Systems biology approach reveals a link between
MTORC1 and G2/M DNA damage checkpoint recovery

Hsieh et al.



Supplementary Information-Table

Supplementary Table 1:The top network functions and their molecules identified from
IPA

Network functions Molecules Score #Molecules
Cell death and survival, @AKT1,AR,BAD BCL2L1,BCL2L11,BECN1, 79 35
cancer, organismal CAV1,CDKN1A,CDKN1B,CHEK1,EGFR,

injury and abnormalities ERBB2,ERBB3,FOXM1,FOX03,MAP2K1,
MET,MSH6,MTOR,PARP1,PCNA,PIK3CA,
PIK3R1,RAF1,RB1,RICTOR,RPS6,
RPS6KA1,SRC,STMN1,YAP1,YBX1,
YWHAB,YWHAE,YWHAZ

Cell death and survival, BAK1,BID,BRCA2,CASP7,CCNB1,CCND1, 47 25

cellular development, CDH1,CTNNB1,DVL3,EIFAEBP1,FASN,

cellular growth and GAPDH,LCK,MAPK1,MAPK8,MAPK14,

proliferation NFKB1,PDCD4,PECAM1,PRKCD,RPTOR,
SETD2,SMAD4,SNAI2,SRSF1

Supplementary Table 2: Oligonucleotides used for gRT-PCR and ChIP-gPCR
Oligonucleotides for gRT-PCR

Gene name Primer Sequence (5’-3") Product

PLK1 F GGCAACCTTTTCCTGAATGA 103 bp
R TCCCACACAGGGTCTTCTTC

CCNB1 F TTGGGGACATTGGTAACAAAGTC 226 bp
R ATAGGCTCAGGCGAAAGTTTTT

ACTB F GAGCACAGAGCCTCGCCTTT 113 bp
R

TCATCATCCATGGTGAGCTG

Oligonucleotides for ChIP-gPCR

Gene name Primer Sequence (5’-3") Promoter region

PLK1 F GTAACGTTCCCAGCGCCG -60 ~ +63 bp
R CAGCTTCCCTGCAGTCACTG

CCNB1 F CCAATAAGGAGGGAGCAGTG +86 ~+187 bp
R GGACCTACACCCAGCAGAAA

F: forward; R: reverse



Supplementary Information-Figure

Supplementary Figure 1
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Supplementary Figure 1: The mathematics-based method is modified and applied for
RPPA data analysis

a The top ten significant canonical pathways enriched with molecules from our screened
RPPA dataset were calculated in IPA. The ratio indicated how many molecules in our RPPA
dataset were associated with the specific pathway. b, ¢ The flow charts demonstrate how we
found potential targets and pathways in MATLAB. Briefly, we used the main program
“main.m” to control subroutines (all other “.m” files). d The graph exemplifies how the Ford-
Fulkerson algorithm works and how we defined the terms we used in our programs.
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Supplementary Figure 2: The function of mTOR kinase in G2/M checkpoint recovery is
not cell-type specific

a, ¢ mTOR was depleted by two individual siRNA oligos (si-mTOR #1 and #2) in U20S
cells, and the experimental design was the same as Fig. 2c, e, and f. b, d We depleted mTOR
by either shRNA or siRNA in HCT116 cells and treated cells with IR (7 Gy) plus 2 uM
paclitaxel for Western blotting and mitotic entry analysis. e Efficiency of mTOR inhibition
by rapamycin or KU0063794 was detected by Western blotting. The mitotic cell plots are
representative plots of the results shown in Fig. 2g. The numbers indicate the percentages of
p-H3—positive stained cells detected by flow cytometry. f The diagrams illustrate genomic
structures of mTOR conditional knock-in cell line (D2338A-cKI) and primers (black arrows)
identifying allele 1 and Cre-excised allele 2. g We followed the manufacturer’s instructions
to generate cells with mTOR-kinase-dead mutation (D2338A) using the Cre-Lox
recombination system. PCR products on the agarose gel indicated efficiency of Cre
recombinase. h The mitotic cell plots are representative plots of the results of the
experiments described in Fig. 2h, i. si-ctrl and si-mTOR: cells transfected with non-target
control siRNA and mTOR siRNA, respectively; ctrl: control; error bars: mean £ SEM; n =3
independent experiments; *p < 0.05; two-tailed unpaired Student t tests
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Supplementary Figure 3: mTOR does not affect IR-induced checkpoint activation and
DNA damage repair but does regulate checkpoint recovery

a U20S cells were transfected with or without siRNA and cells were collected at different
time points after IR for the comet assay. Representative images showed the changes of comet
tails after IR treatment. The scale bar indicates the distance is 10 um. We counted 50 cells in
each group, and the percentages of damaged cells in each group were analyzed. b U20S cells
transfected with siRNAs were collected after IR (7 Gy) for the kinetics of DNA damage
response. ¢ PLK1 mRNA levels in U20S cells transfected with siRNAs after IR (7 Gy) and 2
uM paclitaxel treatment were measured by quantitative reverse transcription-PCR as
described in Fig. 3a, b. d Western blotting shows expression of the control vector, wild-type
MTOR (MTOR-WT), and kinase-dead mTOR (mTOR-KD) constructs used in Fig. 3d. e We
treated KDM4B-depleted HCT116 cells with IR (7 Gy) plus 2 uM paclitaxel for Western
blotting. f, g Different amounts of KDM4B (0.2x or 1x) were overexpressed in mTOR-
depleted U20S cells and cells were then treated with IR plus paclitaxel for Western blotting.
The graph in g is the quantitative results of cyclin B1 expression. h U20S cells were
pretreated with the AKT inhibitor MK2206 followed by IR and paclitaxel for Western
blotting. i Rapamycin-pretreated U20S cells were treated with the proteasome inhibitor
MG132 to detect protein expression. j Quantitative ChIP at the CCNB1 transcription
regulation region was performed at different time points as described in Fig. 3i-k. Mock:
cells incubated with only the transfection reagent; si-ctrl, si-Raptor, si-Rictor, and si-
KDM4B: cells transfected with non-target control siRNA, Raptor, Rictor, and KDM4B
SiRNA, respectively; R-IGG: normal rabbit 1gG; error bars: mean = SD; n = 3 independent
experiments; *p < 0.05; two-tailed unpaired Student t tests
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Supplementary Figure 4: TSC2-deficient cells are sensitive to the combination of
MK1775 (the WEEL1 inhibitor) with BMN673 (the PARP inhibitor)

a MEFs were treated as described in Fig. 4f and stained with cytochrome c. The percentages
of apoptotic cells were calculated based on the positive staining of cytochrome ¢ and nucleus
morphology. The scale bar in the representative images is 20 um. b The representative
images for Fig. 4h are shown here. The scale bar indicates the distance is 10 um. ¢ Cells were
exposed to IR (7Gy) for TSC2 and p53 protein expression. d MEFs were incubated with 50
nM MK1775 or/and 50 nM BMNG673 for 60 hours for apoptosis assay. Quantitative results of
apoptotic cells were shown in the bar graph. e ELT3 cells were treated with 50 nM MK1775
or/and 20 nM BMNG673 for 72 hours and then subjected to apoptosis assay. f ELT3 cells were
incubated with 20 nM MK1775 or/and 10 nM BMNG673 for ten days for colony formation
assay. Cell viability was the ratio of treated to untreated colonies in each line. g ELT3 cells
were harvested directly without treatment for Western blotting. TSC2 +/+: Tsc2*/*, Tsc2 wild-
type; TSC2 -/-: Tsc2-, Tsc2 null; p53 -/-: p53 deficient; ELT3-V3: Tsc2-null Eker rat uterine
leiomyoma cells with the control vector; ELT3-T3: Tsc2-null ELT3 cells reexpressing Tsc2;
ETL3-V3R: rapamycin-resistant ELT3-V3 cells; ctrl: control; error bars: mean = SD; n = 3
independent experiments; *p < 0.05; two-tailed unpaired Student t tests
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Supplementary Figure 5: Rapamycin-resistant TSC2-deficient cells remain sensitive to
WEEL inhibition

a, b Rapamycin sensitivity in ELT3 cells used in Fig. 4i was measured by MTT assay and the
colony formation assay. ¢ Rapamycin was withdrawn from cell culture medium in the
“ELT3-V3R no rapa” group for two weeks before the colony formation assay. d, e MEFs and
ELT3 cells were stained with trypan blue and counted after two-day drug treatment. The
graphs represent the ratio of cell numbers to the control group in each cell line. f Drug
sensitivity was measured by the colony formation assay. Cell culture media with indicated
drugs were changed every three days. g, h ELT3 cells treated with different concentrations of
rapamycin for 16 hours were collected for Western blotting and RPPA data analysis. Proteins
related to the mTOR signaling pathway were analyzed. ELT3-V3: Tsc2-null Eker rat uterine
leiomyoma cells with the control vector; ELT3-T3: Tsc2-null ELT3 cells reexpressing Tsc2;
ETL3-V3R: rapamycin-resistant ELT3-V3 cells; TSC2 KO: Tsc27-, Tsc2-null MEFs; TSC2
KO + rescue: TSC2 KO MEFs reexpressing Tsc2; ctrl: control; rapa: rapamycin; error bars:
mean + SD; n = 3 independent experiments; *p < 0.05; two-tailed unpaired Student t tests



Supplementary Figure 6-18: Uncropped Western blots
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Supplementary Figure 15
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