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Figure S1: Most dominant conformational transition of PepTSo from IF to OF, via partial
IF-OC, OC and partial OC-OF states. The extracellular and intracellular gating residues
and their distances in each state have been indicated. The numbers in brackets refer to the
energy minima in the free-energy landscape.
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Figure S2: Another possible conformational transition of PepTSo from IF to OF, via partial
IF-OC and wide open states. The extracellular and intracellular gating residues and their
distances in each state have been indicated. The numbers in brackets refer to the energy
minima in the free-energy landscape.
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Figure S3: Conformational transition of helical tips of PepTSo IF (yellow), OC (cyan) and
OF (magenta) states. Helical tips of three states show drastic changes in TM1, 2, 4, 7, 8, 9
and 10 at both (A) extracellular and (B) intracellular sides.
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Figure S4: MD predicted PepTSo OC state. Detailed description of residues involved in the
interactions between the helices that stabilize the OC state of PepTSo are shown. Asn33
(TM1), Ser320 (TM7), Gln341 (TM8), Arg32 (TM1), Asp310 (TM7), His61 (TM2) and
Asn454 (TM11) form a hydrogen bond network and lock the extracellular side. The conserved
residue Glu419 (TM10) form an extensive network of polar interaction and stabilize the
conformation of C domain. The ExxERxxxY motif on TM1 forms ionic interaction with
Lys127 and neighboring residues. The intracellular side of the transporter is locked by
hydrogen bond interaction between Ser131 (TM4)-Tyr431 (TM10). Pro71 (TM2)-Ser444
(TM11) and Gly75 (TM2)-Thr441 (TM11) interactions also favor the conformation of the
OC state.
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Figure S5: The motif ExxERxxxY is conserved in the POT family of transporter on TM1.
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Figure S6: Comparison of predicted PepTSo OC state (colored) with the EmrD OC crystal
structure (PDB: 2GFP,S1 black) viewed on the (A) extracellular and (B) intracellular side.
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Figure S7: Gating residues for the predicted PepTSo OC state (colored) and EmrD OC
crystal structure (PDB: 2GFP,S1 green) are indicated.
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Figure S8: Comparison of predicted PepTSo OC state (colored) with the XylE OC crystal
structure (PDB: 4GBY,S2 black) viewed on the (A) extracellular and (B) intracellular side.
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Figure S9: Gating residues for the predicted PepTSo OC state (colored) and XylE OC crystal
structure (PDB: 4GBY,S2 green) are indicated.
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Figure S10: MD predicted PepTSo OF state. Detailed description of residues involved in
the interaction between the helices that stabilizes the OF state of PepTSo are shown. The
residues His61 (TM2), Asn454 (TM11) and Asp316 form a hydrogen bond network and
stabilize the extracellular part of OF state. The conserved residues Gln419 (TM10) and
ExxERxxxY (TM1) contacts are similar as in the predicted OC state. The residues Ser131
(TM4), Gly134 (TM4), Tyr431 (TM10), Trp76 (TM2) and Thr441 (TM11) form interactions
that lock the OF state and close the pore channel on the intracellular side.
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Figure S11: Comparison of FucP OF (PDB: 3O7P,S3 black) with predicted OF structure
viewed on the (A) extracellular and (B) intracellular side.
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Figure S12: Gating residues for the predicted PepTSo OF state (colored) and FucP OF
crystal structure (PDB: 3O7Q,S3 green) are indicated.
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Figure S13: Comparison of RSMPepTSo with OF predicted structure. The RSM modeled
PepTSo

S4 (black) OF structure was compared with PepTSo OF MD predicted structure.
Transmembrane helices 1, 2, 4, 7, 8 and 10 align well with RSM modeled PepTSo structure
at both (A) extracellular and (B) intracellular ends.
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Figure S14: Gating residues for the predicted PepTSo OF state (colored) and RSM modeled
PepTSo

S4 (green) are indicated.

S15



6 10 144 168 12 18 20

10

0

5

15

20

0.3

0.6

0.9

1.2

1.6

1.8

2.1

2.4

2.7

3.0

Phe150 (CB) – Met443 (CB) (Å)

Ex
tr

ac
el

lu
la

r -
In

tr
ac

el
lu

la
r d

is
ta

nc
es

 (Å
)

Pr
ob

ab
ili

ty

Figure S15: Raw MD simulation data was projected on the difference between the extracel-
lular and intracellular residue pairs and the distance between the residue pairs Phe150-CB
(TM5)-Met443-CB (TM11).
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Figure S16: (A) The residue pair Arg32-CZ (TM1)-Asp310-CG (TM7) and Phe150-CB
(TM5)-Met443-CB (TM11) interactions are indicated, which characterize the partial IF-OC
state. (B) The channel pore radius for the partial IF-OC state.
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Figure S17: Kinetics of the conformational changes and their timescales. (A) The extracel-
lular and (B) intracellular distances are shown as a function of time. The color bar indicates
the extent of opening and closing of the gating residues of PepTSo. The distances in the
crystal structure and the RSM model are indicated in black and dotted lines, respectively.
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Figure S18: MD simulation predicted DEER distance distribution ranges (green and red)
are compared to the experimental DEER distance distribution range (blue). Red and green
simulation predictions are based on Markov state model and augmented Markov model,
respectively.
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Figure S19: MD simulation predicted DEER distance distribution ranges (green and red)
are compared to the experimental DEER distance distribution range (blue) for the (A) IF,
(B) OC, and (C ) OF states from the PepTSo conformational landscape. Red and green
simulation predictions are based on Markov state model and augmented Markov model,
respectively.
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Figure S20: MD simulation predicted DEER distance distribution ranges (green and red) are
compared to the experimental DEER distance distribution range (blue) for the (A) partial
IF-OC, (B) partial OC-OF, and (C,D) wide-open states from the PepTSo conformational
landscape. Red and green simulation predictions are based on Markov state model and
augmented Markov model, respectively.
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Figure S21: DEER residue-pairs that are assigned a low ‘optimal probe score’. The low
ranked choices on the (A) extracellular and (B) intracellular side are shown. It is intuitive
understanding that the the indicated residue-pair choices would lead to low ranked MSMs as
they are placed on only the N domain of the PepTSo and interactions between the domains
are not captured.

S22



Extracellular
distances

Sc
or
e

1

2

3

4

5

6

Intracellular
distances

Mixed
distances

A B C

Figure S22: GMRQ scores for MSM constructed based on residue-pair distance choices on
(A) extracellular only, (B) intracellular only, and (C ) both sides of PepTSo. The red line
indicates the MSM score for the experimental residue distance pairs.
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Figure S23: DEER distance distributions for the highest ranking choices. IF, OC and OF
plots are represented in yellow, violet and blue, respectively. The distances between the
residue pairs 200, 374 and 437 are chosen on the intracellular side and the residues 178, 403
and 467 are chosen on the extracellular side of PepTSo.
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Figure S24: PepTSo two dimensional free energy plot for the raw data obtained using 5 µs
accelerated molecular dynamics simulations. The black dot indicates the crystal structure
of PepTSo (PDB: 4UVMS4) in the IF state.
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Figure S25: Extracellular, transmembrane and intracellular residue pair distances used for
MSM construction.
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Figure S26: Implied timescales from transition probability matrix of the MSM. Eigenvalues
of the transition probability matrix correspond to the dominant rates of transition in the
200 state model. The top 5 eigenvalues for the MSM are shown here which converged at a
lag time of 24 ns.
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Figure S27: Comparison of the maximum GMRQ scores of MSM built using variable cluster
numbers. 200 clusters yields the highest GMRQ score and hence was used for all MSM
construction and analysis. The black and pink dots correspond to the scores for training
and testing datasets to calculate GMRQ, respectively.
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Figure S28: Sampled conformations from the IF and OF microstates from the MSM.
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Figure S29: Normalized flux values for the top 200 reactive paths between IF and OF
microstates in the MSM. There are several paths with high flux and large number of pathways
with lower flux values.
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Figure S30: (A) A single POPC lipid molecule indicating positions of nitrogen (blue), phos-
phorous (orange), carbon (green), and oxygen (red) atoms. Radial distribution of water
around lipid bilayer head group atoms in (B) OF, (C) OC, and (D) IF state. The orienta-
tion of water molecules around the phosphate and nitrate groups are calculated using VMD
1.9.2.
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Figure S31: (A) Probability distribution of area per lipid. To obtain the probability distri-
bution, a normal distribution is fitted to the histogram obtained for 500 structures for each
state, OF (µ=71.4;σ=0.83), OC (70.9;0.9) and IF (70.7;0.85). (B) Probability distribution of
membrane thickness of the POPC lipid bilayer for OF (green), OC (yellow), and IF (orange)
states. A normal distribution is fitted to the histogram obtained for 500 structures for each
state, OF (µ=38.05;σ=0.42), OC (38.11;0.45) and IF (38.18;0.46).
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Figure S32: (A) Lipid bilayer molecules in an MD snapshot shows water mediated lipid
molecule stabilization. B) The radial distribution plots of phosphate atoms distances in the
head group of lipid molecules.
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Figure S33: (A) Probability distribution of water molecules in the protein tunnel. To obtain
the probability distribution, a normal distribution is fitted to the histogram obtained for
500 structures for each state, OF (µ=89.7;σ=5.84), OC (78.3;6.65) and IF (67.8;5.87). The
water conducting channels are visualized for (B) OF, (C) OC, and (D) IF states.
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Figure S34: Comparison of water molecules inside the MD structure (red) protein pore
channel with water molecules in the crystal structures of (A) GkPOT,S5 (B) PepTSt,

S6 (C)
PepTXc

S7 and (D) PepTSh.S8
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Table S1: Adaptive sampling rounds for accelerated MD simulations

Number of rounds Time (ns)
Round 1 135
Round 2 135
Round 3 108
Round 4 107
Round 5 97
Round 6 87
Round 7 66
Round 8 54
Round 9 135
Round 10 108
Round 11 81
Round 12 68
Round 13 95
Round 14 169
Round 15 164
Round 16 139
Round 17 90
Round 18 157
Round 19 136
Round 20 145
Round 21 118
Round 22 110
Round 23 2171
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Table S2: Adaptive sampling rounds for classical MD simulations

Number of rounds Time (µs)
Round 1 6.4
Round 2 6.8
Round 3 40.5
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Table S3: Constraints used for augmented Markov models (σ values are fixed at 0.1)

Distance (k) Residue numbers mk (Å)
1 47, 330 39.875078
2 174, 401 41.78273
3 174, 466 37.278798
4 86, 432 41.883655
5 141, 432 36.666667
6 141, 438 28.412256
7 141, 500 43.81818
8 201, 364 44.585633

S38



References

(S1) Yin, Y.; He, X.; Szewczyk, P.; Chang, G. Structure of the Multidrug Transporter EmrD

from Escherichia coli. Science 2006, 312, 741–744.

(S2) Sun, L.; Zeng, X.; Yan, C.; Sun, X.; Gong, X.; Rao, Y.; Yan, N. Crystal Structure of a

Bacterial Homologue of Glucose Transporters GLUT1-4. Nature 2012, 490, 361–366.

(S3) Dang, S.; Sun, L.; Huang, Y.; Lu, F.; Liu, Y.; Gong, H.; Wang, J.; Yan, N. Structure of

a Fucose Transporter in an Outward-Open Conformation. Nature 2010, 467, 734–738.

(S4) Fowler, P. W.; Orwick-Rydmark, M.; Radestock, S.; Solcan, N.; Dijkman, P. M.;

Lyons, J. A.; Kwok, J.; Caffrey, M.; Watts, A.; Forrest, L. R.; Newstead, S. Gat-

ing Topology of the Proton-Coupled Oligopeptide Symporters. Structure 2015, 23,

290–301.

(S5) Doki, S.; Kato, H. E.; Solcan, N.; Iwaki, M.; Koyama, M.; Hattori, M.; Iwase, N.;

Tsukazaki, T.; Sugita, Y.; Kandori, H.; Newstead, S.; Ishitani, R.; Nureki, O. Structural

Basis for Dynamic Mechanism of Proton-Coupled Symport by the Peptide Transporter

POT. Proc. Natl. Acad. Sci. USA 2013, 110, 11343–11348.

(S6) Lyons, J. A.; Parker, J. L.; Solcan, N.; Brinth, A.; Li, D.; Shah, S. T.; Caffrey, M.;

Newstead, S. Structural Basis for Polyspecificity in the POT Family of Proton-Coupled

Oligopeptide Transporters. EMBO Rep. 2014, 15, 886–893.

(S7) Parker, J. L.; Li, C.; Brinth, A.; Wang, Z.; Vogeley, L.; Solcan, N.; Ledderboge-

Vucinic, G.; Swanson, J. M. J.; Caffrey, M.; Voth, G. A.; Newstead, S. Proton Movement

and Coupling in the POT Family of Peptide Transporters. Proc. Natl. Acad. Sci. USA

2017, 114, 13182–13187.

(S8) Minhas, G. S.; Bawdon, D.; Herman, R.; Rudden, M.; Stone, A. P.; James, A. G.;

S39



Thomas, G. H.; Newstead, S. Structural Basis of Malodour Precursor Transport in the

Human Axilla. eLife 2018, 7 .

S40


