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Supplementary Material
Let Mi be a mathematical model, among a set M of parametric model classes, characterized as

Mm : Am (θ m,φ m,Sm) = 0, 1≤ m≤ 3, (1)

where Am denotes the operator defining the model of interest, θ m ∈ Θm is the vector of parameters for model Mm with Θm
being the corresponding parameter space of the model, φ m is the vector of solution of the forward problem, and Sm is the
scenario in which the model is applied. In this work, φ m, θ m, and Am, 1≤ m≤ 3, are defined as

φ 1 = {φV}, θ 1 = {λapop}, A1(θ 1,φ 1) =
dφV

dt
=−λapopφV , (2)

φ 2 = {φV}, θ 2 = {λapop,λprol ,K}, A2(θ 2,φ 2) =
dφV

dt
= λprolφσ φV

(
1− φV

K

)
−λapopφV , (3)

φ 3 = {φT ,φN}, θ 3 = {λapop,λprol ,K,λV N}, A3(θ 3,φ 3) =


dφT

dt
= λprolφσ (φT −φN)

(
1− φT

K

)
− λapop(φT −φN),

dφN

dt
= λV N(φT −φN).

(4)

The scenarios are developed such that their complexity builds upon the previous scenarios, and they are defined as

• S1 - calibration of the apoptosis rate: the cells are treated with Mitomycin C to inhibit cell proliferation;

• S2 - calibration of the proliferation rate: the cells are not treated with Mitomycin C and are allowed to proliferate;

• S3 - calibration of the necrosis rate: the viability of the cells is measured under different nutrient availability.

The observational data collected in Sm are denoted ym. Moreover, the predictions of ym by model Mm are denoted dm(θ m).
Based on the assumptions of a Gaussian noise-inadequacy model and independent and identically distributed samples of
experimental data, the likelihood function is constructed as:

π(ym|θ m) =
Nt

∏
j=1

Nr

∏
i=1

1√
2πσ2

e
−
(yi j

m−d j
m(θ m))

2

2σ2 , (5)

where Nt is the number of days measured, Nr is the number of replicates per day, and σ is an hyperparameter (the standard
deviation for the Gaussian) related to the size of the noise.



The Bayesian update in model parameters θ m is furnished by the posterior probability density π(θ m|ym)

π(θ m|ym) =
π(ym|θ m)π(θ m)

π(ym)
, (6)

where the denominator, called the model evidence, is the normalizing factor

π(ym) =
∫

Θm

π(ym|θ m)π(θ m)dθ m. (7)

In Eq. (6), π(θ m) denote the prior probability densities on parameters θ m. The posterior is computed through a multilevel
Monte Carlo method that is available in the library QUESO?. During the simulation, each level of this Monte Carlo algorithm is
composed by 200,000 samples. The calibration of the models involve the following steps:

1. Initially, to calibrate M1 and compute the posterior π(θ 1|y1), as no prior information is known about the parameter
λapop, it is assumed an uniform prior λapop ∼U (ap,bp), where ap and bp are the bounds of the parameter.

2. To calibrate M2, the apoptosis prior is λapop ∼ π(θ 1|y1). The priors for the parameters λprol and K are assumed as
uniform. Using Eq. (6), the posterior π(θ 2|y2) is computed.

3. Finally, to calibrate M3, π(θ 2|y2) is used as prior to λapop, λprol , and K. The λV N prior is assumed as uniform when
computing the posterior π(θ 3|y3).

After each step, we sample 200,000 values from the posterior and run the forward model. The difference between the
forward model solution and the observational data is given by

dt(Ft ,St) =

∫
∞

0 |Ft(φV )−St(φV )|dφV

ȳt
, (8)

where Ft(φV ) and St(φV ) are the cumulative distribution functions (cdfs) for the model and the observational data at day t, and
ȳt is the mean tumor volume fraction of the four biological replicates. An illustration of this metric is presented in Figure 1,
where the model M1 was calibrated. The experimental data cdf is represented by a step function in blue, while the red line
represents the cdf of the solution of the calibrated model M1. The green area represents the numerator of Eq. (8), which, in this
case, represents a difference of 0.012 in viable tumor volume fraction. The denominator at day 3 in S1 is 0.063, leading to
dt(Ft ,St) = 0.19. This result means that the distance between the two cdfs is 19% of the average volume fraction measured at
day 3.

Viable Tumor Volume Fraction
0 0.1 0.2 0.3

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
Fu

nc
tio

n

0

0.2

0.4

0.6

0.8

1
Experimental Data
Calibrated Model

Figure 1. In blue, the cumulative distribution function (cdf) of the experimental data measured at day 3. The cdf is built as a
step function with the four replicates measured. In red, the cdf of the forward model computed using 200,000 samples of the
calibrated parameters. In green the distance between the calibrated model and the experimental data. The average distance
between the data and the model viable tumor volume fraction is 0.012, which corresponds to 19% of the average value
measured experimentally.
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