1 Supp	lementary	Material	S
--------	-----------	----------	---

2 <u>List of Supplementary Materials</u>

- **3 Materials and Methods**
- 4 **References**

5 **Table S1**. Counts of denitrification traits and their co-occurrences in fungal genomes.

6 **Table S2**. Results from approximately unbiased tests for the monophyly of fungal classes within

7 *napA*, *nirK*, and *p450nor* gene trees. Where indicated, the monophyly of two lineages was also

8 assessed. Bold font data indicate that the AU test rejected the monophyly of the taxa. Test

9 significance was evaluated at $p \le 0.05$.

10 **Table S3**. Results from species-tree gene-tree reconciliation using NOTUNG software for *napA*,

11 *nirK*, and *p450nor* genes in fungi. Values are averages of solutions with standard deviations

12 reported in parentheses.

Table S4. Predicted horizontal gene transfers of fungal *p450nor*, *napA*, and *nirK* genes based on
alien index algorithm.

Table S5. List of genera containing species with and without *p450nor*.

16 Figure S1. Gene abundances of *narG*, *napA*, *nirK*, *p450nor*, and flavohemoglobins (colored

17 bars) mapped on to fungal families (cladogram, left). Relationships among fungal families in the

18 cladogram were derived from the NCBI taxonomy using the online tool phyloT

19 (http://phylot.biobyte.de/index.html).

20 Figure S2. Maximum-Likelihood phylogenies connecting fungal species with their respective

21 NO reductase (*p450nor*) gene sequence(s). On the left, an amino acid phylogeny of 238

22 concatenated single copy orthologues from fungal species in which one or more *p450nor* gene(s)

23 were detected. The *p450nor* nucleotide phylogeny (right) demonstrates many instances of

24 incongruence with the fungal species phylogeny. Black dots in each phylogeny represent bootstrap percentages greater than or equal to 90%. Scale bars represent amino acid (left tree) 25 and nucleotide (right tree) substitutions per site. A high-resolution file of the tree is available at 26 https://doi.org/10.6084/m9.figshare.c.3845692. 27 **Figure S3.** Cophylogenetic plot of *napA*-containing fungal species (left, N = 75) and the *napA* 28 29 nucleotide tree (right, N = 78). Both are midpoint rooted Maximum-Likelihood trees where black dots represent bootstrap percentages ≥ 90 %. Scale bars indicate substitutions per site for the 30 concatenated amino acid species phylogeny and nucleotide phylogeny, respectively. A high-31 32 resolution file of the tree is available at https://doi.org/10.6084/m9.figshare.c.3845692. **Figure S4**. Cophylogenetic plot of *nirK*-containing fungal species (left, N = 82) and the *nirK* 33 nucleotide tree (right, N = 83). Both are midpoint rooted Maximum-Likelihood trees where black 34 dots represent bootstrap percentages ≥ 90 %. Scale bars indicate substitutions per site for the 35 concatenated amino acid species phylogeny and nucleotide phylogeny, respectively. A high-36 resolution file of the tree is available at https://doi.org/10.6084/m9.figshare.c.3845692. 37 Figure S5. Plot of alien index values observed for p450nor genes (N = 178). Points above the 38 hashed line at the origin are indicative of HGT. Names of fungal species with alien index values 39 40 above zero are ordered as their points appear on the graph. Thick horizontal lines represent the median alien index value. See Materials and Methods in the Supplementary Materials for details 41 on alien index calculations. 42 43 Figure S6. Bayesian tree reconstruction of actinobacterial and proteobacterial 16S rRNA genes (left, N = 55) and cytochrome P450 family 105 amino acid sequences (right, N = 57). Both 44 45 phylogenies represent 50% majority-rule consensus trees. The tree on the left is rooted with

46 proteobacterial sequences as outgroup to the *Actinobacteria*. The tree on the right is midpoint

47 rooted. Nodes with posterior probabilites ≥ 0.95 are indicated by black circles on an adjacent
48 branch.

49	Figure S7 . Midpoint rooted Bayesian (left) and Maximum-Likelihood phylogenies (right) of
50	cytochrome P450 sequences ($N = 408$) demonstrating the affiliation of P450nor with other
51	sequences belonging to members of the bacterial phyla Actinobacteria and Proteobacteria.
52	Cyanobacterial cytochrome P450 sequences were included as outgroups. Black squares on
53	branches (left tree) indicate ≥ 0.95 posterior probability or ≥ 90 % bootstrap replication (right
54	tree). The colored legend indicates the cytochrome P450 family specified by shared amino acid
55	identity of \geq 40 % (D.R. Nelson, Hum Genomics 4:59-65, 2009).
56	Figure S8. Bayesian and Maximum-likelihood phylogenies of NapA, NirK, and P450nor amino
57	acid sequence homologs extracted from the RefSeq protein database. A high-resolution file of
58	these trees are available at https://doi.org/10.6084/m9.figshare.c.3845692.
59	Figure S9. Genome regions chosen for in depth presentation of protein coding genes
60	surrounding <i>p450nor</i> in predicted BGC regions. Labels above genes are functional annotations
61	from alignments to the eggNOG database. NCBI gene loci accessions are labeled below each
62	gene.

63

64 Materials and Methods

65 <u>*Phylogenetic reconstructions*</u>

66 Selection of the optimal evolutionary model for ML tree reconstruction was performed using

67 prottest (Abascal et al., 2005) (amino acid alignment) and jmodeltest (Posada, 2008) (nucleotide

alignment) software prior to ML tree reconstruction. Please refer to SI for additional details

69 about evolutionary models used in phylogenetic analysis. Phylogenetic analysis with RAxML

70 was performed by sampling 20 starting trees and performing 1,000 replicate bootstrap analyses. The tree with the maximal negative log likelihood score was compared to 1,000 replicates in 71 RAxML to generate the final tree. Bayesian tree construction was performed using 3 independent 72 runs with 6 chains for 5,000,000 generations. Output from MrBayes was evaluated with the 73 sump and sumt commands within the software to ensure Markov Chain Monte Carlo chain 74 75 mixing and convergence (potential scale reduction factor of 1.0) and standard deviation of split frequencies ~ 0.01 or lower. MrBayes output was further visualized in the program Tracer 76 (http://tree.bio.ed.ac.uk/software/tracer/) to ensure convergence was reached. 77 78 Optimal evolutionary models for Bayesian analysis were estimated from the alignments using MrBayes software with a mixed amino acid model with 4 chains. The analysis continued 79 for 1,000,000 generations, with sampling performed everything 1,000th generation and a default 80 burn-in of 25 %. Optimal amino acid models inferred by prottest ML analyses were LG (Le and 81 Gascuel, 2008) (NapA, P450nor) or JTT (Jones et al., 1992) models (NirK), whereas for 82 nucleotide sequences, the GTR (Rodriguez et al., 1990) model with variation in rate 83 heterogeneity among sites was selected by imodeltest as the optimal evolutionary model for each 84 gene. Optimal amino acid models inferred with MrBayes were the WAG (Whelan and Goldman, 85 86 2001) (NapA and P450nor) or the JTT model (NirK). The GTR model with rate heterogeneity among sites was also the optimally inferred evolutionary model for nucleotide alignments used 87 88 for Bayesian tree reconstruction. For phylogenetic analysis of fungal NapA, NirK, and P450nor 89 with additional RefSeq protein sequences, the LG (ML) or WAG (Bayesian) models were selected in the respective phylogenetic software. All amino acid tree reconstruction utilized 90 91 gamma distributed rate heterogeneity among sites, and additional tree reconstruction parameters 92 were estimated from the alignment.

93 <u>BayesTraits and NOTUNG analyses</u>

For trait correlations, the concatenated 238 BUSCO gene alignment (see main text Materials and 94 Methods) of 709 fungal taxa was bootstrapped into 800 replicate alignments using the PHYLIP 95 software function seqboot (6) and 800 ML trees created as described in the main text using 96 FastTree2 software. These alignments were paired with presence/absence data regarding 97 98 denitrification traits and provided as input to BayesTraits software. BayesTraits was first operated in ML mode (100 ML tries setting) to generate parameter estimates for dependent (trait 99 100 correlation) and independent (no trait correlation) models to be compared. These parameter 101 estimates were then entered into BayesTraits, and three independent runs of the software in Bayesian mode using the dependent and independent model of trait correlation between the two 102 traits being compared were performed. The analysis was run for 1,000,000 generations with 103 samples taken every 1,000th generation and a burn-in of 50,000 generations. A stepping stone 104 analysis (100 stones, 10,000 samples) was performed to generate log marginal likelihood values 105 106 for Bayes Factor (BF) calculations to test which model (correlation or no correlation) best fit the data. Bayes Factors are comparable to a likelihood ratio test for model selection, and the larger 107 the Bayes Factor the more certainty there is in the more complex, dependent model (indicating 108 109 trait correlation). Hence, a BF of 1 is indicative of weak or no trait correlation, but a BF of 10 or larger indicates strong selection of the dependent model and trait correlation (Pagel *et al.*, 2004). 110 A similar analysis is performed for ancestral state reconstruction, except that trees from a 111 112 Bayesian analysis were used as input to the MultiState method of the software. Multistate was run for 5,500,000 generations with sampling every 2,000th generation and a burn-in of 500,000 113 114 generations. The probability of a given character state at a node within the tree was averaged

over all generations after the burn-in period and was used to determine support for the state of anode within the tree.

NOTUNG performs reconciliation by matching nodes between species and gene trees to 117 infer numbers of GD, GL, and GT events. These reconciliations are used to calculate a weighted 118 sum, termed the event score, by multiplying user supplied event costs for GD, GL, and GTs. 119 120 When inferring GTs, multiple solutions may be reached, and NOTUNG reports all reconciliations reached to obtain a minimized event score. NOTUNG analyses were 121 implemented with a duplication cost of 2, loss cost of 1, and a variable transfer cost from 3 to 15. 122 123 Ratcheting the transfer costs assumes GD is prevalent, which is likely the case for fungi, in which GT events are assumed to be less frequent than for Bacteria and Archaea. All other 124 settings were default. NOTUNG ignores incomplete lineage sorting as an evolutionary 125 mechanism when both a rooted species and gene tree are used as input, as was the case for the 126 present study. 127

128 <u>Alien index calculations</u>

The alien index (AI) was calculated as previously described and modified for use with a single 129 gene (Wisecaver et al., 2016). Briefly, pairwise amino acid sequence alignments were performed 130 131 using blastp for fungal NapA, NirK, and P450nor sequences. The in group was defined as the aligned sequence with the highest bitscore (excluding the query) belonging to the same 132 taxonomic class as the query sequence. Accordingly, the out group was defined as the aligned 133 134 sequence with the highest bitscore not belonging to the same taxonomic class as the query. The maximum bitscore was the bitscore derived from the alignment of the query to itself. Therefore, 135 AI is calculated as follows: 136

137

 $AI = (out \ group \ bitscore / \max \ bitscore) - (in \ group \ bitscore / \max \ bitscore)$

138 AI values range from 1 to -1. Values greater than zero are indicative of HGT or contamination of

139 foreign DNA within the genome sequence being queried.

140

141 **References**

- 142 Abascal F, Zardoya R, Posada D. (2005). ProtTest: selection of best-fit models of protein
- 143 evolution. *Bioinforma* **21** : 2104–2105.
- 144 Jones D, Taylor W, Thornton J. (1992). The rapid generation of mutation data matrices from
- 145 protein sequences. *Comput Appl Biosci* 8.
- 146 Le SQ, Gascuel O. (2008). An improved general amino acid replacement matrix. *Mol Biol Evol*

147 25: 1307–20.

- 148 Pagel M, Meade A, Barker D. (2004). Bayesian estimation of ancestral character states on
- 149 phylogenies. *Syst Biol* **53**: 673–684.
- 150 Posada D. (2008). jModelTest: Phylogenetic model averaging. *Mol Biol Evol* 25: 1253–1256.
- 151 Rodriguez R, Oliver JL, Marin A, Medina JR. (1990). The general stochastic model of
- 152 nucleotide substitution. *J Theor Biol* **142**. doi:10.1016/S0022-5193(05)80104-3.
- 153 Whelan S, Goldman N. (2001). A general empirical model of protein evolution derived from
- 154 multiple protein families using a maximum-likelihood approach. *Mol Biol Evol* **18**: 691–699.
- 155 Wisecaver JH, Alexander WG, King SB, Todd Hittinger C, Rokas A. (2016). Dynamic evolution
- of nitric oxide detoxifying flavohemoglobins, a family of single-protein metabolic modules in
- 157 *Bacteria* and Eukaryotes. *Mol Biol Evol*. doi:10.1093/molbev/msw073.

Fungal lineage	napA	nirK	p450nor	flavoHb*	napA+nirK	napA+ p450nor	nirK+ p450nor	napA+ nirK+ p450nor	<i>p450nor</i> + flavoHb	(p450nor+ flavoHb)/p450nor†
Sordariomycetes	23	20	63	155	7	11	15	6	62	0.98
Leotiomycetes	2	9	36	25	1	2	8	1	19	0.53
Eurotiomycetes	34	52	35	80	19	15	24	11	16	0.46
Dothideomycetes	7	1	28	75	0	2	1	0	27	0.96
Tremellomycetes	1	0	3	12	0	0	0	0	1	0.33
Atractiellomycetes	0	0	1	0	0	0	0	0	0	0
Pezizomycetes	0	0	1	0	0	0	0	0	0	0
Mixiomycetes	0	0	0	0	0	0	0	0	0	n/a
Agaricomycetes	1	0	0	17	0	0	0	0	0	n/a
Saccharomycetes	0	0	0	63	0	0	0	0	0	n/a
Pucciniomycetes	2	0	0	1	0	0	0	0	0	n/a
Monoblepharidomycetes	0	0	0	0	0	0	0	0	0	n/a
Chytridiomycetes	0	0	0	0	0	0	0	0	0	n/a
Wallemiomycetes	0	0	0	1	0	0	0	0	0	n/a
Ustilaginomycetes	0	0	0	1	0	0	0	0	0	n/a
Orbiliomycetes	0	0	0	2	0	0	0	0	0	n/a
Basidiobolomycetes	0	0	0	0	0	0	0	0	0	n/a
Dacrymycetes	0	0	0	0	0	0	0	0	0	n/a
Geminibasidiomycetes	0	0	0	0	0	0	0	0	0	n/a
Zoopagomycota	0	0	0	1	0	0	0	0	0	n/a
Schizosaccharomycetes	0	0	0	3	0	0	0	0	0	n/a
Pneumocystidomycetes	0	0	0	0	0	0	0	0	0	n/a
Blastocladiomycetes	0	0	0	0	0	0	0	0	0	n/a
Lecanoromycetes	1	0	0	0	0	0	0	0	0	n/a
Malasseziomycetes	0	0	0	12	0	0	0	0	0	n/a
Taphrinomycetes	0	0	0	1	0	0	0	0	0	n/a
Microbotryomycetes	4	0	0	0	0	0	0	0	0	n/a
Exobasidiomycetes	0	0	0	0	0	0	0	0	0	n/a
Entomophthoromycetes	0	0	0	1	0	0	0	0	0	n/a
Neocallimastigomycetes	0	0	0	0	0	0	0	0	0	n/a
Glomeromycetes	0	0	0	0	0	0	0	0	0	n/a
Total	75	82	167	450	27	30	48	18	125	n/a

Table S1. Counts of denitrification traits and their co-occurrences in fungal genomes.

A "+" indicates that each gene had to be present in each genome evaluated in order to add to the overall count for that lineage.

*FlavoHb = flavohemoglobin

 $\dagger n/a$ = Not applicable since *p450nor* genes were not detected

Table S2. Results from approximately unbiased tests for the monophyly of fungal classes within *napA*, *nirK*, and *p450nor* gene trees. Where indicated, the monophyly of two lineages was also assessed. Bold font data indicate that the AU test rejected the monophyly of the taxa. Test significance was evaluated at $p \le 0.05$.

							Ар	proximately	unbiased	test
Gene	Lineage	No. Genes	No. Taxa	No. Genera	Monop	ohyletic	Amin	o acid	Nucl	leotide
					Amino acid	Nucleotide	Diff-lnL*	P value	Diff -lnL	P value
napA	Agaricomycetes	2	1	1	Yes	Yes	-	-	-	-
	Dothideomycetes	7	7	6	No	No	40	0.015	40	0.001
	Eurotiomycetes	36	34	14	No	No	753	2.00E-06	550	4.00E-04
	Lecanoromycetes (Lec)	1	1	1	Yes	Yes	-	-	-	-
	Leotiomycetes (L)	2	2	2	Yes	Yes	-	-	-	-
	Microbotryomycetes	4	4	1	Yes	Yes	-	-	-	-
	Pucciniomycetes	2	2	2	No	No	1303	9.00E-05	1088	2.00E-08
	Sordariomycetes (S)	23	23	18	No	No	806	7.00E-61	770	9.00E-56
	Tremellomycetes	1	1	1	Yes	Yes	-	-	-	-
	L+S share MRCA				No	No	908	2.00E-71	973	6.00E-74
	Lec+E share MRCA				No	No	75	3.00E-05	257	9.00E-06
nirK	Dothideomycetes	1	1	1	Yes	Yes	-	-	-	-
	Eurotiomycetes	52	52	17	No	No	19	0.142	33	0.003
	Leotiomycetes	10	9	1	Yes	Yes	-	-	-	-
	Sordariomycetes	20	20	8	Yes	Yes	-	-	-	-
	D+E share MRCA				No	No	15	0.042	30.1	0.004
	L+S share MRCA				No	No	18	0.142	35.3	0.001

164 *Diff -lnL = difference in negative log-likelihood of the observed tree to the constraint tree in which the taxa were constrained to be monophyletic.

165

166

Table S2. (continued)

							Appr	oximately u	nbiased tes	t
Gene	Lineage	No. Genes	No. Taxa	No. Genera	Monop	Monophyletic		Amino acid		leotide
					Amino acid	Nucleotide	Diff-lnL*	P value	Diff -lnL	P value
p450nor	Dothideomycetes (D)	28	28	26	No	No	1153	4.00E-05	1294	8.00E-51
	Eurotiomycetes (E)	36	35	17	No	No	891	1.00E-32	917	2.00E-37
	Leotiomycetes (L)	37	36	16	No	No	465	2.00E-39	694	4.00E-40
	Sordariomycetes (S)	72	63	32	No	No	1159	5.00E-10	1206	5.00E-15
	Tremellomycetes	3	3	2	No	No	125	3.00E-04	125	3.00E-08
	Atractiellomycetes	1	1	1	Yes	Yes	-	-	-	-
	Pezizomycetes	1	1	1	Yes	Yes	-	-	-	-
	L+S share MRCA				No	No	1386	3.00E-43	1420	5.00E-72
	D+E share MRCA				No	No	1481	0.001	1481	2.00E-63
	Ascomycota (A)				No	No	139	5.00E-05	140	6.00E-06
	Basidiomycota (B)				No	No	139	4.00E-56	139	1.00E-39
	A+B share MRCA				No	No	139	3.00E-11	140	3.00E-04

*Diff -lnL = difference in negative log-likelihood of the observed tree to the constraint tree in which the taxa were constrained to be monophyletic.

Gene	Phylogeny	Duplications	Codivergences	Transfers	Losses	Duplication cost	Transfer cost	Loss cost	Solutions
p450nor	amino acid	-	-	-	-	2	3	1	0
		-	-	-	-	2	5	1	0
		-	-	-	-	2	7	1	0
		-	-	-	-	2	9	1	0
		49.0 (0.0)	0.0 (0.0)	15.0 (0.0)	253.0 (0.0)	2	11	1	1000
		61.0 (0.0)	0.0 (0.0)	6.0 (0.0)	333.0 (0.0)	2	13	1	180
		62.1 (1.0)	0.0 (0.0)	5.4 (0.5)	339.3 (5.4)	2	15	1	420
p450nor	nucleotide	-	-	-	-	2	3	1	0
		-	-	-	-	2	5	1	0
		-	-	-	-	2	7	1	0
		45.0 (0.0)	0.0 (0.0)	16.0 (0.0)	215.0 (0.0)	2	9	1	1000
		53.6 (0.8)	0.0 (0.0)	8.2 (0.4)	277.6 (2.8)	2	11	1	1000
		56.0 (0.0)	0.0 (0.0)	6.0 (0.0)	299.0 (0.0)	2	13	1	100
		60.0 (0.0)	0.0 (0.0)	4.0 (0.0)	319.0 (0.0)	2	15	1	60
napA	amino acid	1.4 (0.5)	0.0 (0.0)	30.8 (0.8)	14.9 (1.7)	2	3	1	1000
		9.2 (1.4)	0.0 (0.0)	19.8 (1.4)	43.7 (4.3)	2	5	1	1000
		15.0 (0.0)	0.0 (0.0)	14.0 (0.0)	64.0 (0.0)	2	7	1	36
		22.0 (1.3)	0.0 (0.0)	7.8 (1.0)	100.8 (6.4)	2	9	1	20
		28.0 (0.0)	0.0 (0.0)	3.0 (0.0)	135.0 (0.0)	2	11	1	1
		28.0 (0.0)	0.0 (0.0)	3.0 (0.0)	135.0 (0.0)	2	13	1	1
		31.0 (1.0)	0.0 (0.0)	0.5 (0.5)	165.5 (5.5)	2	15	1	2
napA	nucleotide	-	-	-	-	2	3	1	0
		-	-	-	-	2	5	1	0
		-	-	-	-	2	7	1	0
		-	-	-	-	2	9	1	0
		-	-	-	-	2	11	1	0
		28.0 (1.0)	0.0 (0.0)	2.5 (0.5)	142.5 (4.5)	2	13	1	2
		30.0 (0.0)	0.0 (0.0)	1.0 (0.0)	159.0 (0.0)	2	15	1	1

Table S3. Results from species-tree gene-tree reconciliation using NOTUNG software for *napA*, *nirK*, and *p450nor* genes in fungi.
 Values are averages of solutions with standard deviations reported in parentheses.

Gene	Query assembly ID*	Query name	IG† bitscore	OG bitscore	Max bitscore	Alien index value	IG taxon	OG taxon	IG name	OG name	IG assembly ID	OG assembly ID
p450nor	Apimo1	Apiospora montagnei NRRL 25634 v1.0	418	423	851	0.006	Sordariomycetes	Dothideomycetes	Valetoniel lopsis laxa CBS 191.97 v1.0	Peltaster fructicola	Valla1	GCA_0015 92805.1
	GCA_0000 02855.2	Aspergillus niger CBS 513 88	353	437	859	0.098	Eurotiomycetes	Dothideomycetes	Uncinoca rpus reesii 1704	Macroventu ria anomochae ta CBS 525.71 v1.0	GCA_0000 03515.2	Macan1
	GCA_0001 51355.13	Nectria haematococc a mpVI 77- 13-4	469	583	881	0.129	Sordariomycetes	Eurotiomycetes	Sporothri x pallida	Aspergillus parasiticus SU-1	GCA_0007 10705.2	GCA_0009 56085.1
	GCA_0002 93215.1	Trichosporon asahii var asahii CBS 2479	400	572	813	0.212	Tremellomycetes	Sordariomycetes	Mrakia blollopis	Plectosphae rella cucumerina DS2psM2a 2 v1.0	GCA_0009 50635.1	Plecu1
	GCA_0004 97085.1	Byssochlamy s spectabilis	528	659	827	0.158	Eurotiomycetes	Sordariomycetes	Exophiala xenobiotic a	Trichoderm a virens Gv29-8	GCA_0008 35505.1	GCA_0001 70995.2
	GCA_0007 10705.2	Sporothrix pallida	577	656	833	0.095	Sordariomycetes	Dothideomycetes	colletotri chum gloeospor ioides Nara gc5	Rhytidhyste ron rufulum	GCA_0003 19635.1	Rhyru1_1
	GCA_0007 43665.1	Geotrichum candidum	586	650	854	0.075	Leotiomycetes	Dothideomycetes	Meliniom yces variabilis F v1.0	Acidomyces richmonden sis	Melva1	GCA_0015 72075.1
	GCA_0008 15965.1	Mrakia frigida	279	421	745	0.191	Tremellomycetes	Eurotiomycetes	Trichospo ron asahii var asahii	Monascus purpureus	GCA_0009 50635.1	Monpu1
	GCA_0008 35505.1	Exophiala xenobiotica	573	637	887	0.072	Eurotiomycetes	Dothideomycetes	Microspor um gypseum CBS 118893	Acidomyces richmonden sis	GCA_0001 50975.2	GCA_0015 72075.1
	GCA_0009 50635.1	Mrakia blollopis	371	531	852	0.188	Tremellomycetes	Eurotiomycetes	Trichospo ron asahii var asahii	Monascus purpureus	GCA_0002 93215.1	Monpu1

Table S4. Predicted horizontal gene transfers of fungal *p450nor*, *napA*, and *nirK* genes based on alien index algorithm.

180 *Assembly IDs with two underscores followed by a number indicate the query gene is multi copy within the genome.

181 $^{\dagger}IG = Ingroup, OG = Outgroup.$

Table S4. (continued)

Gene	Query assembly ID*	Query name	IG [†] bitscore	OG bitscore	Max bitscore	Alien index value	IG taxon	OG taxon	IG name	OG name	IG assembly ID	OG assembly ID
p450nor	GCA_0015 72075.1	Acidomyces richmondensi s	584	637	831	0.064	Dothideomycetes	Eurotiomycetes	Rhytidhys teron rufulum Muriopai	Exophiala xenobiotica	Rhyru1_1	GCA_0008 35505.1
	GCA_0015 92805.1	Peltaster fructicola	451	483	840	0.038	Dothideomycetes	Leotiomycetes	um duriaei CBS 260.36 v1.0	Sclerotinia sclerotioru m 1980 UF- 70	Myrdu l	GCA_0001 46945.1
	Macan 1	Macroventuri a anomochaeta CBS 525.71	393	437	846	0.052	Dothideomycetes	Eurotiomycetes	Coniospor ium apollinis CBS 100218	Aspergillus niger CBS 513 88	GCA_0002 81105.1	GCA_0000 02855.2
	Myrdu1	Myriangium duriaei CBS 260.36	451	508	840	0.068	Dothideomycetes	Sordariomycetes	Peltaster fructicola	Valetoniell opsis laxa CBS 191.97 v1.0	GCA_0015 92805.1	Valla1
	Valla1	Valetoniellop sis laxa CBS 191.97 v1.0	418	508	838	0.107	Sordariomycetes	Dothideomycetes	Apiospora montagne i NRRL 25634 v1.0	Myriangiu m duriaei CBS 260.36 v1.0	Apimo1	Myrdu1
napA	GCA_0002 25285.2	Epichloe glyceriae E277	270	326	1367	0.041	Sordariomycetes	Agaricomycetes	Balansia obtecta B249	Clavaria fumosa	GCA_0007 09145.1	GCA_0011 79745.12
	GCA_0002 81105.1	Coniosporiu m apollinis CBS 100218	1416	1436	2040	0.010	Dothideomycetes	Leotiomycetes	Fungal sp. No 11243	Pseudogym noascus sp. VKM F- 4513 FW- 928	GCA_0008 36255.1	GCA_0007 50755.1
	GCA_0003 15175.1	<i>Herpotrichiel laceae</i> sp. UM238	1265	1286	1989	0.011	Eurotiomycetes	Sordariomycetes	Aspergillu s ustus	Colletotrich um higginsianu m	GCA_0008 12125.1	GCA_0003 13795.2
	GCA_0004 64645.1	Melampsora pinitorqua Mpini7	437	872	1645	0.264	Pucciniomycetes	Eurotiomycetes	Cronartiu m ribicola 11-2	Amauroasc us niger	GCA_0005 00245.1	GCA_0014 30945.12

184 *Assembly IDs with two underscores followed by a number indicate the query gene is multi copy within the genome.

 $^{\dagger}IG = Ingroup, OG = Outgroup.$

 Table S4. (continued)

 188

Gene	Query assembly ID [*]	Query name	IG [†] bitscore	OG bitscore	Max bitscore	Alien index value	IG taxon	OG taxon	IG name	OG name	IG assembly ID	OG assembly ID
napA	GCA_0005 00245.1	Cronartium ribicola 11-2	431	905	1626	0.292	Pucciniomycetes	Sordariomycetes	Melampso ra pinitorqu a Mpini7	Balansia obtecta B249	GCA_0004 64645.1	GCA_0007 09145.1
	GCA_0006 11775.1	Umbilicaria muehlenbergi i	n/a	1421	2035	0.698	Lecanoromycetes	Leotiomycetes	Umbilicar ia muehlenb ergii	Pseudogym noascus sp. VKM F- 4513 FW- 928	GCA_0006 11775.1	GCA_0007 50755.1
	GCA_0007 09145.1	Balansia obtecta B249	278	925	1854	0.349	Sordariomycetes	Pucciniomycetes	Epichloe glyceriae E277	Cronartium ribicola 11- 2	GCA_0002 25285.2	GCA_0005 00245.1
	GCA_0007 50755.1	Pseudogymn oascus sp. VKM F-4513 FW-928	1415	1436	2037	0.010	Leotiomycetes	Dothideomycetes	Geotrichu m candidum	Coniospori um apollinis CBS 100218 Colletotrich	GCA_0007 43665.1	GCA_0002 81105.1
	GCA_0014 68955.1	Cryptococcus albidus	n/a	1033	2058	0.502	Tremellomycetes	Sordariomycetes	Cryptococ cus albidus	um orbiculare MAFF 240422	GCA_0014 68955.1	GCA_0003 50065.1
nirK	GCA_0015 72075.1	Acidomyces richmondensi s	n/a	559	888	0.630	Dothideomycetes	Eurotiomycetes	Acidomyc es richmond ensis	Arthroderm a otae CBS 113480	GCA_0015 72075.1	GCA_0001 51145.1

*Assembly IDs with two underscores followed by a number indicate the query gene is multi copy within the genome. $^{\dagger}IG = Ingroup, OG = Outgroup.$

Genus	Total species	Species with p450nor	Percentage with p450nor
Arthroderma	2	1	50.0
Aspergillus	20	9	45.0
Bipolaris	6	2	33.3
Colletotrichum	10	5	50.0
Diaporthe	3	1	33.3
Diplodia	3	2	66.7
Exophiala	7	1	14.3
Fusarium	16	13	81.3
Hirsutella	2	1	50.0
Hymenoscyphus	7	5	71.4
Metarhizium	7	6	85.7
Neosartorya	2	1	50.0
Neurospora	6	4	66.7
Pseudogymnoascus	16	15	93.8
Pyrenochaeta	3	1	33.3
Rhytidhysteron	2	1	50.0
Rutstroemia	2	1	50.0
Sclerotinia	3	2	66.7
Sporothrix	3	1	33.3
Trichoderma	8	4	50.0
Trichophyton	6	5	83.3
Trichosporon	2	1	50.0

Table S5. List of genera containing species with and without *p450nor*.

Figure S1. Gene abundances of *narG*, *napA*, *nirK*, *p450nor*, and flavohemoglobins (colored

- bars) mapped on to fungal families (cladogram, left). Relationships among fungal families in the
- 198 cladogram were derived from the NCBI taxonomy using the online tool phyloT
- 199 (http://phylot.biobyte.de/index.html).

Figure S2. Maximum-Likelihood phylogenies connecting fungal species with their respective NO reductase (p450nor) gene sequence(s). On the left, an amino acid phylogeny of 238 concatenated single copy orthologues from fungal species in which one or more p450nor gene(s) were detected. The p450nor nucleotide phylogeny (right) demonstrates many instances of incongruence with the fungal species phylogeny. Black dots in each phylogeny represent bootstrap percentages greater than or equal to 90%. Scale bars represent amino acid (left tree) and nucleotide (right tree) substitutions per site. A high-resolution file of the tree is available at https://doi.org/10.6084/m9.figshare.c.3845692.

- Figure S3. Cophylogenetic plot of *napA*-containing fungal species (left, N = 75) and the *napA* nucleotide tree (right, N = 78). Both are
- midpoint rooted Maximum-Likelihood trees where black dots represent bootstrap percentages ≥ 90 %. Scale bars indicate substitutions
- per site for the concatenated amino acid species phylogeny and nucleotide phylogeny, respectively. A high-resolution file of the tree is available at https://doi.org/10.6084/m9.figshare.c.3845692.

- Figure S4. Cophylogenetic plot of *nirK*-containing fungal species (left, N = 82) and the *nirK* nucleotide tree (right, N = 83). Both are 223
- midpoint rooted Maximum-Likelihood trees where black dots represent bootstrap percentages ≥90 %. Scale bars indicate substitutions 224
- per site for the concatenated amino acid species phylogeny and nucleotide phylogeny, respectively. A high-resolution file of the tree is 225 available at https://doi.org/10.6084/m9.figshare.c.3845692. 226

Figure S5. Plot of alien index values observed for p450nor genes (N = 178). Points above the hashed line at the origin are indicative of HGT. Names of fungal species with alien index values above zero are ordered as their points appear on the graph. Thick horizontal lines represent the median alien index value. See Materials and Methods in Supplementary Materials for details on

alien index calculations.

- **Figure S6**. Bayesian tree reconstruction of actinobacterial and proteobacterial 16S rRNA genes (left, N = 55) and cytochrome P450
- family 105 amino acid sequences (right, N = 57). Both phylogenies represent 50% majority-rule consensus trees. The tree on the left is
- rooted with proteobacterial sequences as outgroup to the Actinobacteria. The tree on the right is midpoint rooted. Nodes with posterior
- probabilites ≥ 0.95 are indicated by black circles on an adjacent branch.

- Figure S7. Midpoint rooted Bayesian (left) and Maximum-Likelihood phylogenies (right) of cytochrome P450 sequences (N = 408)
- 242 demonstrating the affiliation of P450nor with other sequences belonging to members of the bacterial phyla *Actinobacteria* and
- 243 Proteobacteria. Cyanobacterial cytochrome P450 sequences were included as outgroups. Black squares on branches (left tree) indicate
- ≥ 0.95 posterior probability or ≥ 90 % bootstrap replication (right tree). The colored legend indicates the cytochrome P450 family
- specified by shared amino acid identity of $\geq 40 \%$ (39).

- Figure S8. Bayesian and Maximum-likelihood phylogenies of NapA, NirK, and P450nor amino
 acid sequence homologs extracted from the RefSeq protein database. A high-resolution file of
 these trees are available at https://doi.org/10.6084/m9.figshare.c.3845692.

Figure S9. Genome regions chosen for in depth presentation of protein coding genes surrounding *p450nor* in predicted BGC regions. Labels above genes are functional annotations from alignments to the eggNOG database. NCBI gene loci accessions are labeled below each gene. Numbers in parentheses represent the proportion of these genes shown that are also found within closely related genomes where available.