Molecular profiling reveals immunogenic cues in anaplastic large cell lymphomas with *DUSP22* rearrangements

Luchtel RA et al.

SUPPLEMENTAL MATERIAL

Table of Contents

Supplemental Methods
Supplemental Table 1. Summary of ALCLs in frozen discovery set
Supplemental Table 2. Summary of ALCLs used in FFPE validation experiments7
Supplemental Table 3. Top gene sets negatively associated with ALCLs in Cluster 1
Supplemental Table 4. Top gene sets positively associated with ALCLs in Cluster 1
Supplemental Table 5. Clinical outcomes in patients with systemic ALCL in Cluster 110
Supplemental Table 6. Characteristics of 105 systemic ALK-negative ALCLs evaluated for overall survival
Supplemental Table 7. Prognostic factors for overall survival in 105 systemic ALK-negative ALCLs
Supplemental Table 8. Genes in ALK Signature
Supplemental Table 9. Genes in DUSP22 Signature
Supplemental Table 10. Summary of differential methylation in ALCLs with <i>DUSP22</i> rearrangements
Supplemental Figure 1. Expression of <i>STAT3</i> and representative target genes
Supplemental Figure 2. Associations between <i>DUSP22</i> rearrangements and pSTAT3 expression in systemic and cutaneous ALK-negative ALCLs
Supplemental Figure 3. Differential methylation between ALK-negative ALCLs with <i>DUSP22</i> rearrangements and ALK-positive ALCLs
Supplemental Figure 4. Baseline DNA methylation in ALCL cell lines
Supplemental Figure 5. PD-1 staining in ALCL by genetic subtype
Supplementary References

SUPPLEMENTAL METHODS

Gene set enrichment analysis (GSEA)

Analyses were performed using GSEA software (Broad Institute) configured to use the "GSEAPreranked" method:

http://software.broadinstitute.org/cancer/software/genepattern/modules/docs/GSEAPreranked/1 Enrichment of the cancer-testis antigen (CTA) gene set was evaluated using CTpedia (http://www.cta.lncc.br/modelo.php) as the gene set in GSEA.

Reverse-phase protein array (RPPA) analysis

Proteins were extracted from frozen tissue samples as previously described¹ and RPPA analysis was performed at the M.D. Anderson Cancer Center RPPA Core Facility using STAT3 and pSTAT3^{Y705} antibodies validated by Western blot as published.² Protein intensity data were normalized and standardized as previously described.¹

RNA sequencing from FFPE tissue

RNA sequencing (RNAseq) was performed from FFPE tissue as previously described.³ Briefly, RNA was extracted using the AllPrep DNA/RNA FFPE kit (Qiagen). Sequencing libraries were prepared using TruSeq RNA Access kit (Illumina) and analyzed on a HiSeq 4000 sequencer (Illumina). Sequenced reads were aligned to the hg38 reference using the previously published MAP-RSeq pipeline⁴ slightly modified to use the STAR aligner.⁵ Gene-level read counts based on Ensembl version 78 were transformed into RPKMs and resulting expression data were quantile-normalized to remove batch effects. Normalized expression data for signature genes derived from the frozen discovery set described above were utilized for clustering with statistical analysis as described above.

Immunohistochemistry

Immunohistochemistry was performed on 4-micron FFPE sections as previously published^{6,7} using antibodies to pSTAT3^{Y705} (clone D3A7, Cell Signaling; 1:400), PD-L1 (clone SP263, Ventana; prediluted), PD-1 (clone NAT105, Abcam; 1:300), or HLA-DR (clone LN3, BioLegend; 1:12,800). Details of ALCLs used in immunohistochemistry studies are summarized in supplemental Table 2. Stains were scored in a blinded fashion. For pSTAT3, scoring was based on percentage of tumor cell nuclei staining; sections with no internal positive control staining (e.g., endothelial cells) were excluded. PD-L1 and HLA-DR were scored as percent positive tumor cells. PD-1 was scored as the average number of positive infiltrating nonneoplastic cells per high power field. Statistical differences among groups were assessed using the Wilcoxon test. Photomicrographs were taken using an Olympus DP71 camera, Olympus BX51 microscope, and Olympus cellSens image acquisition software at the original magnifications indicated.

DNA methylation analysis

DNA methylation analysis was performed on the 31-sample frozen ALCL discovery set, a validation set of 71 FFPE ALCL samples, and 6 ALCL cell lines treated with either decitabine or vehicle. DNA was extracted from frozen ALCL samples and cell lines as published⁸ and reduced representation bisulfite sequencing (RRBS) was performed with base-pair resolution as previously described.⁹ CpG methylation ratios were segmented into 200-bp regions and

differentially methylated regions (DMRs) between genetic subtypes were identified using methylKit software.¹⁰ DMRs with Q-values ≤ 0.01 and absolute delta methylation ($\Delta\beta$) differences of $\geq 10\%$ were considered significant. DMRs were annotated according to various types of genomic regions of interest: promoters (-1500 \leq TSS \leq 500; TSS=transcription start site); CpG islands (CpGi); CpG shores (-2000 \leq CpGi \leq 2000), gene body (i.e. exons and introns), 3'UTR, 5'UTR, SINE repeat regions and LINE repeat regions. The number of DMRs in each genomic region was tallied and compared across genetic subtypes using chi-square tests configured to assume a null hypothesis of uniform distribution of hypomethylated and hypermethylated DMRs in each region type of interest across different genetic types.

For FFPE ALCL samples, DNA was extracted using the QIAamp DNA FFPE Tissue Kit (Qiagen) following the manufacturer's recommendations. Extracted DNA was bisulfite converted, amplified, fragmented, and hybridized to Infinium MethylationEPIC BeadChip arrays (Illumina) at the University of Minnesota Genomics Center (Minneapolis, MN) following the manufacturer's recommendations. Raw data were processed using minfi software using default configuration parameters for processing Illumina HumanMethylationEPIC array data.¹¹ β values representing the methylation status at each CpG locus were calculated as previously published.¹² Differentially methylated CpG probes (DMCs) were evaluated using ANOVA tests to compare percent methylation values. DMCs with absolute $\Delta\beta \ge 10\%$ and a corrected *P*-value of ≤ 0.05 were considered significant.

Cell lines and decitabine treatment

Cell lines were obtained and maintained as previously described¹³ in RPMI 1640 media (Invitrogen) supplemented with 10% fetal bovine serum (HyClone; except SR-786, 15%). Cells were treated for 96 h with 10 μ M decitabine or vehicle (phosphate-buffered saline). DNA methylation was measured by RRBS and RNA sequencing as described above. Gene expression response was measured by RNA sequencing as previously described.¹⁴ Genes with <50 reads in all samples were considered inevaluable.

To examine the relationship between decitabine-induced gene expression and gene expression in ALCLs with and without *DUSP22* rearrangements, genes expressed in \geq 4 cell lines were ranked for GSEA as described above. DUSP22-associated genes were defined as genes overexpressed in ALCLs with *DUSP22* rearrangements in the frozen discovery set with a log₂ fold change \geq 5 and an adjusted *P* value \leq 0.05. GSEA then was used to assess enrichment of DUSP22-associated genes among decitabine-induced genes. Genes down-regulated in *DUSP22*rearranged ALCLs (log₂ fold change \leq -5 and adjusted *P* value \leq 0.05) were used as a negative control.

Statistical analysis

All statistical analyses were performed either using JMP Pro 10 (SAS Institute) or in the SPSS or R statistical environment. Survival analyses were conducted using the log-rank test and plotted using the Kaplan-Meier method. Modeling was performed using the Cox proportional hazards methods. Other statistical tests were used as noted. *P*-values ≤ 0.05 were considered statistically significant except where indicated.

SUPPLEMENTAL TABLES

Case	Age/Sex	WHO Diagnosis	Genetic Subtype
1	46/M	ALCL, ALK negative	DUSP22
2	40/M	ALCL, ALK negative	Other
3	18/F	ALCL, ALK positive	ALK
4	74/M	ALCL, ALK positive	ALK
5	39/F	ALCL, ALK negative	Other
6	76/M	ALCL, cutaneous	DUSP22
7	65/M	ALCL, cutaneous	DUSP22
8	59/F	ALCL, cutaneous	DUSP22
9	75/M	ALCL, ALK negative	Other
10	51/M	ALCL, ALK negative	DUSP22
11	43/M	ALCL, ALK negative	Other
12	69/F	ALCL, cutaneous	Other
13	50/F	ALCL, ALK negative	Other
14	58/M	ALCL, ALK negative	Other
15	81/M	ALCL, ALK negative	Other
16	18/M	ALCL, ALK positive	ALK
17	77/M	ALCL, ALK negative	Other
18	13/F	ALCL, cutaneous	Other
19	54/F	ALCL, ALK negative	Other
20	50/M	ALCL, ALK positive	ALK
21	61/M	ALCL, cutaneous	Other
22	6/F	ALCL, ALK positive	ALK
23	66/F	ALCL, ALK negative	Other
24	60/M	ALCL, ALK negative	Other
25	14/M	ALCL, ALK positive	ALK
26	29/F	ALCL, ALK positive	ALK
27	16/M	ALCL, ALK positive	ALK
28	48/M	ALCL, ALK negative	Other
29	77/M	ALCL, ALK negative	DUSP22
30	75/M	ALCL, cutaneous	Other
31	68/F	ALCL, ALK negative	DUSP22

Supplemental Table 1. Summary of ALCLs in frozen discovery set⁶

	Genetic	WHO Diagnosis				
Experiment	Subtype	ALCL, ALK positive	ALCL, ALK negative	ALCL, cutaneous	Total	
pSTAT3 IHC [†] (Fig. 2B): n=334, mean age=54 yr, M:F=1.4						
	ALK	98	0	0	98	
	DUSP22	0	45	19	64	
	Other	0	113	59	172	
	Total	98	158	78	334	
RNAseq (Fig. 3	BC-D): n=53, m	ean age=56 yr, M:	F=1.3			
	ALK	15	0	0	15	
	DUSP22	0	10	3	13	
	Other	0	15	10	25	
	Total	15	25	13	53	
Methylation arr	ays (Fig. 4D-F	; suppl. Fig. 2D-F)	: n=63, mean age=	54 yr, M:F=1.9)	
	ALK	15	0	0	15	
	DUSP22	0	12	4	16	
	Other	0	20	12	32	
	Total	15	32	16	63	
PD-L1 IHC (Fi	g. 6D): n=152,	mean age=54 yr, N	M:F=1.4			
	ALK	44	0	0	44	
	DUSP22	0	22	5	27	
	Other	0	49	32	81	
	Total	44	71	37	152	
HLA-DR IHC	(Fig. 7D): n=14	8, mean age=54 yr	r, M:F=1.5			
	ALK	47	0	0	47	
	DUSP22	0	21	6	27	
	Other	0	47	27	74	
	Total	47	68	33	148	

Supplemental Table 2. Summary of ALCLs used in FFPE validation experiments*

IHC, immunohistochemistry.

*All cases studied in validation experiments were non-overlapping with the 31 cases in the frozen discovery set (supplemental Table 1).

†All IHC studies were performed on whole tissue sections except 32 cases tested for pSTAT3 from a prospective Danish cohort, for which tissue microarrays were analyzed.^{15,16}

Name	MSigDB Type	NES	Р	FDR
HALLMARK_IL6_JAK_STAT3_SIGNALING	HALLMARK	-2.463551	0	0
HALLMARK_TNFA_SIGNALING_VIA_NFKB	HALLMARK	-2.4395595	0	0
HALLMARK_EPITHELIAL_MESENCHYMAL_ TRANSITION	HALLMARK	-2.3364592	0	0
HALLMARK_COAGULATION	HALLMARK	-2.3157318	0	0
HALLMARK_INTERFERON_GAMMA_RESPONSE	HALLMARK	-2.287144	0	0
HALLMARK_INFLAMMATORY_RESPONSE	HALLMARK	-2.271289	0	0
HALLMARK_COMPLEMENT	HALLMARK	-2.252647	0	0
REACTOME_PLATELET_ACTIVATION_ SIGNALING_AND_AGGREGATION	REACTOME	-2.2501082	0	0
KEGG_ECM_RECEPTOR_INTERACTION	KEGG	-2.2365189	0	0
REACTOME_INTEGRIN_CELL_SURFACE_ INTERACTIONS	REACTOME	-2.2300467	0	0

Supplemental Table 3. Top gene sets negatively associated with ALCLs in Cluster 1

NES, normalized enrichment score; *P*, nominal *P*-value; FDR, false discovery rate q-value.

Name	MSigDB Type	NES	Р	FDR
HALLMARK_E2F_TARGETS	HALLMARK	3.0004435	0	0
HALLMARK_G2M_CHECKPOINT	HALLMARK	2.611709	0	0
HALLMARK_MYC_TARGETS_V1	HALLMARK	2.5923479	0	0
REACTOME_DNA_REPLICATION	REACTOME	2.3953528	0	0
REACTOME_CELL_CYCLE	REACTOME	2.3702123	0	0
REACTOME_MITOTIC_M_M_G1_PHASES	REACTOME	2.3683693	0	0
REACTOME_PROCESSING_OF_CAPPED_INTRON_ CONTAINING_PRE_MRNA	REACTOME	2.3569436	0	0
REACTOME_CELL_CYCLE_MITOTIC	REACTOME	2.3207977	0	1.04E-04
REACTOME_MRNA_PROCESSING	REACTOME	2.3102338	0	9.24E-05
REACTOME_CHROMOSOME_MAINTENANCE	REACTOME	2.3100226	0	8.32E-05

Supplemental Table 4. Top gene sets positively associated with ALCLs in Cluster 1

NES, normalized enrichment score; *P*, nominal *P*-value; FDR, false discovery rate q-value.

Case*	<i>DUSP22</i> Rearrangement	Time to Follow- up (months)	Status at Follow-up
1	Yes	92	Dead
2	No	1	Dead
9	No	38	Dead
10	Yes	188	Alive
13	No	1	Dead
29	Yes	95	Alive
31	Yes	73	Alive

Supplemental Table 5.	Clinical outcomes in	patients with systemic	ALCL in Cluster 1
-----------------------	----------------------	------------------------	-------------------

*Phenotypic features of these cases have been reported previously.⁶ See also supplemental Table 1. All cases were ALK-negative (see main manuscript, Figure 1A).

Characteristic	Value			
Age (yr)				
mean	59			
range	17-89			
Sex				
male	70			
female	35			
IPI				
0-2	42			
3-5	19			
missing	44			
DUSP22 rearrangement				
present	30			
absent	75			
pSTAT3 ^{Y705} immunohistochemistry				
positive [†]	46			
negative	59			

Supplemental Table 6. Characteristics of 105 systemic ALK-negative ALCLs evaluated for overall survival*

IPI, international prognostic index.

*Includes patients from both discovery set (n=15) and validation set (n=90). Cases from the discovery set correspond to cases 1, 2, 5, 10, 11, 13, 14, 15, 17, 19, 23, 24, 28, 29, and 31 in Supplemental Table 1.

†Based on published cutoff of $\geq 20\%$ nuclear staining.¹⁷

	Univariate analysis		Multivariate analysis			
Variable	Р	HR	CI95%	Р	HR	CI95%
Age (>60)	0.0021	2.70	[1.43, 5.26]	0.0335	2.06	[1.06, 4.13]
Sex (female)	0.3297	1.38	[0.72, 2.58]	0.8258	0.93	[0.46, 1.81]
IPI (0-2)	0.0475	0.50	[0.26, 0.99]	0.0076	0.33	[0.14, 0.74]
DUSP22-R (present)	<0.0001	0.18	[0.05, 0.45]	0.0001	0.14	[0.04, 0.41]
pSTAT3 (positive*)	0.3968	1.32	[0.69, 2.49]	0.9928	1.00	[0.47, 2.19]

Supplemental Table 7. Prognostic factors for overall survival in 105 systemic ALK-negative ALCLs

CI95%, 95% confidence interval; *DUSP22*-R, *DUSP22* rearrangement; HR, hazard ratio. *Based on published cutoff of \geq 20% nuclear staining.¹⁷

Affy Probe ID	Gene Symbol	Fold Change*	FDR†
208212_s_at	ALK	669.39	1.25213E-23
209369_at	ANXA3	115.395	4.75273E-07
210305_at	PDE4DIP	105.582	1.04126E-06
226145_s_at	FRAS1	95.9181	2.45539E-08
211372_s_at	IL1R2	83.1767	1.68122E-05
230496_at	AMER2	70.977	2.78768E-09
1552767_a_at	HS6ST2	64.9973	0.000118984
221111_at	IL26	51.4451	0.000197398
235465_at	AMER2	45.3223	2.46816E-09
219295_s_at	PCOLCE2	37.515	2.30121E-06
204105_s_at	NRCAM	31.4487	8.35519E-07
205872_x_at	PDE4DIP	29.3072	2.66545E-07
213338_at	TMEM158	29.1076	3.92559E-05
228580_at	HTRA3	28.3271	1.16482E-08
204811_s_at	CACNA2D2	27.1019	1.69182E-08
229435_at	GLIS3	27.0546	1.82841E-06
209700_x_at	PDE4DIP	26.3127	8.02019E-08
1553681_a_at	PRF1	25.5974	2.09494E-05
1557143_at	CSMD2	25.2701	2.7608E-09
205227_at	<i>IL1RAP</i>	24.5748	6.61719E-08
211751_at	PDE4DIP	24.2715	8.02007E-07
236984_at	C4orf26	24.1849	0.000244588
230258_at	GLIS3	23.749	2.80979E-05
202833_s_at	SERPINA1	22.6065	1.46031E-05
220603_s_at	MCTP2	20.7203	6.24267E-07
228285_at	TDRD9	20.6104	0.000147332
227055_at	METTL7B	19.5324	8.74266E-07
243541_at	IL31RA	18.7172	7.13968E-06
205458_at	MC1R	18.4522	1.39741E-06
209765_at	ADAM19	15.9154	1.14453E-05
205578_at	ROR2	15.7427	3.99299E-06
229951_x_at	LOC101060353	14.998	2.0775E-08
211429_s_at	SERPINA1	14.6205	8.27393E-06
229538_s_at	IQGAP3	14.3839	0.000067806
242931_at	LONRF3	13.4778	5.78943E-07
223991_s_at	GALNT2	12.957	4.11138E-07
1569095_at	LOC731424	12.2529	8.91369E-05
208211_s_at	ALK	12.0543	5.97251E-07
206341_at	IL2RA	11.7023	2.39215E-05
217787_s_at	GALNT2	10.8619	2.40142E-06
231514_at	Clorf94	10.7105	9.47922E-06
224507_s_at	MGC12916	10.6575	4.46437E-06
202856_s_at	SLC16A3	10.2489	7.08763E-05

Supplemental Table 8. Genes in ALK Signature

237461_at	NLRP7	10.0334	4.90624E-05
231118_at	ANKRD35	9.77106	5.43627E-05
218693_at	TSPAN15	9.20985	2.88604E-05
211026_s_at	MGLL	8.80714	4.88516E-05
222692_s_at	FNDC3B	8.76132	2.71516E-06
216620_s_at	ARHGEF10	8.65901	1.63233E-06
202464_s_at	PFKFB3	8.63605	2.14932E-05
222693_at	FNDC3B	8.27008	7.07582E-06
218618_s_at	FNDC3B	8.16665	5.8774E-07
217788_s_at	GALNT2	8.14349	2.27516E-06
228946_at	INTU	8.05283	7.52163E-07
1557523_at	ATP6AP1L	7.96348	0.000120045
224508_at	MGC12916	7.8976	5.37727E-06
239930_at	GALNT2	7.52359	5.4807E-08
219985_at	HS3ST3A1	7.21212	5.06385E-05
207357_s_at	GALNT10	7.21161	5.09135E-09
226944_at	HTRA3	6.55548	1.75569E-05
200770_s_at	LAMC1	6.55249	7.96629E-05
233016_at	LOC100506546	5.91107	0.00210425
218788_s_at	SMYD3	5.0459	7.58014E-06

*ALK-positive ALCL vs. ALK-negative ALCL (both systemic and primary cutaneous). †False discovery rate step up/down Q-value.

Affy Probe ID	Gene Symbol	Fold Change*	FDR †
213245_at	ADCY1	133.137	2.98121E-07
220565_at	CCR10	96.1915	8.57885E-07
1556096_s_at	UNC13C	86.7452	0.000101333
208059_at	CCR8	61.621	2.23946E-10
220138_at	HAND1	57.3219	9.54306E-09
218796_at	FERMT1	53.7862	1.30469E-06
219496_at	SOWAHC	38.9448	8.54478E-06
227034_at	SOWAHC	36.6142	2.42157E-06
209016_s_at	KRT7	35.3159	1.83446E-13
236222_at	MAATS1	33.8439	2.8991E-06
1556095_at	UNC13C	33.3021	0.000669274
235049_at	ADCY1	31.4285	1.32403E-06
228367_at	ALPK2	31.3028	5.44611E-05
60474_at	FERMT1	30.4465	1.5204E-06
230964_at	FREM2	30.1503	7.82223E-10
1553645_at	CCDC141	27.8437	1.63281E-05
210394_x_at	SSX4	25.2963	0.000708766
205893_at	NLGN1	24.574	2.94986E-12
236565_s_at	LARP6	23.126	5.38451E-05
208195_at	TTN	23.0428	0.000049739
219932_at	SLC27A6	22.4375	0.000340336
225996_at	LONRF2	20.8478	0.000590502
218651_s_at	LARP6	19.8317	8.23296E-08
1554528_at	MAATS1	19.7634	0.000041741
219400_at	CNTNAP1	19.7144	7.25695E-06
207176_s_at	CD80	19.5636	2.3089E-11
221606_s_at	HMGN5	18.4732	0.00147441
1556488_s_at	MAATS1	18.4504	1.90656E-05
1569969_a_at	UNC13C	17.8085	0.000838471
231963_at	ANKRD33B	17.6795	6.43555E-05
230782_at	SORD	17.2015	2.2089E-06
1554147_s_at	MAATS1	16.5533	3.04175E-05
1563933_a_at	PLD5	16.2737	0.000321549
227812_at	TNFRSF19	16.1246	0.000212158
231517_at	ZYG11A	16.0256	0.000028375
213342_at	YAP1	15.9626	1.67212E-08
1555689_at	CD80	15.5778	2.68972E-08
203661_s_at	TMOD1	15.1419	0.00180256
224895_at	YAP1	14.3545	1.9865E-06
203662_s_at	TMOD1	13.76	0.000235545
205978_at	KL	13.0683	0.000027388
230864_at	NIM1	13.0417	2.07252E-06
214720_x_at	SEPT10	13.008	1.17841E-06

Supplemental Table 9. Genes in DUSP22 Signature

231361_at	NLGN1	12.7358	2.21712E-07		
229603_at	BBS12	12.6859	0.000268725		
226864_at	PKIA	12.5919	6.14051E-06		
215189_at	KRT86	12.5202	3.5401E-06		
203088_at	FBLN5	12.4872	4.58398E-06		
205619_s_at	MEOX1	12.0361	6.85434E-06		
227177_at	CORO2A	11.8642	0.000678382		
226908_at	LRIG3	11.7454	2.24482E-06		
238755_at	RASSF10	11.0122	7.47932E-05		
230876_at	ZNF883	10.7791	4.18992E-05		
229774_at	CXXC4	10.5063	0.000197028		
1555719_a_at	MAATS1	10.4253	0.000245574		
213280_at	RAP1GAP2	10.1531	7.4983E-08		
1554519_at	CD80	10.0657	1.73774E-06		
221035_s_at	TEX14	9.81904	2.05795E-05		
228266_s_at	HDGFRP3	9.80324	0.000818756		
212698_s_at	SEPT10	9.64867	8.88833E-08		
229437_at	MIR155	9.33478	4.86986E-05		
226536_at	NSMCE2	9.09913	8.82073E-10		
1553663_a_at	NPB	8.98901	6.73369E-07		
211674_x_at	CTAGIA	8.78657	0.000394788		
1555370_a_at	CAMTA1	8.78596	8.34753E-06		
205599_at	TRAF1	8.77786	5.32546E-08		
230698_at	CALN1	8.67295	0.00274279		
232010_at	FSTL5	8.64239	0.000335892		
215733_x_at	CTAG2	8.63384	0.00105744		
213268_at	CAMTA1	8.62828	3.24934E-05		
214642 x at	MAGEA10-	8 55268	0.00139503		
214042_A_at	MAGEA5	0.33200	0.00139303		
215543_s_at	LARGE	8.47441	3.10083E-07		
239178_at	FGF9	8.43953	5.43345E-06		
202936_s_at	SOX9	8.3515	0.00138447		
222061_at	<i>CD58</i>	8.15296	2.06624E-05		
220277_at	CXXC4	8.1411	0.000120937		
219740_at	VASH2	8.13114	0.00215882		
219670_at	BEND5	8.03367	0.000670229		
244764_at	HIVEP3	8.02761	2.52698E-06		
234980_at	TMEM56	8.01249	0.00292626		
235333_at	B4GALT6	7.90906	1.25696E-05		
228080_at	LAYN	7.68927	0.000211574		
1555168_a_at	CALN1	7.64897	6.97583E-06		
229778_at	C12orf39	7.60338	2.34701E-06		
211470_s_at	SULT1C2	7.58552	0.000106616		
204612_at	PKIA	7.56383	0.000203188		
229545_at	FERMT1	7.40012	1.72114E-06		
238870_at	KCNK9	7.23953	0.00234992		

235911_at	MFI2	7.2393	0.00026593
239282_at	CCDC41	7.09754	7.31864E-05
228796_at	CPNE4	6.98846	0.000487359
227506_at	SLC16A9	6.95895	0.000112276
217127_at	СТН	6.89798	0.00120004
206508_at	<i>CD70</i>	6.71923	0.000172111
228061_at	CCDC126	6.63146	7.25408E-06
203358_s_at	EZH2	6.55301	2.40315E-05
228547_at	NRXN1	6.30992	0.000434215
218625_at	NRN1	6.27098	0.00118673
228653_at	SAMD5	6.16281	1.40148E-06
209525_at	HDGFRP3	6.01183	3.17432E-05
228414_at	KCNMA1	5.85987	4.45097E-06
203771_s_at	BLVRA	5.82788	0.000436772
205538_at	CORO2A	5.72834	0.0005575
239975_at	HLA-DPB2	5.70986	0.000861296
210018_x_at	MALT1	5.48523	1.287E-07
208309_s_at	MALT1	5.38762	3.13025E-07
216945_x_at	PASK	5.35804	2.25552E-05
206376_at	SLC6A15	5.33454	7.68194E-06
235977_at	LONRF2	5.17776	3.98329E-05
225532_at	CABLES1	5.10685	5.12974E-05
231188_at	ZSCAN2	4.86644	9.46276E-06
232487_at	SFT2D1	4.82013	0.000627543
227166_at	DNAJC18	4.81288	1.43446E-06
206085_s_at	СТН	4.58973	0.00167605
216323_x_at	TUBA3C	4.52398	3.8899E-06
200824_at	GSTP1	4.49254	0.000232085

*ALCLs with *DUSP22* rearrangement vs. ALCLs without *DUSP22* rearrangement. †False discovery rate step up/down Q-value.

	Number of DMRs (Frozen RRBS Data)				Number of DMCs (FFPE Array Data)			
	DUSP22 vs. no DUSP22		DUSP22 vs. ALK		DUSP22 vs. no DUSP22		DUSP22 vs. ALK	
Region type	Hyperm.	Hypom.	Hyperm.	Hypom.	Hyperm.	Hypom.	Hyperm.	Hypom.
Promoter	313	4729	1066	1863	2750	13182	4801	7098
3'UTR	93	567	256	612	353	2543	611	1518
5'UTR	20	170	278	431	2201	9533	3713	5314
Intron	1739	12259	4822	18194	n/a	n/a	n/a	n/a
Exon	389	3750	1397	4963	n/a	n/a	n/a	n/a
Body	n/a	n/a	n/a	n/a	7410	46549	12693	26705
CpGi	268	7868	843	1567	1217	5718	3866	2832
CpGs	733	6404	1216	3505	3607	22598	6205	13685
LTR	220	1962	209	2203	591	6415	1049	3331
LINE	200	1572	285	1903	917	8870	1470	4578
SINE	1279	7463	982	6169	719	5993	1200	3418

Supplemental Table 10. Summary of differential methylation in ALCLs with DUSP22 rearrangements

CpGi, CpG island; CpGs, CpG shore; DMC, differentially methylated CpG probe; DMR, differentially methylated region; hyperm., hypermethylated; hypom., hypomethylated; LINE, long interspersed nuclear element; LTR, long terminal repeat; RRBS, reduced representation bisulfite sequencing; SINE, short interspersed nuclear element; UTR, untranslated region.

SUPPLEMENTAL FIGURES

Supplemental Figure 1. Expression of *STAT3* **and representative target genes.** (A) Cases in Cluster 1 containing all ALCLs with *DUSP22* rearrangements show decreased expression of *STAT3* as well as the known STAT3 targets *GRZB* (encoding granzyme B) and *IL2RA* (encoding CD25). (B) ALCLs with *DUSP22* rearrangements similarly show lower expression of all 3 genes than ALCLs without *DUSP22* rearrangements. Data are shown as means \pm standard deviations. *, *P* < 0.05; **, *P* < 0.01; ***, *P* < 0.001; ****, *P* < 0.001 (Wilcoxon test).

Supplemental Figure 2. Associations between *DUSP22* rearrangements and pSTAT3 expression in systemic and cutaneous ALK-negative ALCLs. The low expression of pSTAT3 in most cases of *DUSP22*-rearranged ALCL was similar for both systemic ALK-negative ALCL and primary cutaneous ALCL. Means \pm standard deviations were: systemic ALK-negative ALCL without *DUSP22* rearrangement ("other"), 40.9 \pm 36.1%; systemic ALK-negative ALCL with *DUSP22* rearrangement, 8.4 \pm 22.5%; primary cutaneous ALCL without *DUSP22* rearrangement, 8.4 \pm 22.5%; primary cutaneous ALCL with *DUSP22* rearrangements, 7.4 \pm 14.1%. *P* values are shown (Wilcoxon test).

Supplemental Figure 3. Differential methylation between ALK-negative ALCLs with **DUSP22 rearrangements and ALK-positive ALCLs.** (A) Reduced representation bisulfite sequencing (RRBS) of DNA extracted from frozen tissue in the discovery set. Differentially methylated regions (DMRs) reflect comparison of ALK-negative ALCLs with DUSP22 rearrangements versus ALK-positive ALCLs and show marked hypomethylation in DUSP22rearranged ALCLs across all types of genomic regions, including promoters, 3' and 5' untranslated regions (UTRs), introns, exons, CpG islands (CpGi), and CpG shores (CpGs). (B) Hypomethylation in DUSP22-rearranged ALCLs in the discovery set involves all types of noncoding regions, including long terminal repeats (LTRs), long interspersed nuclear elements (LINEs), and short interspersed nuclear elements (SINEs). (C) Histogram showing the distribution of methylation changes $[\Delta(\beta)]$ for DMRs across the genome in the discovery set. (D) MethylationEPIC BeadChip array analysis of DNA extracted from FFPE tissue in an independent validation set. Designations are similar to panel (A) except differentially methylated CpG probes (DMCs) are shown and intron and exon data are represented together as gene bodies. DUSP22-rearranged ALCLs are hypomethylated across all types of genomic regions. (E) Hypomethylation in DUSP22-rearranged ALCLs in the validation set involves all types of non-coding regions. (F) Histogram showing the distribution of methylation changes $[\Delta(\beta)]$ for DMRs across the genome in the validation set. **** $P \leq 0.0001$.

Supplemental Figure 4. Baseline DNA methylation in ALCL cell lines. Frequencies of beta values indicating baseline DNA methylation are shown for each of the cell lines studied. Although FE-PD bears a *DUSP22* rearrangement,¹³ it demonstrated the highest degree of methylation among the ALCL cell lines. This is in contrast to tissue samples of ALCLs with *DUSP22* rearrangements, which show marked hypomethylation compared to ALCLs without *DUSP22* rearrangements (main text, Figure 4). This discrepancy likely represents an *in vitro* phenomenon, as many cancer cell lines demonstrate hypermethylation compared to the primary tumors from which they are derived.¹⁸ Similar to other ALCL cell lines, FE-PD demonstrated up-regulation of the DUSP22 gene expression signature when hypomethylated pharmacologically using decitabine (main text, Figure 5A).

Immunohistochemistry for PD-1 in ALK-positive ALCL and *DUSP22*-rearranged ALCL shows scattered positive non-neoplastic cells in the microenvironment. Original magnification, $400 \times$. (B) No significant difference was observed among genetic subtypes in the mean number of non-neoplastic PD-1-positive cells per high-powered field (hpf). N = 75; Mean ± S.D. for ALK, 83 ± 20; DUSP22, 106 ± 108; Other, 118 ± 158; *P* = 0.85 (Kruskal-Wallis test).

SUPPLEMENTAL REFERENCES

1. Akbani R, Ng PK, Werner HM, et al. A pan-cancer proteomic perspective on The Cancer Genome Atlas. *Nat Commun.* 2014;5:3887.

 Tibes R, Qiu Y, Lu Y, et al. Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. *Mol Cancer Ther*. 2006;5:2512-21.

3. Sharma A, Oishi N, Boddicker RL, et al. Recurrent STAT3-JAK2 fusions in indolent T-cell lymphoproliferative disorder of the gastrointestinal tract. *Blood*. 2018;131:2262-6.

4. Kalari KR, Nair AA, Bhavsar JD, et al. MAP-RSeq: Mayo Analysis Pipeline for RNA sequencing. *BMC Bioinformatics*. 2014;15:224.

5. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. *Bioinformatics*. 2013;29:15-21.

6. Hu G, Dasari S, Asmann YW, et al. Targetable fusions of the FRK tyrosine kinase in ALKnegative anaplastic large cell lymphoma. *Leukemia*. 2018;32:565-9.

7. Feldman AL, Law ME, Inwards DJ, Dogan A, McClure RF, Macon WR. PAX5-positive Tcell anaplastic large cell lymphomas associated with extra copies of the PAX5 gene locus. *Mod Pathol.* 2010;23:593-602.

8. Feldman AL, Dogan A, Smith DI, et al. Discovery of recurrent t(6;7)(p25.3;q32.3) translocations in ALK-negative anaplastic large cell lymphomas by massively-parallel genomic sequencing. *Blood*. 2011;117:915-9.

9. Walker DL, Bhagwate AV, Baheti S, et al. DNA methylation profiling: comparison of genome-wide sequencing methods and the Infinium Human Methylation 450 Bead Chip. *Epigenomics*. 2015;7:1287-302.

10. Akalin A, Kormaksson M, Li S, et al. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. *Genome Biol.* 2012;13:R87.

11. Fortin JP, Triche TJ, Jr., Hansen KD. Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi. *Bioinformatics*. 2017;33:558-60.

 Bose M, Wu C, Pankow JS, et al. Evaluation of microarray-based DNA methylation measurement using technical replicates: the Atherosclerosis Risk In Communities (ARIC) Study. *BMC Bioinformatics*. 2014;15:312.

13. Vasmatzis G, Johnson SH, Knudson RA, et al. Genome-wide analysis reveals recurrent structural abnormalities of TP63 and other p53-related genes in peripheral T-cell lymphomas. *Blood*. 2012;120:2280-9.

14. Wang X, Dasari S, Nowakowski GS, et al. Retinoic acid receptor alpha drives cell cycle progression and is associated with increased sensitivity to retinoids in T-cell lymphoma. *Oncotarget*. 2017;8:26245-55.

15. Pedersen MB, Danielsen AV, Hamilton-Dutoit SJ, et al. High intratumoral macrophage content is an adverse prognostic feature in anaplastic large cell lymphoma. *Histopathology*. 2014;65:490-500.

16. Pedersen MB, Hamilton-Dutoit SJ, Bendix K, et al. DUSP22 and TP63 rearrangementspredict outcome of ALK-negative anaplastic large cell lymphoma: a Danish cohort study. *Blood*.2017;130:554-7.

17. Khoury JD, Medeiros LJ, Rassidakis GZ, et al. Differential expression and clinical significance of tyrosine-phosphorylated STAT3 in ALK+ and ALK- anaplastic large cell lymphoma. *Clin Cancer Res.* 2003;9:3692-9.

18. Smiraglia DJ, Rush LJ, Fruhwald MC, et al. Excessive CpG island hypermethylation in cancer cell lines versus primary human malignancies. *Hum Mol Genet*. 2001;10:1413-9.