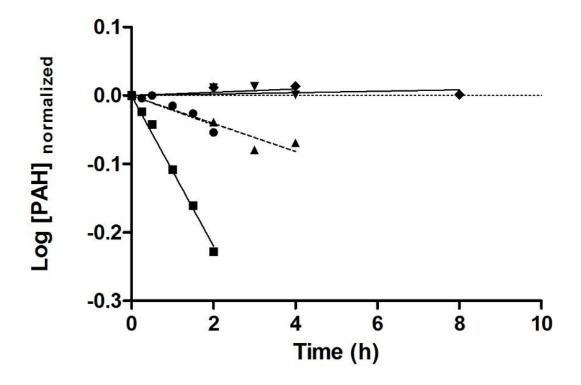
SUPPLEMENTAL DATA


Fay, K.A., et al.

Comparison of trout hepatocytes and liver S9 fractions as in vitro models for predicting hepatic clearance in fish

Table S1. Measured substrate concentrations (μM ; mean \pm SD) across studies

	Hepatocyte in vitro ^a	S9 in vitro ^b	Isolated perfused livers ^b
Naphthalene	2.70 ± 0.20	2.37 ± 0.14	2.29 ± 0.17
Fluorene	0.93 ± 0.18	0.77 ± 0.04	0.81 ± 0.24
Anthracene	0.14 ± 0.01	0.14 ± 0.01	0.14 ± 0.04
Phenanthrene	1.50 ± 0.20	1.26 ± 0.04	1.14 ± 0.16
Pyrene	0.25 ± 0.02	0.36 ± 0.03	0.27 ± 0.03
Benzo[a]pyrene	0.16 ± 0.01	0.15 ± 0.00	0.11 ± 0.01

^aPresent study ^bData provided in Nichols et al. [19]

Figure S1. Effect of aminobenzotriazole (ABT) and ketoconazole (Ket) on biotransformation activity of hepatocyte suspensions. Enzymatic inhibition using either 1 mM ABT (dots) or 0.5 uM Ket (up triangles) was incomplete, as evidenced by diminished but measurable clearance of fluorene (FLU). The use of 1 mM ABT + 0.5 uM Ket resulted in complete inhibition of fluorene metabolism up to 4 h (down triangles). Data for the active depletion of fluorene by the same lot of hepatocytes (no inhibitors) is also provided (squares). The depletion of benzo[a]pyrene (BAP) was similarly inhibited by the combination of ABT and Ket for up to 8 h (diamonds). BAP was the most rapidly depleted test chemical used in this study.

Table S2. Enzymatic characterization of cryopreserved hepatocytes obtained from individual fish, including measured in vitro intrinsic clearance (CL_{IN VITRO,INT,HEP}) of 6 polycyclic aromatic hydrocarbons

					CL _{IN} VITRO,INT,HEP c						
Cell lot	Sex	$EROD^a$	UGT^{b}	GST^{b}	NAPH	FLU	ANTH	PHEN	PYR	BAP	
1	male	5.8	0.21	326	0.019	0.35	0.51	0.27	3.54	0.66	
2	female	6.4	0.32	299	0.021	0.19	0.30	0.18	3.13	0.57	
3	male	7.6	0.3	276	0.027	0.38	0.16	0.18	1.57	0.51	
4	female	5.0	0.28	239	0.033	0.50	0.20	0.16	1.89	0.34	
5	male	3.3	0.40	227	0.013	0.24	0.32	0.19	3.76	0.61	
6	female	5.0	0.42	174	0.011	0.20	0.30	0.23	3.28	0.56	
7	female	4.2	0.31	268	0.007	0.27	0.38	0.23	4.70	0.61	
8	male	9.1	0.25	271	0.024	0.36	0.35	0.22	3.63	0.41	
9	male	9.9	0.29	257	0.011	0.18	0.33	0.27	2.43	0.57	

EROD = ethoxyresorufin-O-deethylase; UGT = uridine diphosphate (UDP)-glucuronosyltransferase; GST = glutathione-S-transferase; NAPH = naphthalene; FLU = fluorene; ANTH = anthracene; PHEN = phenanthrene; PYR = pyrene; BAP = benzo[a]pyrene

^a(pmol/min/mg); ^b(nmol/min/mg); ^c(mL/h/10⁶ cells)