

fkpk(x)

n∑
k=1

pk(x)
(8)

More specifically, the kernels pk are estimated from a BNN. Here, we aim to argue that

this approximation of the objective function converges to the objective function in the limit

of infinitely many distinct observations. We start our discussion with the construction of the

kernel densities pk. Kernel densities are sampled from the BNN according to Eq. 9

pk(x) =

〈√
τn
2π

exp
[
−τn

2
(x− φ3(θ;xk))

2
]〉

BNN
. (9)

Note, that φ3(θ;xk) are constructed according to Eqs. 10 to 12, where xk denotes the

parameter point associated to the objective function value fk.

φ1 = tanh(xk · w0 + b0), (10)

φ2 = tanh(φ1 · w1 + b1), (11)

φ3 = sigmoid(φ2 · w2 + b2), (12)

7

Note, that weights wi and biases bi can be chosen, such that φ3 = xk. Since xk can be

assumed to be within the d-dimensional unit hyper-cube xk ∈ [0, 1]d we can find

w0 =
arctan(xk)

xk
, w1 =

arctan(xk)

xk
, w2 =

1

xk
log

(
xk

1− xk

)
, b0 = b1 = b2 = 0,

(13)

which gives the desired result φ3 = xk. In the scenario of a perfectly trained BNN, the

kernel densities therefore reduce to

pk(x) =

√
τn
2π

exp
[
−τn

2
(x− xk)2

]
. (14)

The precisions τn of these kernels are sampled from a Gamma distribution (see main

text), whose expectation value linearly increases with the number of observations n. We

now consider the value of the approximation α at the position of an observed parameter

point xl in the limit of n→∞

lim
n→∞

α(xl) = lim
n→∞

n∑
k=1

fkpk(xl)

n∑
k=1

pk(xl)
, (15)

= lim
n→∞

n∑
k=1

fk
√

τn
2π

exp
[
− τn

2
(xl − xk)2

]
n∑
k=1

√
τn
2π

exp
[
− τn

2
(xl − xk)2

] , (16)

= lim
n→∞

fl +
n∑

k=1,k 6=l
fk exp

[
− τn

2
(xl − xk)2

]
1 +

n∑
k=1,k 6=l

exp
[
− τn

2
(xl − xk)2

] = fl, (17)

where we used the fact that the series in the numerator and the denominator are absolute

convergent and ||xl−xk|| < 1 for any xl and xk on the considered domain. When evaluating

the approximation α at an arbitrary point x in the domain, however, we find that the value

assumed by the approximation is governed by the observed function value associated with

8

the closest observed parameter point xk. We carry out the same limit as before

lim
n→∞

α(x) = lim
n→∞

n∑
k=1

fkpk(xl)

n∑
k=1

pk(x)
, (18)

= lim
n→∞

n∑
k=1

fk
√

τn
2π

exp
[
− τn

2
(x− xk)2

]
n∑
k=1

√
τn
2π

exp
[
− τn

2
(x− xk)2

] . (19)

This expression can now be simplified by introducing βk as

βk(x) = exp

(
−1

2
(x− xk)2

)
. (20)

We find

lim
n→∞

α(x) = lim
n→∞

n∑
k=1

fkβ
τn
k

n∑
k=1

βτnk

. (21)

This expression can be simplified further by dividing both numerator and denominator by

the largest βk, which we denote with βm = max
k=1,...,n

(βk). Note, that the largest βk is obtained

for the point xm in the parameter space, which is the closest to the considered point x.

lim
n→∞

α(x) = lim
n→∞

n∑
k=1

fk(βk/βm)τn

n∑
k=1

(βk/βm)τn
, (22)

= lim
n→∞

fm +
n∑

k=1,k 6=m
fk(βk/βm)τn

1 +
n∑

k=1,k 6=m
(βk/βm)τn

= fm, (23)

as all βk/βm < 1 for k 6= m. The approximation is therefore dominated by the objective

function value fm observed for the closest point xm in the parameter space. The same

9

convergence behavior can be observed for the extended expectation calculation as shown

below

lim
n→∞

α(xl) = lim
n→∞

n∑
k=1

fkpk(xl) + λpuniform(xl)

n∑
k=1

pk(xl) + puniform(xl)
, (24)

= lim
n→∞

n∑
k=1

fk
√

τn
2π

exp
[
− τn

2
(xl − xk)2

]
+ λpuniform(xl)

n∑
k=1

√
τn
2π

exp
[
− τn

2
(xl − xk)2

]
+ puniform(xl)

, (25)

= lim
n→∞

fl +
n∑

k=1,k 6=l
fk exp

[
− τn

2
(xl − xk)2

]
+
√

2π
τn
λpuniform(xl)

1 +
n∑

k=1,k 6=l
exp

[
− τn

2
(xl − xk)2

]
+
√

2π
τn
puniform(xl)

= fl, (26)

where we used the fact that puniform(xl) is constant and finite. Similar to the previous

scenario it can be shown that also the extended approximation approaches the objective func-

tion value associated with the closest observed parameter point when evaluated at arbitrary

parameter points x.

We illustrate this convergence behavior in Fig. S.2, where we display the approximations

to an objective function constructed from different numbers of observation. We find that

the approximation matches the true objective in cases where there are more observations

available.

Figure S.2: Illustration of the convergence behavior of the constructed approximation α
(blue) to the objective function f (grey) for different numbers of observations (orange).

10

S.6 Surrogate optimization

New points in parameter space for querying the objective function are proposed based on the

global minimum of the acquisition function (see Eq. 3, and Fig. 1). The problem of finding

the global minimum of the objective function, which is costly to evaluate, is therefore reduced

to searching the global minimum of the surrogate function.

As a compromise of accuracy and computational cost, we search for the global minimum

of the approximating function by uniformly sampling points in the parameter space and then

running a gradient based optimizer on half of the proposed samples on the objective function

approximation. Unless otherwise noted, all reported results were obtained from proposing

2000 uniform samples for each dimension of the parameter space and locally optimizing half

of the sampled points with the L-BFGS algorithm for at most 20 optimization steps.

S.7 Benchmark results

We benchmarked Phoenics, RF and GP optimizers on a total of 15 different benchmark

functions, which are reported and discussed in detail in Sec. S.1. For each of the benchmark

function we ran the optimization algorithm for a total of 200 iterations in 20 independent

runs initialized with different random seeds and recorded the lowest discovered objective func-

tion values for each iteration. Each objective function was optimized by three independent

optimizer instances constructed from different exploration parameter values λ ∈ {−1, 0, 1}.

Average lowest discovered objective function values and bootstrapped uncertainties are

depicted in Fig. S.3. For comparison we provide the average lowest objective function values

discovered by Bayesian optimization with Gaussian processes as implemented in spearmint

and with random forests as implemented in SMAC.

We find that instances of the optimization algorithm introduced in this study perform

better than GP optimization and RF optimization in eleven out of 15 cases. For all studied

objective function, instances of the introduced optimization algorithm perform better than

11

Figure S.3: Lowest discovered objective function values averaged over 20 independent op-
timizations for the optimization algorithm introduced in this study, which we constructed
with three different choices for the exploration parameter λ ∈ {−1, 0, 1}. We also report
average lowest objective function values discovered by Bayesian optimization with Gaussian
processes (spearmint package) and random forests (SMAC package). Objective functions
for which the optimizer introduced in this study discovered the lowest objective function
values are indicated by an asterisk. Uncertainty bands illustrate bootstrapped estimates of
the deviation of the means with one and two standard deviations.

RF optimization. GP optimization, however, discovers lower objective function values than

instances of Phoenics in four cases.

These four cases, for which GP optimization discovers lower objective function values,

are cases of purely convex objective functions (Dejong, Ellipsoid and Rosenbrock) and the

Rastrigin function, which is mostly convex with small local minima modulating a general

hyperparabolic shape.

We further observe that for some objective functions a more explorative (more negative)

value of the exploration parameter improves the performance while in other cases a more

exploitative (more positive) value is beneficial. For instance in the case of objective functions

with a discrete co-domain (right and second to right columns in Fig. S.3) we observe good

12

performance with more negative exploration parameter values. In fact, positive values for

the exploration parameter result in the algorithm no longer finding the global minimum.

This, however, can be explained by the fact that parameter points proposed with favoring

exploitation will always be in close proximity to the current best observed parameter point.

On a discrete co-domain, however, all points in close proximity to the current best yield the

same objective function value.

In other cases, especially for mostly convex objective functions such as the Dejong func-

tion or the Camel function, Phoenics performs the best when favoring exploitation over

exploration. We therefore conclude that there cannot be a single best balance between ex-

ploration and exploitation for objective functions as diverse as the objective functions in this

benchmark set.

S.8 Batch optimization results

Instead of marginalizing over the exploration parameter λ in the acquisition function of

Phoenics , we suggest to propose parameter points in batches, some of which are determined

favoring exploration and others favoring exploitation. Here, we demonstrate the the proposed

algorithm benefits from such a procedure even if the proposed parameter points are evaluated

sequentially.

Tab. S.4 summarizes the results for a simple batch optimization experiment on a selected

set of objective functions. Phoenics was run with sampling parameter values evenly spread

out over the [−1, 1] interval. Note, that the evaluation of a batch with p samples was

counted as p evaluations of the objective functions. Values for λ were fixed during the entire

optimization procedure.

Fig. S.4 displays the lowest achieved deviations between sampled objective function values

and their global minima for a selected set of objective functions. Results reported for each

objective function are averaged over 20 independent runs. Phoenics was run by proposing

13

Table S.4: Average lowest achieved errors of the three global optimization algorithms com-
pared in this study. Averages were taken over 20 runs with different random seeds. For each
optimizer we report the lowest achieved errors for runs in which a different number of points
p were proposed in each training iteration. Lowest numbers of evaluations required by each
optimization algorithm are indicated in bold.

Method p Ackley Dejong Schwefel dAckley

Phoenics

1 39 ± 5 55 ± 4 66 ± 4 85 ± 8

2 26 ± 3 44 ± 2 58 ± 6 72 ± 6

4 43 ± 1 36 ± 1 48 ± 8 22 ± 2

8 69 ± 2 61 ± 2 47 ± 2 40 ± 3

RF

1 185 ± 2 250 ± 9 245 ± 3 143 ± 6

2 191 ± 5 349 ± 11 277 ± 6 166 ± 5

4 212 ± 6 713 ± 32 394 ± 10 178 ± 5

8 246 ± 8 906 ± 47 446 ± 17 225 ± 28

GP

1 43 ± 3 13 ± 1 93 ± 2 100 ± 12

2 45 ± 3 12 ± 1 94 ± 3 107 ± 19

4 46 ± 2 12 ± 1 96 ± 2 126 ± 6

8 57 ± 3 16 ± 1 95 ± 2 163 ± 20

parameter points in batches of p points, which where then evaluated sequentially. The

evaluation of p points in one batch was counted as p objective function evaluations. We

report the number of objective function evaluations needed to reach the indicated objective

function values. Values for the exploration parameter were drawn evenly spaced from the

[−1, 1] interval. We provide the lowest achieved objective functions values in GP optimization

and RF optimization for comparison.

Figure S.4: Lowest achieved average deviation between sampled objective function values
and their global minima for a selected set of objective functions. Phoenics proposed a total
of p points per batch, which was counted as p function evaluations. Uncertainty bands
illustrate bootstrapped estimates of the deviation of the means with one and two standard
deviations.

14

We observe that the synergistic effect of proposing parameter points in batches reported

on the Ackley function in the main text (see Fig. 3) also occurs for the other studied objec-

tive functions. In fact, even for objective functions with a discrete co-domain (right panel,

Fig. S.4) batch optimization seems to enhance the performance of Phoenics, although we

demonstrated that Phoenics does not perform well on objective functions with a discrete

co-domain when proposing parameter points with a bias towards exploitation.

S.9 Algorithm comparisons

We demonstrated that Phoenics generally performs better when proposing parameter points

in batches, where some of the parameter points are proposed with a bias towards exploration

and others are proposed with a bias towards exploitation (see Sec.). Here, we report on

the performance of Phoenics with batch exploration and compare to RF and GP optimiza-

tion. Fig. S.5 depicts the traces of average deviations between the lowest achieved objective

function values and their global minima for a total of 20 independent runs with all three opti-

mization algorithms. Phoenics proposed 4 points per batch based on exploration parameter

values evenly spread across the [−1, 1] interval.

We find that Phoenics finds parameter points yielding objective function values closer to

their global optima than RF and GP optimization in 12 out of 15 cases (indicated with ∗

in Fig. S.5). Phoenics is only outperformed by GP optimization if the objective function is

convex, i.e. for the Dejong, Ellipsoid and Rosenbrock function. Nevertheless, Phoenics finds

reasonable parameter points yielding low objective function values even for these functions.

In addition, we observe a synergistic effect of batch optimization for 12 out of 15 objective

functions (indicated with † in Fig. S.5). For these objective functions, batch optimization

performs better than any of the exploration parameter choices reported in Fig. S.3). We

note, that the same batching protocol was used for all objective functions, indicating the

flexibility and broad applicability of this protocol.

15

Figure S.5: Deviations between lowest achieved objective function values and their global
minima for a total of 20 independent runs with the three studied optimization algorithms.
Phoenics was run in a batch exploration proposing 4 points per batch based on explo-
ration parameter values evenly spread across the [−1, 1] interval. Objective functions on
which Phoenics performs better than GP and RF optimization are indicated denoted with ∗,
function for which a synergistic effect was observed, i.e. improved performance with batch
optimization compared to sequential optimization, are denoted with †. Uncertainty bands
illustrate bootstrapped estimates of the deviation of the means with one and two standard
deviations.

Fig. S.6 reports the performance of particle swarm optimization (PSO) and the covariance

matrix adaptation evolution strategy (CMA-ES) on all objective functions. We increased the

number of allowed function evaluations for these two algorithms by an order of magnitude,

from 200 to 2000. PSO or CMA-ES do not achieve lower deviations than Phoenics for

any of the objective functions after 200 evaluations. Even after increasing the number of

allowed evaluations by an order of magnitude, CMA-ES fails to achieve lower deviations

than Phoenics for 13 out of 15 objective functions, and PSO fails for 12 out of 15 functions

as indicated in Fig. S.6.

16

PSO CMA-ES

10 5

10 3

10 1

101

D
e
v
ia

ti
o
n

Dejong

10 3

10 1

101

Camel

10 3

10 1

101

Branin

0

1

2

3

Linear

0

1

2

3

4
Narrow

10 5

10 3

10 1

101

D
e
v
ia

ti
o
n

Ellipsoid

10 1

100

101

102

103

Schwefel

10 3

10 2

10 1

100

Michalewicz

1

2

3

Double

1

2

3

dMichalewicz

0 1000 2000
evaluations

10 2

100

102

D
e
v
ia

ti
o
n

Rosenbrock

0 1000 2000
evaluations

10 1

100

101

Ackley

0 1000 2000
evaluations

10 1

100

101

Rastrigin

0 1000 2000
evaluations

1

2

3

dAckley

0 1000 2000
evaluations

1.0

1.5

2.0

2.5

Valleys

Phoenics RF GP

Figure S.6: Deviations between lowest achieved objective function values and their global
minima for a total of 20 independent runs with particle swarm optimization (PSO) and
the covariance matrix adaptation evolution strategy (CMA-ES). Optimization procedures
with both algorithms were carried out for 2000 function evaluations. Grey boxes highlight
the region of the first 200 function evaluations, for which optimization procedures were
executed with Bayesian optimization algorithms (see Fig. S.5). Dashed lines indicate the
deviations achieved by the Bayesian optimization algorithms after 200 evaluations. Vertical
lines highlight the number of function evaluations required by PSO or CMA-ES to achieve
lower deviations than Phoenics after 200 evaluations.

S.10 Belousov-Zhabotinsky reaction mechanism

The Belousov-Zhabotinsky reaction is a prominent example of a nonlinear chemical oscilla-

tor.2,3 While the detailed reaction mechanism is rather complex and involved a large number

of elementary subreactions,4 the reaction can be summarized in three major subprocesses

(see reaction 1).

In reaction (A) a bromite ion is reduced by a bromide ion through a series of two-electron

reductions in which malonic acid reacts to bromomalonic acid. Reaction (B) dominates over

reaction (A) at low bromide ion concentrations and forms CeIV from CeIII while consuming

17

bromite ions. Reaction (C) then removes the CeIV produced by reaction (B).

dα

dτ
= s(η − ηα + α− qα2), (27)

dη

dτ
= s−1(−η − ηα + fρ), (28)

dρ

dτ
= w(α− ρ). (29)

Depending on the particular choice of reaction parameters for the Oregonator model

the solutions of the differential equations can differ quantitatively and qualitatively. The

set of target parameters features an oscillatory solution with a stable attractive limit cycle.

Fig. S.7 illustrates different possible reduced concentration traces for different values of the

constructed objective function. All presented concentration traces were sampled in a single

optimization run of Phoenics .

0 100 300 500 1500 2500 3000 Objective function

Figure S.7: Examples for concentration traces related to different loss values. Concentration
traces were obtained from different parameter sets all sampled by Phoenics within a single
optimization run.

We find that loss values below 100 closely resemble the target concentration traces. For

such low loss values, we have qualitative and quantitative agreement between the traces.

18

Loss values between 300 and 500 feature simulations for which the periodicity of the sampled

concentration traces matches the periodicity of the target traces, but the traces are shifted

by a phase. Slightly different periodicities are developed for losses between 1500 and 2500

while finally at losses above 3000 the system shows rapid oscillations or even steady states.

References

(1) Häse, F.; Roch, L. M.; Kreisbeck, C.; Aspuru-Guzik, A. PHOENICS: A Universal Deep

Bayesian Optimizer (https://github.com/aspuru-guzik-group/phoenics). GitHub 2018,

DOI: https://github.com/aspuru-guzik-group/phoenics.

(2) Zhabotisnky, A. M.; Zaikin, A. N. Oscillatory Processes in Biological and Chemical

Systems. Izdatelstro "Nauka" Publishers, Moscow 1967,

(3) Deng, H. Effect of Bromine Derivatives of Malonic Acid on the Oscillating Reaction of

Malonic Acid, Cerium Ions and Bromate. Nature 1967, 213, 589–590.

(4) Gyorgyi, L.; Turányi, R.; Field, R. J. Mechanistic Details of the Oscillatory Belousov-

Zhabotinski Reaction. J. Phys. Chem. 1990, 94, 7162–7170.

19

	Analytic objective functions
	Random search results
	Architecture of the Bayesian neural network
	Precision
	Convergence of the approximation to the objective function
	Surrogate optimization
	Benchmark results
	Batch optimization results
	Algorithm comparisons
	Belousov-Zhabotinsky reaction mechanism
	References

