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Figure S1. Classification of IRGs according to insulin sensitivity and response time, Related to 
Figure 2. (A) Definition of the upregulated and downregulated IRGs. (B) Definition of Pt value, an index 
of expression variation (left), and AUC_ratio, an index of response (right). (C) Distribution of Pt values 
and AUC_ratios in the upregulated IRGs (red dots) and downregulated IRGs (blue dots). Gray dots 
indicate the IRGs defined as neither upregulated nor downregulated IRGs. Horizontal and vertical dashed 
lines indicate thresholds of Pt values and AUC_ratios, respectively. (D) Distribution of the EC50 and T1/2 

values estimated for the upregulated (red dots) and downregulated IRGs (blue dots). Vertical and 
horizontal dashed lines indicate the thresholds of the EC50 and T1/2 values, respectively. 



 

Figure S2. Positive predictive values of the predicted TFs, Related to Figure 2. We validated the 
matching of TFs to IRGs with ChIP-Atlas (http://chip-atlas.org), which is a database of chromatin 
immunoprecipitation sequencing (ChIP-seq) data. We used ChIP-seq data related to mouse transcription 
factors, instead of rat transcription factors, because the available rat data was too limited. Extracted data 
from ChIP-Atlas were not limited to only liver or hepatocytes. We regarded the TFs identified for each 
IRG from ChIP-Atlas as positive examples. We calculated positive predictive values (PPVs) of the 
predicted TFs for each IRG. The PPV was calculated for each upregulated (upper) and downregulated 
IRG (lower) from the frequency of occurrence of the predicted TF at the IRG in ChIP-seq data 



 

Figure S3. Classification of the signaling proteins, TFs and protein synthesis-related factors, 
according to insulin sensitivity and response time, Related to Figure 3. (A) Number of the proteins 
in the KEGG signaling pathways. The light gray bars indicate the total numbers of proteins and the dark 
gray bars indicate the numbers of phosphoprotein included in each signaling pathway. (B) Distribution 
of the EC50 and T1/2 values estimated for the signaling proteins (red), the TFs (blue), and the protein 
synthesis-related factors (green). Dashed lines indicate the thresholds of the EC50 (left) and T1/2 (right) 
values. (C) All Western blot data for three independent experiments are shown. IS indicates internal 
standard. Antibodies recognized the indicated protein or protein phosphorylated at the residues indicate. 
Residue number is human. (D) Relative amount of new protein synthesis based on the incorporation of 
puromycin into newly synthesized proteins at the indicated dose of insulin stimulation. Data are 
normalized to those at 0.01 nM insulin stimulation. The means and SEMs of four independent 
experiments are shown. Dashed line indicates the EC50 value. 



 



Figure S4. Classification of the IRMs according to insulin sensitivity and response time, Related to 
Figure 4. (A) Distribution of Pt values and AUC_ratios in the increased IRMs (red dots) and decreased 
IRMs (blue dots). Gray dots indicate the IRMs defined as neither increased nor decreased. Vertical 
dashed lines indicate the threshold of AUC_ratios. (B) Distribution of the EC50 and T1/2 values calculated 
for the IRMs. Vertical and horizontal dashed lines indicate the thresholds of the EC50 and T1/2 values, 
respectively. (C) Allosteric regulation by the allosteric effectors in Class 1 and Class 4 in Figure S2B 
projected onto the KEGG metabolic pathways (upper) and schemes (lower). Arrows on the KEGG 
metabolic pathways indicate whether an IRM increased or decreased by insulin stimulation. The colors 
of the box outlines and the labels indicate the classes classified by the EC50 and T1/2 values of the IRMs: 
Dark blue, Class 1; cyan, Class 2; red, Class 3; magenta, Class 4. In the schemes, the reactions regulated 
by allosteric effectors were colored in red (activation), blue (inhibition), and black (not regulated). The 
IRM text color indicated the classes of the IRMs in the schemes. Because the activities of the metabolic 
enzymes are regulated by allosteric effectors (activators or inhibitors) that are metabolites, such effectors 
that are IRMs and change in response to insulin stimulation is a key modulatory mechanism of the 
metabolic network (Yugi and Kuroda, 2018; Yugi et al., 2014). Therefore, we extracted the information 
of allosteric regulation mediated by the IRMs from BRENDA database, and classified the allosteric 
regulation into four classes according to the EC50 and the T1/2 values of allosteric effectors and mapped 
to KEGG metabolic pathway. We identified marked changes of allosteric regulation related to amino 
acid degradation pathway. For Class1, the pathways related to amino acids degradation and ornithine 
cycle were activated. These results were supported by fast decrease in most of the amino acids in 
response to basal insulin stimulation. For Class4, glutamate dehydrogenase and ornithine cycle were 
inhibited. (D) Enzymatic reactions of metabolic enzymes encoded by IRGs projected on the KEGG 
metabolic pathways. Arrows indicate whether an IRG increased or decreased by insulin stimulation. 
IRG text color indicates the Class of the IRGs, and reactions are colored to match the class of the 
associated IRG: blue, Class 1; cyan, Class 2; red, Class 3; green, IRGs not included in upregulated or 
downregulated IRGs. 
 
 
 
 
 
 



 

Figure S5. Representative pathways of the selective trans-omic network, Related to Figure 6. 
Akt-Foxo-downregulated genes (left) and Erk-IEG-upregulated genes (right), as representative pathways 
of the selective trans-omic network by basal and induced insulin stimulation, respectively. The molecules 
in Akt-Foxo-downregulated genes pathway, including Akt (signaling factor), Foxo1 (TF), G6pase (gene) 
and G6P (metabolite) pathway respond to basal insulin stimulation. The majority of molecules in Erk-
IEG-upregulated genes pathway, including Erk (signaling factor), Creb (TF), Egr1 (gene), Egr1 (TF) and 
Actg1 (gene) pathway respond to induced insulin stimulation. “Trans-omics” indicates the steps for 
integration of two layers in Figure 1B. “Functional relationship” indicates the relationship between 
molecules in biological function.  

 



 
Figure S6. in vivo Validation of the selective trans-omic network by high- and low-doses of insulin 
injection, Related to Figure 6. (A) AUCs calculated from the time courses of mean intensities in response 
to each dose of insulin injected. AUCs in response to 2 and 20 μM insulin injection were normalized by 
those with the mean intensities without insulin injection. (B) AUCs calculated from the time courses of 
mean relative expression in response to each dose of insulin injected. The AUCs in response to 2 and 20 
μM insulin injection were normalized by those with the mean relative expression without insulin injection. 
In A and B, an AUC above the uninjected sample indicates an increase in abundance; an AUC below the 
uninjected sample indicates a decrease in abundance. Text color indicates if the protein or gene responded 
to basal or induced insulin signaling in FAO cells. (C) All Western blot data are shown. 



 
Scheme S1. Scheme of procedures for trans-omic network construction, Related to Figure 1. The 
trans-omic network was constructed in four main steps (Step I-IV) by defining five layers based on 
phosphoproteomic, transcriptomic, and metabolomic data, and connecting between the layers. The 
detailed procedures can be found in Methods. 



Table S1. Classification of insulin-responsive genes (IRGs), Related to Figure 2. 

  



Table S2. Enrichment analysis of IRGs classified according to the sensitivity and time 

constants, Related to Figure 2. 

  



Table S3. Prediction of transcription factors (TFs) for each class of IRGs, Related to 

Figure 2. 

  



Table S4. Pathway over-representation analysis using insulin-responsive 

phophoproteins (IRpPs), Related to Figure 3. 

  



Table S5. Classification of signaling proteins, transcription factor, and protein-synthesis 

related factors, Related to Figure 3 

Name Function EC50 (nM) T1/2 (min) Class 

pGsk3β Signaling protein 0.2362  2.7308  Class 1 

pp38 Signaling protein 0.0649  2.5000  Class 1 

pS6k Signaling protein 0.2158  7.2863  Class 1 

pTsc2 Signaling protein 0.0972  3.0700  Class 1 

pAmpk Signaling protein 0.1306  58.6959  Class 2 

pAkt (S473) Signaling protein 3.4715  2.6472  Class 3 

pAkt (T308) Signaling protein 4.5216  2.6716  Class 3 

pErk Signaling protein 1.1824  2.5000  Class 3 

pIrs1 (Y612) Signaling protein 1.5696  4.0356  Class 3 

pIrs1 (Y632) Signaling protein 0.7986  2.6141  Class 3 

pJnk Signaling protein 8.8729  19.6254  Class 3 

pAtf2 Transcription factor 0.2231  5.4705  Class 1 

pCreb Transcription factor 0.2283  2.7301  Class 1 

pFoxo1 Transcription factor 0.4154  7.9761  Class 1 

pJun Transcription factor 3.6857  26.7482  Class 3 

Jun Transcription factor 4.0469  60.1416  Class 4 

Egr1 Transcription factor 4.6078  45.7199  Class 4 

Hes1 Transcription factor 6.6499  74.7393  Class 4 

peIF4ebp1 Protein-synthesis related factor 0.0791  15.6366  Class 1 

peIF4b Protein-synthesis related factor 0.4978  11.3228  Class 1 

pS6 Protein-synthesis related factor 0.1263  19.5381  Class 1 

  



Table S6. Time series of metabolome data in response to insulin stimulation, Related to 

Figure 4. 

  



Table S7. Classification of insulin-responsive metabolites (IRMs), Related to Figure 4. 

  



Table S8. Identification of allosteric regulators, Related to Figure 4. 

  



Table S9. Identification of responsible metabolic enzymes, Related to Figure 4. 

  



Table S10. Primer sequences used for qRT-PCR measurements, Related to Figure 6. 

Gene name Forward Reverse 

B3galt1 AATGGCGGGCCAATCAG CAGGGTACAAATCCCTAGGCATA 

Creb3l2 TGGTCGTTGTGCTTTGCTTT GATACAGCCCGTAGCCTTGAAA 

Creb3l3 TGGATCCGCTAACGTTGCA GCCCCTCGCCTTGCTT 

Egr1 GACCACAGAGTCCTTTTCTGA TCACAAGGCCACTGACTAGG 

Ehhadh TCCGGGCAGGCTAAAGC TGACCACTTATTTGCAGACTTTTCA 

G6pase CAGCCCGTGTAATGAGTAGC GATGAGTCCTATGGCACGCAGACCT 

Hes1 CAACACGACACCGGACAAAC CGGAGGTGCTTCACTGTCAT 

Hmgcr CTGGGCCCCACGTTCA ATGGTGCCAACTCCAATCACA 

Jun TGGGCACATCACCACTACAC GGGCAGCGTATTCTGGCTAT 

Lpin1 CCGTGTCATATCAGCAATTTGC GACCACGAGGTTGGGATCAT 

Mat2a CTTGGTTACGCCCAGATTCTAAA CACAGCACCTCGATCTTGCA 

Msmo1 TCACGATTTCCACCACATGAA TGTCCCACCACGTGAAGGT 

Pck1 CGCTATGCGGCCCTTCT AGCCAGTGCGCCAGGTACT 

Srf CACGACCTTCAGCAAGAGGAA CAGCGTGGACAGCTCATAAGC 

Upp2 TGGTGGGAGCTCGAACAGA AACCCGAGTTCCTTGTGCAT 

  



Table S11. Details of resources, Related to Figure 6. 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Anti-Phospho-Irs Tyr612 Abcam 
Cat#ab66153;  

RRID:AB_1140753 

Anti-Phospho-Irs Tyr632 Santa Cruz 
Cat#SC17196; 

RRID:AB_669445 

Anti-phospho-Akt Ser473 
Cell signaling 

technology 

Cat#4060; 

RRID:AB_2315049 

Anti-Phospho-Akt Thr308 
Cell signaling 

technology 

Cat#9275; 

RRID:AB_329828 

Anti-Phospho-S6k Thr389 
Cell signaling 

technology 

Cat#9205; 

RRID:AB_330944 

Anti-Phospho-Gsk3β Ser9 
Cell signaling 

technology 

Cat#9336; 

RRID:AB_331405 

Anti-Phospho-Erk1/2 Thr202/Tyr204 
Cell signaling 

technology 

Cat#9101; 

RRID:AB_331646 

Anti-Phospho-p38 Thr180/Tyr182 
Cell signaling 

technology 

Cat#9211; 

RRID:AB_331641 

Anti-Phospho-Sapk/Jnk Thr183/Tyr185 
Cell signaling 

technology 

Cat#4668; 

RRID:AB_2307320 

Anti-Phospho-Ampkα Thr172 
Cell signaling 

technology 

Cat#2531; 

RRID:AB_330330 

Anti-Phospho-Tsc2 Thr1462 
Cell signaling 

technology 

Cat#3617; 

RRID:AB_490956 

Anti-Phospho-Foxo1 Ser256 
Cell signaling 

technology 

Cat#9461; 

RRID:AB_329831 

Anti-Phospho-Creb Ser133 
Cell signaling 

technology 

Cat#9191; 

RRID:AB_331606 

Anti-Phospho-Atf2 Thr71 
Cell signaling 

technology 

Cat#9221; 

RRID:AB_2561045 

Anti-Phospho-c-Jun Ser73 
Cell signaling 

technology 

Cat#3270; 

RRID:AB_2129572 



Anti-Egr1 
Cell signaling 

technology 

Cat#4154; 

RRID:AB_2097035 

Anti-c-Jun 
Cell signaling 

technology 

Cat#9165; 

RRID:AB_2130165 

Anti-HES1 
Cell signaling 

technology 
Cat#11988 

Anti-Phospho-S6 Ser235/236 
Cell signaling 

technology 

Cat#2211; 

RRID:AB_331679 

Anti-Phospho-4eIf4ebp1 Ser65 
Cell signaling 

technology 

Cat#9451; 

RRID:AB_330947 

Anti-Phospho-eIf4b Ser422 
Cell signaling 

technology 

Cat#3591; 

RRID:AB_10080112 

Anti-Rabbit IgG, Peroxidase-conjugated GE Healthcare 
Cat#NA9340V; 

RRID:AB_772206 

Anti-Mouse IgG, Peroxidase-conjugated GE Healthcare 
Cat#NXA931; 

RRID:AB_772209 

Anti-Goat IgG, Peroxidase-conjugated Sigma-Aldrich 
Cat#A-5420; 

RRID:AB_258242 

Anti-Puromycin Kerafast 
Cat#EQ0001 

RRID:AB_2620162 

Chemicals, Peptides, and Recombinant Proteins 

Human Insulin SIGMA Cat#12643-50MG 

Deposited Data 

Raw phosphoproteome data Yugi et al, 2014 S0000000476 

Raw RNA-seq data Sano et al., 2016 DRA: DRA004341 

Experimental Models: Cell Lines 

Rat hepatoma cell lines 
Laboratory of Shinya 

Kuroda 
RRID:CVCL_0269 

 

 

 



Software and Algorithms 

Kyoto Encyclopedia of Genes and Genomes 

(KEGG) 
Kanehisa et al., 2017 

http://www.kegg.jp/; 

RRID:SCR_012773 

NetPhorest 
Miller et al., 2008; 

Horn et al., 2014 
http://netphorest.info/ 

bioDBnet Mudunuri et al., 2009 
https://biodbnet-

abcc.ncifcrf.gov/ 

VANTED Junker et al., 2006 

https://immersive-

analytics.infotech.mo

nash.edu/vanted/; 

RRID:SCR_001138 

enoLOGOS Workman et al., 2005 

http://biodev.hgen.pitt

.edu/cgi-

bin/enologos/enologo

s.cgi 

iceLogo Colaert et al., 2009 

http://iomics.ugent.be

/icelogoserver/index.

html 

TRANSFAC Pro Matys et al., 2006 

http://www.gene-

regulation.com/pub/d

atabases.html#transf

ac; 

RRID:SCR_005620 

Match Kel et al,. 2003 

http://gene-

regulation.com/pub/p

rograms.html 

BRENDA 
Schomburg et al., 

2013 

http://www.brenda-

enzymes.org; 

RRID:SCR_002997 

  



Transparent Methods 

 

Step I: Connection of the IRGs and the TFs 

FAO Rat Hepatoma Cells  

Rat FAO hepatoma cells (RRID:CVCL_0269, male) were seeded at a density of 3 × 106 cells 

per dish on 6-cm dishes (Corning) or 1.3 × 106 cells per well on six-well plates (Iwaki) and 

cultured in RPMI 1640 supplemented with 10% (v/v) fetal bovine serum at 37ºC under 5% 

CO2 for 2 days before deprivation of serum (starvation). The cells were washed twice with 

phosphate-buffered saline (PBS) and starved for 16 hours in serum-free medium including 

0.01 nM insulin (Sigma-Aldrich) and 10 nM dexamethasone (Wako), which increases the 

expression of gluconeogenesis genes, such as G6pase and Pck1 (Lange et al., 1994). We 

continuously added 0.01 nM insulin before the stimulation, and 0.01 nM insulin was present 

throughout the experiments unless otherwise specified to mimic in vivo basal secretion during 

fasting (Polonsky et al., 1988). The medium was changed at 4 and 2 hours before the 

stimulation. Cells were stimulated with the indicated doses of insulin.  

 

Identification of the IRGs 

In this study, we used published datasets of the RNA-sequence (RNA-seq) (DDBJ: 

DRA004341) (Sano et al., 2016) of a time series of insulin stimulation of FAO cells 

(RRID:CVCL_0269, male). FAO cells were stimulated with 0.01, 1, and 100 nM insulin for 

0, 15, 30, 60, 90, 120, and 240 min. In our previous study (Sano et al., 2016), the fragments 

per kilobase of transcript per million mapped reads (FPKM) values were calculated using 

Cufflinks (Trapnell et al., 2009, 2012), and 490 differentially expressed transcripts were 

identified using Cuffdiff (Trapnell et al., 2009, 2012). Among the genes corresponding to 

these 490 differentially expressed transcripts, the 433 genes, of which FPKM values were 

calculated at all time points, were defined as IRGs. 

 

Definition of upregulated and downregulated IRGs 

The fold changes of FPKMs against those at 0 min were calculated for each IRG. The fold 

changes were logarithmically transformed to make the range of upregulation and 

downregulation comparable, and the logarithms were normalized between 0 and 1 to exclude 

the influence of constitutive expression. We defined the Pt value as an index of expression 



variation by taking the sum of the absolute values of the differences in the slopes at specific 

time points and at earlier or later time points, in response to 0.01 nM and 100 nM insulin 

stimulation (Figure S1B). A smaller Pt value indicates that the time series of gene expression 

has less variability. We defined AUC_ratio as an index of response by taking the ratio of AUC 

in response to 100 nM and that in response to 0.01 nM insulin (Figure 1C). The larger the 

absolute value of the AUC_ratio indicates that the response to insulin is larger. Here, genes 

with a Pt value larger than 0.2 were excluded from IRGs because of low quality of 

quantification. Among the IRGs with Pt values that were less than 0.2, those with an 

AUC_ratio of more than 20.5 were defined as upregulated IRGs, and those with an AUC_ratio 

of less than 2-0.5 were defined as downregulated IRGs (Table S1). 

 

Calculation of the EC50 and the T1/2 values 

EC50 was defined as the dose of insulin that gives the 50% of the maximal AUC of time series 

of responses (Figure 1C). A smaller EC50 indicates a higher sensitivity to insulin dose. To 

exclude the influence of variability in response over time, we used the AUC of the time 

courses in response to each dose of insulin to calculate EC50. T1/2 was defined as the time 

when the response reached 50% of the peak amplitude (Figure 1C). A smaller T1/2 indicates 

a faster response. The T1/2 values for the IRGs, the IRMs, and proteins were calculated from 

the time course in response to 100 nM insulin stimulation. The distributions of the EC50 and 

T1/2 values for IRGs under various thresholds of Cuffdiff (FDR < 0.01, 0.03, 0.05, 0.07, and 

0.10; default: FDR < 0.05) were compared to confirm that the distributions of the EC50 and 

the T1/2 were stable. 

 

Wilcoxon rank sum test 

Statistical comparisons of the medians of the EC50 and T1/2 values between the upregulated 

and downregulated IRGs or between the increased and decreased IRMs were performed 

using Wilcoxon rank sum test (Gibbons and Chakraborti, 2011; Hollander et al., 2015). The 

p values were adjusted for multiple testing with the Benjamini-Hochberg correction 

(Bonferroni, 1936) using MATLAB function mafdr. 

 

 

 



Classification of the IRGs 

To characterize the upregulated and the downregulated IRGs by sensitivities and time 

constants against insulin stimulation, we used EC50 and the T1/2 values. For the distributions 

of the EC50 and the T1/2 values estimated based on the transcriptomic data, we determined the 

thresholds dividing high or low sensitivity and fast or slow responses using Otsu’s method 

(Otsu, 1979). Using the thresholds, we classified the upregulated or the downregulated IRGs 

into four classes: Class 1, high sensitivity (EC50 < threshold) and fast response (T1/2 < 

threshold) and; Class 2, high sensitivity and slow response (T1/2 > threshold); Class 3, low 

sensitivity (EC50 > threshold) and fast response, and Class 4, low sensitivity and slow 

response. 

 

Functional Enrichment Analysis 

The functions of the IRG sets classified by the time constants (fast and slow responsive) or 

the sensitivity (high and low sensitive) were statistically determined using the DAVID tool 

(https://david.ncifcrf.gov/home.jsp) (Huang et al., 2009b, 2009a), by examining Gene 

ontology (GO) of biological process (GOTERM_BP_DIRECT), cellular component 

(GOTERM_CC_DIRECT), and molecular function (GOTERM_MF_DIRECT), and KEGG 

pathways (KEGG_PATHWAY). Whole rat genome was used as the background (default). 

The p values were adjusted for multiple testing with the Benjamini-Hochberg correction 

(Bonferroni, 1936) using MATLAB function mafdr. 

 

Inference of TFs regulating each IRGs 

We predicted the TFs that regulate the expression of the classified IRGs by TF binding motif 

prediction and motif enrichment analysis. The flanking regions around the major 

transcription start site of each IRG were extracted from Rnor_5.0 (Ensembl, release 73) using 

Ensembl BioMart (Kinsella et al., 2011). We considered the genomic regions from -300 bp 

to +100 bp of the consensus transcription start sites as the flanking regions, according to the 

FANTOM5 time course analysis (Arner et al., 2015). We predicted the TF binding motifs that 

can bind to each flanking region using a TF database, TRANSFAC Pro (Matys et al., 2006), 

and Match, a TF binding motifs prediction tool. We used extended 

vertebrate_non_redundant_min_SUM.prf, one of the parameter sets prepared in TRANSFAC 

Pro for the threshold of similarity score calculated by Match. Because some of the TFs known 

to be regulated by insulin, including Foxo1, are not included in this parameter set, we 



extracted from vertebrate_non_redundant.prf the TF binding motifs that were not included 

in vertebrate_non_redundant_min_SUM.prf but were present in TFs included in KEGG 

insulin signaling pathway (rno4910), and we appended these TF binding motifs and their 

parameters to vertebrate_non_redundant_min_SUM.prf. The binding sites within each 

flanking region were predicted using Match with the extended 

vertebrate_non_redundant_min_SUM.prf.  

 

Motif Enrichment Analysis 

The upregulated and the downregulated IRGs were classified into four classes according to 

individually estimated EC50 and T1/2 values, and enrichment of binding sites of TF binding 

motifs in each class was determined using motif enrichment analysis. The enrichment of TF 

binding motif binding sites in the flanking regions of IRGs in each class were determined by 

Fisher’s exact test (Fisher, 1922) with FDR using Storey’s procedure (Storey et al., 2004). 

The TFs related to significantly enriched TF binding motifs (FDR < 0.1) were identified as 

the TFs regulating IRGs in each class. 

 

Confirmation of the TF predictions using data from the ChIP-Seq Atlas 

The genomic regions from ±1000 bp of the consensus transcription start sites as the flanking 

regions of genes interest bind with the TFs at one or more datasets were defined as target 

genes for each TF. ChIP-Atlas includes the major TFs in insulin signaling such as Foxo1, 

Creb1, Egr1, and Hes1. Note that some TFs, such as Foxo1, are not included in the datasets 

in the liver or hepatocytes. 

 

Step II: Connection of the TFs and the signaling layer 

Identification of the IRpPs 

In this study, we used published datasets of the quantitative phosphoproteome (JPOST: 

S0000000476) (Yugi et al., 2014) of a time series of insulin stimulation of FAO cells. FAO 

cells were stimulated with 1 nM insulin for 0, 2, 5, 10, 30, 45, and 60 min. Cell lysate digested 

with LysC and trypsin were subjected to Fe-IMAC and iTRAQ labeling for the enrichment 

of phosphopeptides and quantification by mass spectrometry. All samples were analyzed with 

a QSTAR Elite (AB Sciex) instrument equipped with a Paradigm MS4 HPLC pump and 

HTC-PAL autosampler (CTC Analytics AG). The peak lists were generated using Analyst 



Mascot.dll v1.6b27 (AB SCIEX). A MASCOT search was performed with the following 

parameter settings: Trypsin as the enzyme used; the allowed number of missed cleavages as 

2; iTRAQ label at the NH2-terminus, Lys, and carbamidomethylation of Cys as fixed 

modifications; oxidized Met, iTRAQ label on Tyr, pyroglutamination of NH2-terminal Glu 

or Gln, and phosphorylation on Ser, Thr, and Tyr as variable modifications; precursor mass 

tolerance as 100 ppm; and tolerance of MS/MS ions as 0.2 Da. Assigned rank 1 peptide 

sequences (MASCOT score >20) were extracted. Evaluation of phosphorylation sites were 

performed at a post-MASCOT search with in-house script. Because the phosphoproteome 

data consists of two different time series from two separate experiments (0, 5, 10, and 45 min 

and 2, 10, 30, and 60 min), some of the phosphopeptides were identified and quantified in 

data from only one of the time series. Therefore, we calculated a fold change of 

phosphorylation intensity as a ratio of the phosphorylation intensity at each time point to the 

phosphorylation intensity at t = 0 or 2 min. A phosphopeptide with a phosphorylation 

intensity greater than a 1.5-fold increase or less than a 0.67-fold decrease at more than one 

time point was defined as a quantitatively changed phosphopeptide. We obtained 3,288 

phosphopeptides that changed in response to insulin stimulation and defined the proteins 

including the phosphopeptides as insulin-responsive phosphoproteins (IRpPs).  

 

Over-representation analysis of the IRpPs 

We performed over-representation analysis of the IRpPs in signaling pathways, which were 

the pathways in KEGG database including the character string of “signaling pathway” in 

their names. To define the signaling layer, we integrated the 15 signaling pathways in which 

the IRpPs were significantly over-represented, and then removed the proteins for which 

transcripts were not expressed in FAO cells (Sano et al., 2016) and those that are not located 

in downstream of InsR (Figure 3A). The identifiers of the IRpPs provided as IPI (Kersey et 

al., 2004) were converted to KEGG gene identifiers using bioDBnet (Mudunuri et al., 2009). 

Over-representation of the IRpPs in each signaling pathway was determined by Fisher’s exact 

test (Fisher, 1922) with FDR using Storey’s procedure (Storey et al., 2004). The signaling 

layer was constructed by integrating the significantly over-represented signaling pathways 

(FDR < 0.1). 

 

 

 



Identification of signaling proteins regulating the TFs 

Using the accession numbers from TRANSFAC, we associated the significantly enriched TF 

binding motifs with TFs using the correspondence obtained from matrix.dat in TRANSFAC 

Pro. The accession numbers of TFs provided in TRANSFAC Pro are associated with the gene 

IDs for DATF, EMBL, FLYBASE, MIRBASE, PATHODB, PDB, SMARTDB, SWISSPROT, 

TRANSCOMPEL, or TRANSPATH. To identify regulators of the TFs, the gene IDs of 

EMBL, PDB, or SWISSPROT that were associated with the accession numbers of human, 

mouse, and rat TF were converted to KEGG gene IDs using bioDBnet (https://biodbnet-

abcc.ncifcrf.gov/) (Mudunuri et al., 2009). We manually determined the upstream molecules 

of the TFs from the pathway information of KEGG, and except for those in the diseases 

related pathways (rno05XXX), these were defined as regulators. The regulators included in 

the signaling layer were extracted and connected to the predicted TFs. 

 

Western blotting of signaling proteins and TFs 

We measured the abundance or phosphorylation status of the predicted TFs and the signaling 

proteins in the signaling layer using Western blotting. The FAO cells were washed with ice-

cold PBS and proteins were extracted with 50 mM Tris-Cl pH 8.8 + 1% SDS at the indicated 

times after insulin stimulation. The lysates were sonicated and centrifuged at 12,000 × g at 4 

ºC for 15 min to remove debris. Total protein concentration of the resulting supernatants was 

determined with the bicinchoninic acid assay (Thermo Fisher Scientific) and adjusted to 0.75 

mg/mL. Equal amounts of total protein were loaded for SDS-PAGE followed by Western 

blotting with the antibodies recognizing the indicated proteins or phosphoproteins. Band 

intensities were measured by using TotalLab Quant software (Nonlinear Inc.). Lysate mixture 

of FAO cells stimulated with or without 100 nM insulin for 5 min was used as an internal 

standard to normalize the band intensities for each membrane. 

 

Classification of the signaling proteins and the TFs 

To characterize the signaling molecules and the TFs by sensitivities and time constants for 

insulin stimulation, we classified these using the EC50 and the T1/2 values, as with the 

upregulated and the downregulated IRGs. For the distributions of the EC50 and the T1/2 values 

from Western blotting data, we determined the thresholds dividing high or low sensitivity 

and fast or slow responses using Otsu’s method (Otsu, 1979). Using the thresholds, we 

classified the signaling molecules and the TFs into four classes: Class 1, high sensitivity 



(EC50 < threshold) and fast response (T1/2 < threshold) and; Class 2, high sensitivity and slow 

response (T1/2 > threshold); Class 3, low sensitivity (EC50 > threshold) and fast response, and 

Class 4, low sensitivity and slow response. 

 

Measurement of protein synthesis 

Protein synthesis was measured as described (Aviner et al., 2014). Briefly, cells were 

stimulated with the indicated doses of insulin for 3 hours, and 1 μM puromycin was added 

for the last 2 hours. Cells were washed with ice-cold PBS and proteins were extracted with 

50 mM Tris-Cl pH 8.8 including 1% SDS at 3 hours after insulin stimulation. The lysates 

were sonicated and centrifuged at 12,000 × g at 4 ºC for 15 min to remove debris. Total 

protein concentration of the resulting supernatants was determined with the bicinchoninic 

acid assay (Thermo Fisher Scientific) and adjusted to 0.75 mg/mL. Equal amounts of total 

protein were loaded for SDS-PAGE followed by Western blotting with the antibodies to 

puromycin. All band intensities were measured by using TotalLab Quant software (Nonlinear 

Inc.) and summed. The values were normalized with cells stimulated with that at 0.01 nM 

insulin. 

 

Step III: Connection of the IRMs and the IRGs of metabolic enzymes 

Metabolomic analysis 

The FAO cells were washed at the indicated times after insulin stimulation with 4 mL ice-

cold 5% mannitol twice and metabolites were extracted with 1 mL of ice-cold methanol that 

included the reference compounds [25 μM L-methionine sulfone (Wako), 25 μM 2-

Morpholinoethanesulfonic acid, monohydrate (Dojindo), and 25 μM D-Camphor-10-sulfonic 

acid (Wako)] for normalization of peak intensities of mass spectrometry among samples. The 

resulting supernatant (400 μL) was sequentially mixed with 200 μL of water and 400 μL of 

chloroform and then centrifuged at 12,000 × g for 15 min at 4ºC. The separated aqueous layer 

was filtered through a 5 kDa cutoff filter (Millipore) to remove proteins. The filtrate (320 

μL) was lyophilized and dissolved in 50 μL water including reference compounds [200 μM 

each of trimesate (Wako) and 3-aminopyrrolidine (Sigma-Aldrich)] for migration time and 

then injected into the capillary electrophoresis time-of-flight mass spectrometry (CE-

TOFMS) system (Agilent Technologies) (Ishii et al., 2007; Soga et al., 2006, 2009). 

 



Identification of the IRMs 

We obtained metabolomic data with nine doses of insulin over a time course of 240 min. We 

identified IRMs based on the metabolomic data by comparing three factors: temporal changes 

of metabolites against the value at 0 min, changes in response to 0.01 and 100 nM insulin 

stimulation at each time point, and the data acquired on different days (n=3). Response of 

each metabolite to insulin doses was determined by three-way analysis of variance (ANOVA) 

comparing three factors: temporal changes of metabolites against the value at 0 min, 

responses to 0.01 and 100 nM insulin stimulation at each time points, and the data acquired 

on different days (n=3). The fold change of abundance of metabolites relative to the mean 

abundance at 0 min was calculated for each metabolite. We calculated log2 values of the fold 

changes so that ranges of increased and decreased IRMs become comparable. We performed 

three-way ANOVA with insulin doses (0.01 and 100 nM), time points after insulin stimulation 

(0, 5, 15, 30, 60, 90, 120, and 240 min), and data sets using the logarithmic values of fold 

changes. The p values against insulin doses were calculated and the FDR for each metabolite 

was calculated by Storey’s procedures (Storey et al., 2004). The λ value to calculate FDR 

was set to 0.8 with reference to the distribution of p values. The metabolites showing 

significance (FDR < 0.1) were defined as IRMs. 

 

Definition of the increased and the decreased IRMs 

Increased and decreased IRMs were defined using the same procedure that we used to 

identify the upregulated and downregulated IRGs. For each IRM, the fold change in the 

abundance of metabolites at each time point relative to the mean abundance at 0 min was 

calculated. We calculated log2 values of the fold changes so that the ranges of increased and 

decreased IRMs were comparable. The logarithmic values of fold change were normalized 

between 0 and 1, and the AUC_ratio was determined as the ratio of AUC with 100 nM insulin 

to AUC with 0.01 nM stimulation. The metabolites with an AUC_ratio of more than 20.5 were 

defined as increased IRMs, and those with the AUC_ratio of less than 2-0.5 were defined as 

decreased IRMs. 

 

Classification of the increased and the decreased IRMs 

To characterize the increased and the decreased IRMs by sensitivities and time constants 

against insulin stimulation, we used the EC50 and the T1/2 values, as with the upregulated and 

the downregulated IRGs. For the distributions of the EC50 and the T1/2 values calculated from 



the metabolomic data, we determined the thresholds dividing high or low sensitivity and fast 

or slow responses using Otsu’s method (Otsu, 1979). Using the thresholds, we classified the 

increased or the decreased IRMs into four classes: Class 1, high sensitivity (EC50 < threshold) 

and fast response (T1/2 < threshold) and; Class 2, high sensitivity and slow response (T1/2 > 

threshold); Class 3, low sensitivity (EC50 > threshold) and fast response, and Class 4, low 

sensitivity and slow response. 

 

Identification of allosteric regulation 

Many metabolic enzymes are regulated allosterically by metabolites; therefore, we identified 

IRMs that function as allosteric regulators for metabolic enzymes using the BRENDA 

database, which is a database with information regarding allosteric effectors and their target 

enzymes (Schomburg et al., 2013). A metabolite can operate as an activator for some enzymes 

and as an inhibitor for others. We identified allosteric regulation for metabolic enzymes using 

procedures from Yugi et al., 2014. We obtained the entries for metabolic enzymes from the 

BRENDA database (http://www.brenda-enzymes.org) (Schomburg et al., 2013) and 

extracted their allosteric effector (activator and inhibitor) information, as reported for 

mammals (Bos Taurus, Felis catus, Homo sapiens, “Macaca”, “Mammalia”, “Monkey”, Mus 

booduga, Mus musculus, Rattus norvegicus, Rattus rattus, Rattus sp., Sus scrofa, “dolphin”, 

and “hamster”). Then, we associated the standard compound names of allosteric effectors 

used in BRENDA with metabolite names that were used in KEGG to obtain the KEGG 

compound ID related to each allosteric effector. We defined as “activating event”, if the 

amount increases for an allosteric effector that positively regulates the enzymatic activity or 

if the amount decreases for an allosteric effector that negatively regulates the enzymatic 

activity. We defined as “inhibitory event”, if the amount decreases for an allosteric effector 

that positively regulates the enzymatic activity or if the amount increases for an allosteric 

effector that negatively regulates the enzymatic activity. These “activating events” and 

“inhibitory events” were classified into four classes according to the sensitivity and time 

constant of the IRMs that are allosteric effectors and projected onto KEGG metabolic 

pathway (Figure S4C, Table S8). 

 

 

 

 



Step IV: Construction of the trans-omic network by insulin stimulation 

Identification of IRGs encoding metabolic enzymes 

The genes in the transcriptome data were annotated based on Rnor_5.0 (Ensembl, release 73), 

and the Ensembl gene identifiers of the IRGs were converted to KEGG gene identifiers using 

bioDBnet (https://biodbnet-abcc.ncifcrf.gov/) (Mudunuri et al., 2009). The genes encoding 

metabolic enzymes were defined as those included in metabolic pathways (rno01100), a 

global metabolic pathway of KEGG database. We determined 23 of the upregulated or 

downregulated IRGs encoded metabolic enzymes. 

 

 

Step V: in vivo validation of selective trans-omic networks by induced and basal insulin 

stimulation 

Sprague-Dawley rats (insulin-clamp) 

All rat studies were approved by the Kyushu University Institutional Animal Care and Use 

Committee. The Sprague-Dawley (SD) rats (RRID:RGD_1566457) (male, 10 week old) 

were purchased from Japan SLC Inc. After overnight fasting, we anesthetized rats with 

isoflurane. To suppress endogenous insulin secretion, we administered somatostatin through 

the jugular vein (3 μg/kg per min). Insulin was administered through the mesenteric vein at 

the indicated dose, maintaining the blood glucose concentration at a constant amount (150 

mg/dl). Blood was sampled at the indicated time points, and blood insulin amounts were 

measured using a rat insulin enzyme-linked immunosorbent assay kit (Shibayagi Co. Ltd.). 

At the indicated time points, the rats were killed, and the livers were immediately frozen with 

liquid nitrogen (Matveyenko et al., 2012). 

 

Western blotting for the insulin-clamped rat livers 

The insulin-clamped rats were killed at the indicated time points, and the livers were 

immediately frozen with liquid nitrogen (Matveyenko et al., 2012). The livers were washed 

with ice-cold PBS and proteins were extracted with 50 mM Tris-Cl pH 8.8 + 1% SDS at the 

indicated times after insulin injection. The lysates were sonicated and centrifuged at 12,000 

× g at 4 ºC for 15 min to remove debris. Total protein concentration of the resulting 

supernatants was determined with the bicinchoninic acid assay (Thermo Fisher Scientific) 

and adjusted to 0.75 mg/mL. Equal amounts of total protein were loaded for SDS-PAGE 



followed by Western blotting with the indicated antibodies. Band intensities were quantified 

by using TotalLab Quant software (Nonlinear Inc.). The Western blotting measurements were 

performed three times independently. Details of the antibodies are described in Table S11. 

 

Quantitative reverse transcription polymerase chain reaction (qRT-PCR) for the insulin-

clamped rats 

The insulin-clamped rats were killed at the indicated time points, and the livers were 

immediately frozen with liquid nitrogen (Matveyenko et al., 2012). The livers were harvested, 

and total RNA was isolated using RNeasy Mini Kit (Qiagen). Total RNA was reverse-

transcribed into cDNA using the QuantiTect Reverse Transcription Kit (Qiagen) according 

to the manufacturer’s protocol. qRT-PCR was performed as previously described (Kubota et 

al., 2012). Briefly, total RNA was extracted from the rat livers using RNeasy Mini Kit 

(Qiagen) and reverse-transcribed into complementary DNA (cDNA) using the High-Capacity 

RNA-to-cDNA Kit (Applied Biosystems) according to the manufacturer’s protocol. The 

cDNA samples were amplified using the Power SYBR Green PCR Master Mix (Applied 

Biosystems) and the 7300 Real-Time PCR system (Applied Biosystems) according to the 

manufacturer’s protocol. The primer sequences used in the qRT-PCR analysis are listed in 

Table S10. The qRT-PCR analyses were performed three times independently. 

 

Identification of low- and high-dose insulin responsive molecules and genes 

We tested the sensitivity of the rat liver response to insulin dose using data from the low-dose 

(2 μM) or high-dose (20 μM) insulin-clamped rats obtained by Western blotting and qRT-

PCR (Sano et al., 2016; Kubota et al., accepted). For Western blotting data, the intensities 

were normalized for each membrane with the mean of intensity of the samples from animals 

without insulin injection. For qRT-PCR data, we calculated the relative expression with the 

ΔCt method using the expression of 36B4 as a reference gene and normalized the values using 

the mean of the relative expression in samples from animals without insulin injection. We 

confirmed the increase or decrease of the measured molecules and genes using the corrected 

values. We classified as upregulated IRGs or increased in response to insulin those proteins 

(Western blot data) or genes (qRT-PCR data) for which the AUC values in response to high-

dose insulin injection were greater than 1 were used. We classified as downregulated IRGs 

or decreased in response to insulin those proteins or genes for which the AUC values in 

response to high-dose insulin injection were smaller than 1. The significance of the changes 



of the corrected values at each time points after insulin injection against those without insulin 

injection were tested by Welch’s t-test using ttest2 function in MatLab (version R2014a, 

MathWorks) with one-sided approach. For the Western blotting and qRT-PCR data for the 

upregulated IRGs, we tested the alternative hypothesis that the population mean of the 

intensities after insulin injection is greater than that of the intensities without insulin injection. 

For the qRT-PCR data for the downregulated IRGs, we tested the alternative hypothesis that 

the population mean of the intensities after insulin injection is smaller than that of the 

intensities without insulin injection. The FDR values were calculated by Storey’s procedure 

(Storey et al., 2004) using mafdr function in MatLab. The proteins and genes significantly 

changed (FDR < 0.1) at one and more time point in response to both of low- and high-dose 

insulin injection were defined as low-dose insulin responsive, and those significantly 

changed in response to only high-dose insulin injection were defined as high-dose insulin 

responsive. The proteins or genes regarded as “Other” include those not significantly changed 

at 2 or more time points or significantly changed in response to only low-dose insulin 

injection. We compared the classification of low- and high-dose insulin responsive in vivo to 

the basal and induced responses we obtained in FAO cells.  

 

 

Data Availability 

The raw phosphoproteome data generated in previous study (Yugi et al., 2014) and used in 

this study have been deposited in the JPOST under ID code S0000000476. The raw 

transcriptomic data generated in previous study (Sano et al., 2016) and used in this study 

have been deposited in the DDBJ under ID code DRA004341. Details are described in Table 

S11. 
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