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In Brief

Kinetochores mediate chromosome
attachment to the mitotic spindle. In a
biochemical tour-de-force, Pesenti et al.
reconstituted a 26-subunit kinetochore
particle and characterized its structural
organization. The CENP-Q subunit was
shown to increase the microtubule-
binding affinity of kinetochores, revealing
that the kinetochore-spindle interaction is
more complex than hitherto believed.
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SUMMARY

The approximately thirty core subunits of kineto-
chores assemble on centromeric chromatin con-
taining the histone H3 variant CENP-A and connect
chromosomes with spindle microtubules. The
chromatin proximal 16-subunit CCAN (constitutive
centromere associated network) creates a me-
chanically stable bridge between CENP-A and the
kinetochore’s microtubule-binding machinery, the
10-subunit KMN assembly. Here, we reconstituted
a stoichiometric 11-subunit human CCAN core that
forms when the CENP-OPQUR complex binds to a
joint interface on the CENP-HIKM and CENP-LN
complexes. The resulting CCAN particle is globular
and connects KMN and CENP-A in a 26-sub-
unit recombinant particle. The disordered, basic
N-terminal tail of CENP-Q binds microtubules and
promotes accurate chromosome alignment, coop-
erating with KMN in microtubule binding. The
N-terminal basic tail of the NDC80 complex, the
microtubule-binding subunit of KMN, can function-
ally replace the CENP-Q tail. Our work dissects
the connectivity and architecture of CCAN and re-
veals unexpected functional similarities between
CENP-OPQUR and the NDC80 complex.

INTRODUCTION

Accurate chromosome segregation in mitosis and meiosis is
of paramount importance for cellular and organismal viability.
The ultimate goal of chromosome segregation is to endow
the two daughter cells with a full complement of chromosomes,
preventing the considerable burdens associated with whole-

chromosome aneuploidy (Santaguida and Amon, 2015). Chro-
mosome segregation requires the establishment of a structure
named the mitotic spindle, which consists of microtubules,
microtubule-associated proteins, and motors that harness the
energy of ATP hydrolysis to organize microtubules in dense anti-
parallel arrays and to focus them at the spindle poles (Heald and
Khodjakov, 2015).

Crucial for the chromosome segregation process is the attach-
ment of chromosomes to the mitotic spindle. This takes place at ki-
netochores, large protein complexes built on a stretch of special-
ized chromatin named the centromere (Pesenti et al., 2016). A
conserved feature of centromeric chromatin is the presence of a
histone H3 variant named centromeric protein A (CENP-A, or
CenH3), which interacts with histones H4, H2A, and H2B in a
specialized nucleosome particle. Original work with anti-centro-
mere antibodies, and more recent proteomic analyses of CENP-
A and its binding partners, identified 16 vertebrate proteins now
collectively identified as the constitutive-centromere-associated
network (CCAN, Figure 1A), reflecting association of these proteins
with kinetochores during the entire cell cycle (Earnshaw and Roth-
field, 1985; Foltz et al., 2006; Hori et al., 2008a; Izuta et al., 2006;
Obuse et al., 2004; Okada et al., 2006; Saitoh et al., 1992).
These CENP-A proximal or “inner kinetochore” subunits include
CENP-C, CENP-H, CENP-I, CENP-K, CENP-L, CENP-M,
CENP-N, CENP-O, CENP-P, CENP-Q, CENP-R, CENP-S,
CENP-T, CENP-U, CENP-W, and CENP-X. Most of these proteins
are conserved in eukaryotes, including the yeast Saccharomyces
cerevisiae, where they are generally identified as the Ctf19 complex
(McAinsh and Meraldi, 2011; Perpelescu and Fukagawa, 2011;
Westermann and Schleiffer, 2013; Westhorpe and Straight, 2013).

The CCAN subunits are organized in distinct subcomplexes,
including the CENP-T:CENP-W complex (herewith CENP-TW),
proposed to form a nucleosome-like particle with CENP-S:
CENP-X (CENP-SX) (Hori et al., 2008a; Nishino et al., 2012);
the CENP-L:CENP-N (CENP-LN) complex (Carroll et al., 2009,
2010); the CENP-H:CENP-I:CENP-K:CENP-M (CENP-HIKM)
complex (Basilico et al., 2014; Klare et al., 2015; Okada et al.,
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2009; Pekgoz Altunkaya et al., 2016); and the CENP-O:
CENP-P:CENP-Q:CENP-U:CENP-R (CENP-OPQUR) complex
(Hori et al., 2008b) (Figure 1A).

CENP-C, which based on sequence prediction methods is
largely intrinsically disordered, may function as a spatial orga-
nizer of the CCAN, binding to the CENP-HIKM and CENP-LN
complexes (Hinshaw and Harrison, 2013; Klare et al., 2015; Mc-
Kinley et al., 2015; Nagpal et al., 2015; Pentakota et al., 2017;
Weir et al., 2016). The resulting 7-subunit assembly (CENP-
CHIKMLN) establishes multiple contacts with the CENP-A nucle-
osome through CENP-A-selective binding regions in CENP-C
and CENP-N (Cao et al., 2018; Carroll et al., 2009, 2010; Chittori
et al., 2018; Falk et al., 2016; Guo et al., 2017; Kato et al., 2013;
Pentakota et al., 2017; Tian et al., 2018; Weir et al., 2016).

Acting as bridge for the microtubule binding “outer kineto-
chore”, CCAN contributes also to the mechanical stability of
kinetochores (Suzuki et al., 2014). The CENP-TW complex,
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complete CC content. The C-terminal halves of
CENP-O and CENP-P contain tandem RWD do-
mains (Schmitzberger and Harrison, 2012).

(C) Coomassie-stained SDS-PAGE gel of recom-
binant wild-type or mutant CENP-OPQUR com-
plexes and subcomplexes used in this study. The
asterisk indicates an impurity.

(D) Representative images show the interphase
localization of recombinant CENP-OPQUR labeled
with Alexa488 (green) after electroporation into
HelLa cells. CREST immunostaining identifies
kinetochores. Scale bar, 5 pm.

(E) Representative class averages of negatively
stained CENP-OPQU.

(F) Representative class averages of negatively
stained CENP-OPQUR. Scale bar in (E) and (F),
10 nm.

(G) 3D reconstruction from negatively stained
particles of the CENP-OPQU complex at ~22 A
resolution. Scale bar, 10 nm.

(H) 3D reconstruction of the CENP-OPQUR com-
plex also at ~22 A resolution. Scale bar, 10 nm.
() A model of the Ctf19:Mcm21 complex (PDB ID
3ZXU), respectively homologous to CENP-P
and CENP-O, was manually fitted in the head
domain. The difference map between CENP-
OPQUR and CENP-OPQU, corresponding to the
density of CENP-R, is shown in purple. See also
Figure S1.

CENP-OPQU

CENP-OPQUR

which binds directly to CENP-CHIKMLN and requires it for kinet-
ochore targeting, contributes to the recruitment of the KMN
(KNL1, MIS12, NDC80) assembly (Huis In 't Veld et al., 2016;
Kim and Yu, 2015; Malvezzi et al., 2013; Nishino et al., 2013;
Pekgdz Altunkaya et al., 2016; Rago et al., 2015; Schleiffer
et al.,, 2012). Within the KMN, the 4-subunit NDC80 complex
(NDC80C) is considered the major microtubule receptor of the
kinetochore (Cheeseman, 2014; Pesenti et al., 2016). The
CENP-TW pathway coexists with, and depends on, a second
axis of outer kinetochore assembly centered on CENP-C (for
an extended discussion, see Huis In 't Veld et al., 2016 and
Pesenti et al., 2016). Besides interacting with CCAN, CENP-C
also binds directly to the KMN assembly (Gascoigne et al.,
2011; Przewloka et al., 2011; Screpanti et al., 2011) (Figure 1A).

CENP-CHIKMLN is also required for recruitment of a
5-subunit complex incorporating the CENP-O, CENP-P,
CENP-Q, CENP-U, and CENP-R subunits (CENP-OPQUR,



whose subunits are schematically shown in Figure 1B) (Eskat
et al., 2012; Foltz et al., 2006; Hori et al., 2008b; McKinley
et al., 2015; Minoshima et al., 2005; Okada et al., 2006; Same-
jima et al., 2015). CENP-OPQUR is related to the COMA com-
plex of S. cerevisiae (De Wulf et al., 2003; Hori et al., 2008b;
Hyland et al., 1999; Ortiz et al., 1999; Schmitzberger et al.,
2017; Westermann et al., 2003). Its precise role at kinetochores
remains poorly characterized, but it consists at least in part in
the recruitment of other kinetochore residents, including the
microtubule plus-end directed motor CENP-E and Polo-like
kinase 1 (Plk1), the latter through phosphorylation of CENP-U
(Bancroft et al., 2015; Hori et al., 2008b; Kang et al., 2006).
Microtubule-binding activities have also been independently
attributed to CENP-Q or CENP-U (Amaro et al., 2010; Hua
et al., 2011).

In an effort to reconstitute kinetochores in vitro, we recently
reported the assembly, entirely from recombinant material,
of a 21-subunit assembly containing the CENP-A nucleosome,
the CENP-CHIKMLN complex, and the 10-subunit KMN
network (Weir et al.,, 2016). Biochemical reconstitution
is crucial for unraveling the organization of kinetochores,
as it facilitates the identification of stable modules of subunits,
and for the characterization of their physical interactions,
stoichiometries, and regulation. Furthermore, biochemical
reconstitution can provide material for detailed structural
analyses and for in vitro measurements of kinetochore func-
tion (e.g. force generation) under controlled conditions. Thus,
our ultimate goal is to be able to reconstitute kinetochore
particles that encompass the majority, or all, of constitutive
subunits.

Here, we report the reconstitution of most of the CCAN com-
plex, its structural characterization, its interactions within the hu-
man kinetochore, and its contributions to microtubule binding.
We find that CCAN forms a globular particle, the topology of
which we describe in detail. We also significantly extend our
understanding of the mechanism of microtubule binding by the
CCAN and its relationship to the previously characterized micro-
tubule-binding site in the KMN network. Our studies provide
strong mechanistic and structural insights into a fundamental
and conserved component of the chromosome segregation
machinery.

RESULTS

Reconstitution and Structural Analysis of CENP-OPQUR

To investigate the requirements for stability of CENP-OPQUR
subunits, we turned to in vitro reconstitution with recombinant
components. CENP-O, -P, -Q, and -U were unstable when ex-
pressed individually in bacteria or insect cells and could not be
recovered in soluble form (unpublished data). Co-expression in
insect cells yielded two stable subcomplexes, CENP-OP and
CENP-QU, which were purified to homogeneity and appeared
monodisperse by size-exclusion chromatography (SEC; Figures
1C, S1A, and S1B). To generate the CENP-OPQU complex, we
mixed stoichiometric amounts of CENP-OP and CENP-QU (Fig-
ure S1C) or co-infected insect cells (see STAR Methods; Fig-
ure S1D). Sedimentation velocity analytical ultracentrifugation
(AUC) demonstrated that CENP-OP, CENP-QU, and CENP-

OPQU contained single copies of each subunit (Table S1;
Figure S1E).

CENP-R was stable when expressed in isolation, appeared
monodisperse by SEC, and formed tetramers in AUC experi-
ments (Figures S1E and S1F; Table S1). However, it did not
interact with CENP-OP, CENP-QU, or CENP-OPQU in SEC
experiments (Figures S1G and S1H). Conversely, CENP-R inter-
acted with CENP-OPQU when co-expressed or when cell pellets
where lysed together (co-lysis). The CENP-OPQUR complex,
obtained by co-lysis, was monodisperse by SEC (Figure S1l),
and AUC showed that it contained a single copy of each subunit
(Figure S1E; Table S1). Thus, we suspect that CENP-R forms
oligomers when it cannot interact in the CENP-OPQUR complex.
This may not be an isolated case, because a previous study
reported that CENP-Q, expressed and purified in isolation, forms
octamers (Amaro et al., 2010). Our inability to obtain soluble
CENP-Q in isolation prevented us from confirming this previous
observation, but our results identify single copies of CENP-Q and
CENP-R in the CENP-OPQUR complex. In co-expression exper-
iments, we observed that CENP-R interacts predominantly with
the CENP-QU subcomplex (Figure S1J).

Electroporated in interphase or mitotic HelLa cells, recombi-
nant CENP-OPQUR covalently modified with Alexa488 fluoro-
phore labeled kinetochores (marked by CREST auto-antibodies),
indicating that the recombinant complex retains crucial proper-
ties of its endogenous counterpart (Figures 1D and S1K, repre-
sentative of at least three independent experiments).

We studied the structural organization of the CENP-OPQU and
CENP-OPQUR complexes by negative-stain electron micro-
scopy (EM) (Figures 1E-1H, S2A, and S2B). Three-dimensional
(3D) reconstructions showed that the structure of CENP-OPQU
is bi-lobed, with a smaller head domain and a larger base
domain. CENP-R did not grossly alter this organization, but an
additional protuberance in the neck region and an enlargement
in the base domain became evident (Figures 1G-1l).

Mechanism of Kinetochore Recruitment of the CENP-
OPQUR Complex

Recently, we reconstituted a 7-subunit, CENP-A-associated
CCAN subcomplex that includes CENP-C (and specifically its
N-terminal region, residues 1-544: CENP-C'"%*%), the 4-subunit
CENP-HIKM complex (containing a truncated form of CENP-I
lacking its 56 N-terminal residues, and henceforth indicated as
CENP-1*%®), and the 2-subunit CENP-LN complex (Basilico
et al., 2014; Klare et al., 2015; Weir et al., 2016). To assess the
role of selected subunits of this CENP-A-associated complex
(herewith referred to as CENP-CHIKMLN complex) in CENP-
OPQUR recruitment, we created stable HelLa cell lines express-
ing, under an inducible promoter, each of the individual CENP-
OPQUR subunits fused to green fluorescent protein (GFP), and
we tested their kinetochore targeting in control cells and in cells
depleted of CENP-H, CENP-L, or CENP-N by RNAI (Figures
S2A-S2E). Each CENP-OPQUR subunit was lost from kineto-
chores under these conditions (shown in Figures 2A and 2B for
CENP-Q and in Figures S2B-S2E for CENP-O, -P, -R, and -U).
Thus, CENP-A proximal subunits of CCAN are required for
recruitment of CENP-OPQUR subunits, in agreement with previ-
ous observations (Eskat et al., 2012; Foltz et al., 2006; Hori et al.,
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Figure 2. Molecular Basis of Kinetochore Recruitment of CENP-OPQUR

(A) Depletion of CENP-H, CENP-L, or CENP-N prevented kinetochore localization of GFP-CENP-Q in HeLa Flpln TRex cell lines stably expressing GFP-CENP-Q,
as shown by representative images. CENP-HK complex is also lost from kinetochores during the aforementioned RNAi depletions. Scale bar, 5 um.

(B) Quantification of the amount of GFP-CENP-Q (green bars) and CENP-HK (red bars) at kinetochores following CENP-H, CENP-L, or CENP-N depletion.
**p < 0.01. Graph shows representative results from one of three independent experiments. A minimum of 158 kinetochores was quantified.

(C) Coomassie-stained SDS-PAGE of recombinant CENP-C'544, CENP-HI**®KM, and CENP-LN used in (D).

926 Molecular Cell 71, 923-939, September 20, 2018

(legend continued on next page)



2008b; Minoshima et al., 2005; Okada et al., 2006). Furthermore,
we suppressed the expression of individual CENP-O, -P, -Q,
and -R subunits by RNAi, and we observed that reducing the
level of any one of the four CENPs prevented localization of the
other subunits (Figures S2F-S2H), indicating reciprocal support
in kinetochore localization, as reported previously (Bancroft
et al., 2015; Hori et al., 2008b; Kang et al., 2006).

We tried to reconstitute in vitro with purified proteins (Fig-
ure 2C and S3A-S3C) the recruitment hierarchy responsible
for the dependencies observed in Hela cells. CENP-C'~54 im-
mobilized on solid phase was used as bait—in isolation or in
presence of CENP-LN, CENP-HI*®**KM, or both—to pull down
CENP-OP, CENP-QU, or CENP-R (Figure 2D). Both CENP-LN
and CENP-HI***KM bound independently to CENP-C. When
incubated together, an apparent increase in binding affinity,
particularly evident for CENP-N, was observed. Neither
CENP-OP nor CENP-QU or CENP-R bound to CENP-G'5%
beads in the presence of isolated CENP-LN or CENP-HI*%KM.
CENP-OP, however, readily bound when CENP-LN and
CENP-HI*%®KM were added concomitantly to form the CENP-
C13*H|A®KMLN complex. Isolated CENP-QU or CENP-R,
on the other hand, was unable to interact with the CENP-
C'3*HI*®*®*KMLN complex, and only did so in presence of
CENP-OP or CENP-OPQU, respectively (Figure 2D). Thus, our
data suggest that CENP-OP acts as a bridge between the
CENP-C'5*HI*%KMLN complex and the other subunits of
the CENP-OPQUR complex.

The previously determined crystal structure of the tandem
RWD domains of KNL1 in complex with a linear peptide of
Nsl1 from the MIS12 complex (MIS12C) (Petrovic et al., 2014)
offers a possible model for the interaction of the CENP-OP
RWD domains with CENP-C'®**HI*56KMLN. Tyr2125"" Jies
at the interface with Nsl1, and its mutation impairs Nsl1 binding
without destabilizing the Knl1 structure (Petrovic et al., 2014).
Ctf19°ENPP and CENP-P also contain aromatic residues at
the equivalent position (Phe138°*'® and Phe116°ENP-P) (Figures
S3D-S3F). Glycine point mutation of this residue (CENP-PF116%)
did not apparently affect the stability of the CENP-OP dimer but
largely abrogated its binding to the CENP-C'"®**HI***KMLN
complex in vitro (Figure S3G). Furthermore, the mutant
displayed reduced binding to CCAN components in immuno-
precipitation (IP) assays from cell lysates (Figure S3H).
Kinetochore localization of CENP-P™''®¢ in Hela cells was
also impaired, regardless of whether the endogenous CENP-P
protein had been depleted through RNAI (Figure 2E). Thus, the
mechanism of kinetochore recruitment of CENP-OP may be
structurally related to the mechanism of kinetochore recruit-
ment of the RWD domains of KNL1 via an interaction with
MIS12C.

The experiments in Figure 2E additionally demonstrated that
depletion of CENP-P by RNAi, which destabilizes the entire
CENP-OPQUR complex, interferes with chromosome congres-
sion, with several chromosomes occupying positions near
the spindle poles and failing to complete alignment at the
metaphase plate (white arrowheads in Figure 2E, quantifica-
tion in Figure 2F). These effects of the CENP-P depletion
were rescued by expression of wild type CENP-P, but not
of CENP-PF''®G mutant, confirming the specificity of the
phenotype.

Organization of the CENP-HI**®*KMLNOPQUR Complex
Two important conclusions so far are 1) that the CENP-
C'®*HI*%8KMLN complex recruits the CENP-OPQUR complex
and 2) that this requires a direct interaction of CENP-OP with a
composite interface created by CENP-HI*®®*KM and CENP-LN,
as summarized in Figure 3A. Because solid-phase binding
assays can suffer from absorption artifacts, we asked if we
could reconstitute these interactions also in solution. When
combined stoichiometrically, CENP-OPQUR, CENP-HI*®KM,
and CENP-LN formed a single 11-subunit complex (CENP-
HI*®*KMLNOPQUR) with reduced retention volume in SEC
(i.e., larger and/or more elongated) in comparison to the
individual subcomplexes (Figure 3B). Omission of CENP-LN
or CENP-HI*®%®KM prevented complex assembly (Figures S4A
and S4B). By AUC, the CENP-HI*®KMLNOPQUR complex
had an observed molecular mass of ~404 kDa, in excellent
agreement with the predicted molecular mass of ~408 kD
calculated on the assumption that each subunit is in single
copy (Figures 3C and S5A; Table S1). This result matches re-
sults obtained with the solid-phase experiments in Figure 2D
and demonstrates that CENP-OPQUR behaves as a coinci-
dence detector for CENP-HI**®*KM and CENP-LN complexes.
Furthermore, these observations indicate that CENP-G'-5%4
is dispensable for the interaction, although we cannot
exclude that it contributes to the stabilization of CENP-
HI*®*KMLNOPQUR. Importantly, CENP-C is required for
kinetochore recruitment of CENP-HIKM and CENP-LN (Carroll
et al., 2010; Gascoigne et al., 2011; Klare et al., 2015; Milks
et al.,, 2009) and therefore it remains ultimately required for
kinetochore targeting of CENP-OPQUR.

2D class averages of negatively stained CENP-HI*%®
KMLNOPQUR complex previously subjected to a mild cross-
linking treatment with the GraFix procedure (Kastner et al.,
2008; Figures S5B-S5D and S6G] are shown in Figure 3D.
A 3D reconstruction of the complex at an approximate resolution
of 23 A showed that it has overall dimensions (in A) of 180,
160, and 100 (Figures 3E and S5E), and is therefore largely
globular. We previously described a negative-stain EM

(D) Pull-down assays using SNAP-CENP-C'~%** bait. CENP-OP binds the solid phase only in the presence of CENP-HI***KM and CENP-LN. Subsequently,
CENP-QU and CENP-R can also be recruited. Shown are Western blots of the indicated species. The experiment shown is representative of three technical

replicas.

(E) RNAi-resistant GFP-CENP-P localized to the kinetochore after depletion of endogenous CENP-P, while GFP-CENP-PF'€ did not. CREST signal (red) was
unaffected by CENP-P depletion or by impaired localization of GFP-CENP-PF118G_ DAPI (DNA) is shown in blue. Arrowheads indicate misaligned chromosomes.

MG132 (10 uM) was added to prevent mitotic exit. Scale bar, 5 um.

(F) Quantification of the experiment in (E). The number of cells analyzed is in parentheses. Error bars represent standard deviations. See also Figure S2 and

Figure S83.
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- ;-, —ggmg-gmﬂu"( (A) Model of CCAN assembly supported by our
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N 400 recruitment of CENP-OPQUR complex.
g (B) Elution profile and SDS-PAGE analysis of a
S 504 stoichiometric mixture of CENP-OPQUR, CENP-
< LN, and CENP-HI*®KM (black). Elution profiles of
é 0+ individual complexes is also indicated; CENP-
050  1.00 150 200 250 OPQUR (violet), CENP-HI*®®*KM (green), and
Elution volume (ml) CENP-LN (blue).
""""""""""" 3 (C) Hydrodynamic analysis by sedimentation ve-
& ~ - — — — [GENETC locity AUC shows that CENP-HI***KMLNOPQUR
50 THEREE SENBIN forms a compact, globular structure in which each
37| —_—— VSENBEkio subunit is represented once (see Table S1).
—R@|==== ‘SEHEZB (D) Representative class averages of negatively
2 stained CENP-HI**®KMLNOPQUR complex. Scale
20 ey :EE:E; bar, 10 nm.
: (E) 3D reconstruction from negatively stained par-

2 4 6 8 10 12 14
Sedimentation coefficient (S)

CENP-HIKMLNOPQUR

E
90° 90° 90°
+ + +

F CENP-HIKM CENP-OPQUR CENP-HIKMLNOPQUR

—

H

reconstruction of the CENP-HI*®®*KM complex (Basilico
et al., 2014) (Figure 3F). We therefore fitted densities for the
CENP-OPQUR and CENP-HI***KM complex into the density
of the CENP-HI*®*KMLNOPQUR (Figure 3G, Figure S5E, and
Video S1). The resulting model predicts that CENP-HI*®®KM
and CENP-OPQUR oppose each other, with a direct contact
involving the head domain of CENP-OPQUR (containing
CENP-OP). We attribute to CENP-LN the substantial residual
unoccupied density sandwiched between CENP-HI*®*KM and
CENP-OPQUR (Figures 3H and S5F; Video S1). By predicting
multiple contacts between CENP-LN and CENP-HI**®KM with
CENP-OPQUR, this model is consistent with the binding data
shown in Figures 2 and 3.
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ticles at ~22 A resolution. Scale bar, 10 nm. See
Figure S6G for additional class averages.

(F) 3D reconstructions of the CENP-HI*®®KM
complex (green; Basilico et al., 2014) and of the
CENP-OPQUR complex (violet, see Figure 1H).
Scale bar, 10 nm.

(G) Possible fitting of the 3D reconstructions of
CENP-HI**®KM and CENP-OPQUR in the density
of CENP-HI***KMLNOPQUR.

(H) The unaccounted density was attributed to the
CENP-LN complex. See also Figures S4, S5, and
S6 and Table S1.

Reconstitution of a 26-Subunit
Kinetochore Particle Containing
CENP-OPQUR

CCAN acts as a bridge between the
CENP-A nucleosome in centromeric
chromatin and the KMN assembly in the
microtubule-binding portion of the kineto-
chore. We have recently reconstituted
this bridge with 21 recombinant subunits
covering the CENP-A nucleosome, the
CENP-C'5**HI*%KMLN complex, and
the KMN assembly (Weir et al., 2016)
(referred to as rKT21, for recombinant
kinetochore with 21 subunits). Our new
evidence that CENP-OPQUR binds directly to the CENP-
C'5*4HI*56KMLN complex prompted us to ask if this interaction
permitted inclusion of CENP-OPQUR in rKT21. CENP-OPQUR
did not interact directly with the CENP-A nucleosome core par-
ticle (CENP-AN®P) but co-eluted with it when combined with
CENP-C'®*HI*%®KMLN, indicating that the latter mediates
the interaction of CENP-OPQUR with CENP-ANCP (Figures 4A
and 4B).

Further inclusion of the KMN network resulted in the assembly
of a particle with a retention volume smaller than any of those of
the individual components (Figure 4C; individual complexes
used for these experiments are shown in Figures S5G-S5J).
The peak fractions of this species contained all 26 expected
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Elution volume (ml) : - :IEEHEZE NDQ goceens domain. See also Figure S5.
- = ] 1.SPC25 &
75 '= ::Ei/l%%‘t
50 :- I-Mis12
37 | — |-CENP-R nlﬁ:ilzsgsp:r\ne
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15 W two, binds the CENP-C'>**HI*%®KMLN:

subunits (4 histones of the CENP-ANCP, 12 CCAN subunits, and
10 KMN subunits, named rKT26) (Figure 4C). The CENP-OPQUR
complex appeared substoichiometric in this peak, and part of it
eluted in a shoulder peak corresponding to the expected elution
volume for CENP-OPQUR. This observation suggests either that
CENP-OPQUR binds into this larger complex with reduced bind-
ing affinity, thus undergoing partial dissociation, or that its effec-
tive stoichiometry is lower. We have previously determined that
two copies of CENP-CHI*®®*KMLN bind a single CENP-A nucle-

CENP-ANP complex. However, given
that CENP-C'>**HI**®KMLN and CENP-OPQUR form a stoi-
chiometric complex (Figure 3B), the hypothesis that CENP-
OPQUR undergoes partial dissociation from the larger complex
seems more plausible. We speculate that this effect reflects a
requirement for post-translational modifications that increase
the binding affinity of CENP-OPQUR for rKT21 and that are still
missing in our reconstitution.

Human CENP-OPQUR did not bind to the NDC80C or to the
entire KMN (Figures S4C and S4D), nor did it bind to complexes
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Figure 5. Structural and Functional Analysis of the CENP-OPQUR
Complex

(A) Representative SDS-PAGE of microtubule co-sedimentation assays with
Taxol-stabilized microtubules and the indicated proteins. CENP-OP did not
bind microtubules unless it was combined with CENP-QU and CENP-R.
CENP-R bound microtubules autonomously. CENP-OPQ®®"CUR does not
sediment with microtubules.

(B) Quantification of experiments in (A). Error bars are standard deviations
calculated from three technical replicas.

(C) Kymographs of CENP-OPQU particles labelled with Alexa488 imaged on
Taxol-stabilized microtubules by TIRF microscopy (n = 279). Left side shows
example of particles (26% of events) that remain bound for the full duration of
the video; right sides (74% of events) show examples of particles landing
(yellow arrow; n = 18) or unbinding (white arrow; n = 169).

(D) Kymographs of CENP-OPQUR particles labeled with Alexa488 at higher
temporal resolution (100 ms/fr).

(E) Kymographs of Alexa488-labeled NDC80 particles labeled with Alexa488
showing binding and unbinding of the Alexa488-labeled NDC800 (100 mn/fr).
(F) Representative electron micrographs of negative-stained Taxol-stabilized
microtubules. Scale, 100 nm.

(G) As in (F), with added CENP-OPQUR. Scale, 100 nm.

(H) The outline of the complex recognizable on the microtubule surface sug-
gests that the microtubule-binding moiety is in the base domain. Scale, 10 nm.
For additional examples, see Figure S6F.

of MIS12C or MIS12C:NDC80C with CENP-C'~%4* (Figures S4E
and S4F), a crucial link between the inner and outer kinetochore
(Dimitrova et al., 2016; Gascoigne et al., 2011; Petrovic et al.,
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2016; Przewloka et al., 2011; Screpanti et al., 2011; Weir et al.,
2016). Thus, CENP-OPQUR does not contribute to the stabiliza-
tion of the connection between the inner and the outer kineto-
chore, a function that has instead been described for its ortholog
in S. cerevisiae (the COMA complex, comprising the Ctf19CENP-F,
Okp1°ENP-Q Mcem21CENP-C and Ame1°ENP-Y subunits and lack-
ing a clear CENP-R ortholog) (De Wulf et al., 2003; Dimitrova
et al., 2016; Hornung et al., 2014; Hyland et al., 1999; Ortiz
et al., 1999; Pekgo6z Altunkaya et al., 2016; Schmitzberger and
Harrison, 2012; Westermann et al., 2003).

The CENP-OPQUR Complex Binds Microtubules

Previous studies with isolated recombinant CENP-Q or CENP-U
identified microtubule-binding activities in both subunits (Amaro
et al., 2010; Hua et al., 2011). Because CENP-Q and CENP-U
form a stable complex where CENP-Q is present in single
copy, instead of the oligomers observed in isolation (Amaro
etal., 2010), we wanted to revisit these results with reconstituted
CENP-OPQUR subcomplexes. Only the CENP-QU and CENP-
OPQUR complexes, but not CENP-OP, pelleted with Taxol-
stabilized microtubules in co-sedimentation assays (Figures
5A, 5B, S6C, and S6D). CENP-OP, however, pelleted with micro-
tubules when combined with CENP-QU (Figures S6C and S6D),
suggesting that CENP-QU contains a microtubule-binding activ-
ity. In isolation, CENP-R also interacted with microtubules, but
its incorporation in the CENP-OPQUR complex did not increase
the apparent binding affinity of the CENP-OPQUR complex for
microtubules, casting doubts on the significance of the interac-
tion seen with isolated CENP-R oligomers (Figures 5B, S6C,
and S6D; and unpublished data).

Total internal reflection fluorescence (TIRF) microscopy was
used to visualize single Alexa488-labeled CENP-OPQU particles
at 1 nM concentration, allowing us to show that there is diffusive
binding of the complex to the microtubule lattice (Figures
5C-5E). Of the diffusing particles, 26% remained bound to the
lattice for the duration of the video (200 s), while 74% were
observed to unbind or bind the microtubules during this time
(mean time associated = 131 s). In contrast, the NDC80C, at
1 nM concentration, showed rapid binding and unbinding events
(mean time associated = 1.3 s; SEM = 0.17 s; Figure 5E).
Together, these data suggest that the CENP-OPQU complex is
capable of mediating long-duration attachment to microtubules.
In view of our recent observation that multimerization leads to a
dramatic increase of the microtubule residency time of the
NDC80C (Volkov et al., 2018), we cannot exclude that CENP-
OPQU may form small oligomeric particles on microtubules un-
der the condition of our assay, even if the AUC analysis with the
isolated complex indicated absence of oligomerization. Further
work will have to address this possibility.

At micromolar concentrations, CENP-OPQU had a very strong
bundling effect on microtubules (Figure S6E). By negative-stain
EM, microtubules incubated with CENP-OPQU appeared
“rough” in comparison to naked microtubules (Figures 5F and
5G). In several cases, it was possible to visualize individual
CENP-OPQU complexes docked on microtubules (Figure 5H
and S6F). The interaction with the microtubule lattice appeared
to involve the base of the CENP-OPQU complex, with the
head pointing away. Because CENP-QU is responsible for
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microtubule binding, as shown above, we speculate that
CENP-OP and CENP-QU reside in the head and base domains,
respectively. Structural characterization of the complex of
the S. cerevisiae homologs of CENP-O and CENP-P, the
Ctf19CENPP:Mcem219ENP-O complex, demonstrated that these
subunits are structural paralogs, each containing tandem
RWD (RING finger, WD repeat, DEAD-like helicases) domains
(Schmitzberger and Harrison, 2012; Schmitzberger et al.,
2017). In agreement with our model, the crystal structure of
the Ctf19°ENPP:Mcm21CENP-O complex from S. cerevisiae fitted
snugly into the density of the head domain (Figure 1l). This
tentative structural model will require corroboration through
high-resolution structural analyses in the future.

The CENP-Q Disordered and Basic N-Terminal Tail
Promotes Microtubule Binding

In agreement with the sedimentation experiments, fluorescently
labeled CENP-OP (with Alexa488 through maleimide thiol

CENP-QU'™

Figure 6. CENP-OPQUR and NDC80 Com-
plexes Bind Microtubules Cooperatively

In (A)~(C) and (E), Taxol-stabilized, rhodamine-
labeled microtubules were tethered to glass
coverslips and incubated in the presence of fluo-
rescent recombinant proteins. The scale bar rep-
resents 1 um.

(A) Alexa488-labeled CENP-OP (green channel)
was unable to bind microtubules (red channel) in
isolation and bound microtubules only in presence
of Alexa647-labeled CENP-QU subcomplex (blue
channel).

(B) NDC80-GFP complex (green channel) and
Alexa-647-labeled CENP-OPQU (blue channel)
interact with an overlapping surface to microtu-
bules, as shown by reciprocal concentration-
dependent competition.

(C) CENP-QU made deficient in microtubule
binding by FAM labeling is translocated to micro-
tubules through the interaction of CENP-OP with
rKT21. Microtubules were incubated in the pres-
ence of CENP-QU N-terminally labeled with Fluo-
rescein (green) and/or rKT21 in which CENP-AMN
was fused to BFP (blue) and CENP-LN was labeled
with Alexa-647 (purple).

(D) PrDos (Ishida and Kinoshita, 2007) disorder
prediction of the CENP-Q (black) and NDC80/
HECH1 (red) N-terminal tails. Dotted line indicates
the disorder threshold; false positive rate 5%.

(E) CENP-OPQUR and rKT21 bind microtubules
cooperatively. Microtubules (red channel) were
incubated with the indicated concentrations
of Alexa-647-labeled CENP-OPQUR (purple),
rKT21 containing Alexa-488-labeled KMN (green),
or combinations thereof. At the bottom, the same
experiment carried out in presence of CENP-
OPQ®CUR shows that microtubule binding by
the N-terminal region of CENP-Q is required for
augmentation of microtubule binding affinity. Ex-
periments in (A)-(C) and (E) are representative of at
least 3 repeats. See also Figure S4 and Figure S7.

CENP-
CHIKMLN"=” CENP-A®""

chemistry) did not bind microtubules in a flow cell (Figure 6A).
Alexa647-labeled CENP-QU, on the other hand, decorated mi-
crotubules, and when combined with CENP-OP allowed it to
decorate microtubules, indicating that the CENP-QU subcom-
plex binds microtubules and carries CENP-OP along (Figure 6A).

At least at high concentrations, NDC80C binds cooperatively
to the microtubule lattice, interacting along protofilaments at
the alternating o3 and Ba tubulin interfaces with 4-nm spacing
(Alushin et al., 2010; Ciferri et al., 2008). At a concentration of
100 nM, fluorescent recombinant NDC80CSF strongly deco-
rated the microtubule lattice in a flow cell (Figure 6B). Addition
of CENP-OPQU labeled with Alexa647 at 400 nM caused an
almost complete displacement of NDC80C (at 100 nM) from mi-
crotubules, with concomitant microtubule binding of fluorescent
CENP-OPQU. Conversely, CENP-OPQU, at 100 nM, decorated
microtubules, but was displaced upon addition of 400 nM
NDCB80C (Figure 6B). Thus, the footprints of NDC80C and of
CENP-OPQU overlap on the microtubule lattice at least in part,
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implying that the mode of microtubule binding of these com-
plexes is intrinsically competitive. Furthermore, based on the
relative effects of competition in these single-point assays, the
binding affinities of the two complexes for microtubules appear
to be in a similar range. It has been proposed that CENP-Q
and NDC80C interact directly and that this promotes
cooperative microtubule binding (Hua et al., 2011), but we could
not recapitulate this interaction in vitro, as already discussed
(Figure S4C).

Selective Sortase modification of the CENP-Q N-terminus
with a fluorescein amidite (FAM) peptide prevented CENP-QU
binding to microtubules (Figure 6C). Conversely, fluorescently
labeled rKT21 bound microtubules, as shown previously (Weir
et al., 2016) (Figure 6C). However, rKT21 did not rescue microtu-
bule binding of FAM-labeled CENP-QU (Figure 6C), in line with
the inability of CENP-QU to interact with the C'5*4HI***KMLN
complex in rKT21. Further addition of CENP-OP, on the
other hand, promoted efficient translocation of FAM-labeled
CENP-QU to microtubules, confirming the prediction, based
on the experiments in Figure 2D, that CENP-OP promotes the
interaction of CENP-QU with rKT21 required to generate rKT26.

We were interested in understanding why modification of the
CENP-Q N-terminus interferes with microtubule binding. The
sequence of the N-terminal region of CENP-Q is highly basic
and predicted to be disordered due to its low complexity (Fig-
ure 6D). This is highly reminiscent of NDC80 (also known as
HEC1), the microtubule-binding subunit of the NDC80C, where
a similarly basic and disordered N-terminal region has been
implicated in microtubule binding (Cheeseman et al., 2006;
Ciferri et al., 2008; DelLuca et al., 2006) (Figure 6D). To test if
the N-terminal region of CENP-Q contributes to microtubule
binding, we generated a deletion mutant lacking 67 N-terminal
residues (CENP-Q®8C) and co-expressed it with other subunits
to generate CENP-Q%CU and CENP-OPQ®-CUR complexes
(Figure 1C). An Alexa488-labeled version of the latter labeled
kinetochores robustly when electroporated in HelLa cells (Fig-
ures 1D and S1K). Importantly, however, CENP-OPQ®CUR
was largely unable to bind microtubules in the sedimentation
and flow cell assays (Figures 5A, 5B, 6A, S6C, and S6D). Thus,
the first 67 residues of CENP-Q are dispensable for kinetochore
localization but necessary for microtubule binding.

Cooperative Microtubule Binding by rKT26

The competitive binding mode of CENP-QU and NDC80C shown
in Figure 6B does not imply that their binding to microtubules
within kinetochores is incompatible, as the number of binding
sites on the microtubule lattice vastly exceeds the estimated
number of NDC80C and CENP-QU binders within a microtu-
bule-binding unit. Rather, it may be surmised that, if incorpo-
rated into the same particle, NDC80C and CENP-OPQUR
may determine an increase in microtubule-binding affinity if
they were concomitantly able to bind microtubules. To test
this idea, we first confirmed that CENP-OPQUR or rKT21 (which
contains NDC80C) bound to microtubules in isolation in a
flow cell. Individually, both decorated microtubules tightly at
400 nM, but when their concentration was reduced to 25 nM,
binding of CENP-OPQUR or rKT21 to microtubules appeared
drastically reduced. When added together at 25 nM, however,
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both CENP-OPQUR and rKT21 bound strongly to microtubules
(Figure 6E).

Thus, co-existence of CENP-OPQUR and NDCB80C within the
same complex strongly augments the microtubule-binding ac-
tivity of rKT26. We reasoned that the augmented microtubule-
binding activity of rKT26 ought to be abrogated in presence of
CENP-OPQ®®°UR, which does not bind microtubules. In size-
exclusion chromatography experiments, CENP-OPQ®®-CUR
readily bound the other CCAN subunits, indicating that the
deletion of the N-terminal region of CENP-Q does not affect
this interaction (Figure S7A); this is also in line with the ability
of the electroporated mutant complex to reach kinetochores
(Figure 1D). In agreement with the prediction, and contrarily
with the observation with the wild-type CENP-OPQUR complex,
no microtubule binding of rKT21 or of CENP-OPQ®®CUR was
observed when these complexes were combined at 25 nM con-
centration (Figure 6E, bottom two rows). Thus, augmented
microtubule binding of rKT26 requires the microtubule binding
N-terminal region of CENP-Q.

The NDC80 N-Terminal Region Functionally Replaces
CENP-Qs

To further test the functional similarity of the CENP-Q and
NDC80 N-terminal tails, we built a construct to express wild-
type CENP-Q fused to a C-terminal eGFP (CENP-Q-eGFP) or
an equivalent construct in which the N-terminal tail was replaced
with that of NDC80 (CENP-QNPC8(1-80_gGFP; Figure 7A). In cells
depleted of endogenous CENP-Q, both constructs localized to
kinetochores and to similar levels (Figures 7B and 7C). Impor-
tantly, depletion of CENP-Q led to a strong accumulation of
chromosomes near spindle poles, indicative of congression er-
rors (Figure 7D and Figures S7B and S7C). Expression of
CENP-Q-eGFP or of CENP-QNPC8%("80)_¢ GFP |ed to a near com-
plete rescue of the congression phenotype, indicating that both
constructs are functional. As a further control of the functionality
of the CENP-Q construct, we observed that the strong reduction
in CENP-E levels caused by CENP-Q depletion (originally re-
ported by Bancroft et al., 2015) was also rescued in presence
of both CENP-Q constructs (Figure 7E). Collectively, these and
additional data in Figures 2E and 2F indicate that the CENP-
OPQUR complex is required for chromosome alignment in
Hela cells and that the interaction with microtubules mediated
by the N-terminal region of CENP-Q is important for this process.
The disordered and basic N-terminal tail of NDC80, when grafted
onto a CENP-Q mutant lacking its own N-terminal tail, can
rescue a requirement for CENP-Q in chromosome alignment.

DISCUSSION

The comprehensive biochemical and structural analysis of the
vertebrate CENP-OPQUR complex described here significantly
extends previous studies (Hori et al., 2008b; Kang et al., 2011).
After reconstituting rKT21 (Weir et al., 2016), we now report the
reconstitution of rKT26, a 26-subunit “successor” that also in-
corporates the CENP-OPQUR complex. The 22 kinetochore
subunits in this complex (the other four being histones) are all
assembled on a single CENP-ANCP | with at least two subunits,
CENP-C and CENP-N, being able to bind CENP-A directly and
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points beyond this are represented as single points
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specifically (Cao et al., 2018; Carroll et al., 2009, 2010; Chittori
et al., 2018; Guo et al., 2017; Kato et al., 2013; Pentakota
et al., 2017; Tian et al., 2018; Weir et al., 2016).

On the basis of the distributions of its binding sites for other
kinetochore proteins, we have recently proposed that CENP-C,
which is predicted to be largely unstructured, may act as a “blue-
print” for the assembly of kinetochores (Klare et al., 2015).
CENP-C binds MIS12C at its N terminus (Liu et al., 2016; Przew-
loka et al., 2011; Richter et al., 2016; Screpanti et al., 2011)
and CENP-A via a motif in its central region (Kato et al., 2013).
CENP-C also binds CCAN within a domain between the

eGFP WT__NDC80 eGFP WT__NDCB0
CENP-Q-eGFP

CENP-O
CENP-P

K
targeting

tional moieties. There is no evidence that CENP-Q
or CENP-U contain Calponin Homology (CH) do-
mains also implicated in microtubule binding in the
NDC80 complex. See also Figure S7.

CENP-Q-eGFP

NDC80
NUF2

NDC80
complex

coiled-coil

MT binding

CENP-OPQUR

complex
PN MIS12C and CENP-A binding sites (Hin-
' shaw and Harrison, 2013; Klare et al.,
: 2015; McKinley et al., 2015; Nagpal
et al., 2015; Pentakota et al., 2017) (Fig-

MT binding

ure 4D). CENP-C probably meanders on
and through the structure of CCAN,
creating multiple contacts that stabilize
it, thus explaining why its presence is so crucial for kinetochore

integrity (e.g., see Carroll et al., 2010; Milks et al., 2009), even if

our studies clearly argue that CCAN is endowed with substantial
structural stability even in the absence of CENP-C.

The 3D EM reconstruction of the CENP-HI***KMLNOPQUR
complex provides the first near-comprehensive structural anal-
ysis of the CCAN, albeit at low resolution, and extends our pre-
vious analysis of CENP-HI*®®KM (Basilico et al., 2014). In spite
of its low resolution, the reconstruction allows important conclu-
sions on the organization of CCAN. Most notably, the CCAN
subcomplex we have studied is very compact and globular, in
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contrast to the fibrous organization of the KMN in the outer kinet-
ochore (Ciferri et al., 2008; Dimitrova et al., 2016; Petrovic et al.,
2014, 2016; Valverde et al., 2016). Within CCAN, CENP-N binds
directly to CENP-A nucleosomes in vitro, and structural informa-
tion on this interaction has recently emerged (Chittori et al., 2018;
Pentakota et al., 2017; Tian et al., 2018). Besides binding directly
to the CENP-A nucleosome, CCAN may serve as a spacer to
position KMN for a favorable interaction with the microtubule
end. A nanometer-scale map of kinetochores concluded that
the CCAN subunits are clustered within approximately 20 nm
along the longitudinal (kinetochore-microtubule) axis of the
kinetochore (Suzuki et al., 2014). Figure 4D presents a structural
model of the kinetochore that incorporates available structural
and functional information, including studies shown in Figures
1, 2, 3, and 4. The architecture shown in Figure 4D probably
defines a conserved module of eukaryotic kinetochores present
in single copy in the “point” kinetochores of S. cerevisiae (Pluta
et al., 1995), which bind a single microtubule, or in multiple
copies in the “regional” kinetochore of humans, which bind
~25 microtubules (Musacchio and Desai, 2017).

Still missing from this reconstitution to completely represent
the core subunits is CENP-TW (possibly operating in complex
with CENP-SX; Nishino et al., 2012). Together with CENP-C,
CENP-TW promotes outer kinetochore assembly by binding
directly to KMN network components (Gascoigne et al., 2011;
Hori et al., 2008a; Huis In 't Veld et al., 2016; Przewloka et al.,
2011; Screpanti et al., 2011; Weir et al., 2016). The interaction
of recombinant CENP-TW with the 26-subunit kinetochore com-
plex we describe is weak (Basilico et al., 2014; Weir et al., 2016;
and our unpublished observations; of note, this does not appear
to be the case in S. cerevisiae, where Cnn1°ENPT interacts
strongly with the ortholog of the CENP-HIKM complex: Pekgoz
Altunkaya et al., 2016). Recent studies suggest that vertebrate
CENP-TW docks on DNA that bridges neighboring nucleosomes
(Takeuchi et al., 2014; Thakur and Henikoff, 2016), and therefore
its incorporation into our recombinant particles may require
the engineering of suitable high-affinity chromatin templates.
CENP-TW is required for CENP-OPQUR recruitment to kineto-
chores (Gascoigne et al., 2011), but this likely reflects the estab-
lished role of CENP-TW in stabilizing CENP-HIKMLN at the
kinetochore (Basilico et al., 2014; Carroll et al., 2010; Foltz
et al., 2006; Gascoigne et al., 2011; Hori et al., 2008a; Huis In 't
Veld et al., 2016; Nishino et al., 2012; Okada et al., 2006; Pekg6z
Altunkaya et al., 2016; Samejima et al., 2015; Wood et al., 2016),
because we failed to observe a direct interaction of CENP-
OPQUR with CENP-TW (M.E.P. and A.M., unpublished data).

An important conclusion is that CENP-OPQUR occupies an
outermost position of the inner kinetochore, as its recruitment
there requires concomitant binding to the centromere-proximal
subunits CENP-LN and CENP-HIKM. Conversely, CENP-
OPQUR is dispensable for recruitment of the proximal subunits
(Eskat et al., 2012; Foltz et al., 2006; Hori et al., 2008b; Izuta
et al., 2006; Kagawa et al., 2014; McClelland et al., 2007; Mc-
Kinley et al., 2015; Minoshima et al., 2005; Okada et al., 2006;
Samejima et al., 2015) (Figure 7F). This organization may differ
significantly in S. cerevisiae, where the COMA complex appears
to occupy an upstream position in the recruitment order of kinet-
ochore subunits (Hinshaw et al., 2017; Pekg6z Altunkaya et al.,
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2016; Schmitzberger et al., 2017). Future studies will have to
clarify what molecular adaptations underlie these differences.
CENP-OP and CENP-QU form stable subcomplexes, which ex-
plains why CENP-O and CENP-P on the one hand, and CENP-Q
and CENP-U on the other, are interdependent for physical
stability in chicken DT40 cells (Hori et al., 2008b). In our work,
CENP-OP emerged as the main factor promoting kinetochore
targeting of CENP-OPQUR, even if CENP-Q and CENP-U
have been shown to further stabilize it (Bancroft et al., 2015;
Hori et al., 2008b; Kang et al., 2006). The interaction of
Ame1°ENPY with the orthologs of CENP-HIKM and CENP-LN
in S. cerevisiae was shown to require Ctf19CENPP and
Mcm21°ENP-O (Pekgsz Altunkaya et al., 2016). A motif located
near the C-terminus of Okp1°ENF-Q mediates a physical interac-
tion with the RWD domains of the Ctf19°ENP-P:Mcm21CENP-O
dimer (Schmitzberger et al., 2017). The Okp1 motif, however,
does not appear to be conserved outside closely related yeast
species, leading us to speculate that the interaction of the human
CENP-OP and CENP-QU subcomplexes studied here uses
different determinants.

Here, we have also identified a novel microtubule-binding site
in the basic N-terminal tail of CENP-Q. Many features of the
CENP-Q N-terminal tail, most notably its highly basic isoelectric
point and its tendency to structural disorder due to low sequence
complexity, are highly reminiscent of the N-terminal tail of
NDCB80. The precise contribution of the latter to microtubule
binding remains poorly understood from a mechanistic perspec-
tive, but there is ample evidence that it is required for bio-
rientation and tight microtubule binding of NDC80 (Alushin
et al., 2010, 2012; Cheeseman et al., 2006; Ciferri et al., 2008;
Deluca et al., 2006, 2011, 2018; Zaytsev et al., 2014, 2015).
Two crucial differences between the CENP-Q and NDC80 tails
are that 1) the NDC80 tail flanks a calponin homology (CH)
domain that contributes to microtubule binding by NDC80 (Ci-
ferri et al., 2008; Wei et al., 2007), and by structural modeling
we found no conclusive evidence that CENP-Q (or CENP-U)
contain calponin homology (CH) domains (unpublished data);
and 2) the NDC8O0 tail is subject to regulation to phosphorylation
by multiple kinases, including Aurora A and B, which may phos-
phorylate up to nine consensus sites in the tail, and Cdk1, for
which there is at least one consensus site (Cheeseman et al.,
2006; Ciferri et al., 2008; Deluca et al., 2006, 2011, 2018;
Zaytsev et al., 2014, 2015). Inspection of the CENP-Q N-terminal
tail reveals only one or two Aurora consensus sites and no
Cdk1 site.

While future studies will have to address the functional impli-
cations of these differences, the ability of the NDC80 N-terminal
tail to replace the CENP-Q tail and promote chromosome align-
ment is striking. Given that CENP-OPQUR occupies, with the
CCAN, a position near the “bottom” of the kinetochore (Fig-
ure 4D), we surmise that its microtubule-binding activity may
become especially important after establishment of end-on
attachment. A previous study identified NDC80C as a passive
force generator within vertebrate kinetochores and recognized
the existence of an active force generator whose molecular iden-
tity remained unclear but whose position within kinetochores is
compatible with that attributed to the CENP-OPQUR complex
(Dumont et al.,, 2012). In TIRF microscopy experiments, we



observed rare events in which individual CENP-OPQU com-
plexes labeled with Alexa488 tracked depolymerizing microtu-
bules (unpublished data), a property expected for an active force
generator. The tools we describe here will enable a detailed
study of this hypothesis.

The similarities between NDC80C and CENP-OPQU are
not limited to the basic disordered N-terminal tails. Both com-
plexes appear to “subdivide labor” by assigning kinetochore
targeting and microtubule binding to different subcomplexes.
In NDC80C, SPC24:SPC25 and NDC80:NUF2 subcomplexes
mediate kinetochore recruitment and microtubule binding,
respectively. In CENP-OPQU the same functions are attributed
to CENP-OP and CENP-QU, respectively. CENP-O, CENP-P,
SPC24, and SPC25 are structurally related proteins containing
RWD domains (Ciferri et al., 2008; Petrovic et al., 2014;
Schmitzberger and Harrison, 2012; Wei et al., 2006) (Figure 7G).
On the other hand, the extent to which CENP-QU is structurally
related to the NDC80:NUF2 dimer is unclear. CENP-Q and
CENP-U are predicted to contain several a helices (Wester-
mann and Schleiffer, 2013), the main secondary structure
element of CH domains, and have predicted C-terminal
coiled-coils (Figure 1B) like NDC80 and NUF2.

Although the phenotypic consequences of depleting CENP-
OPQUR subunits vary in severity depending on the affected
cell type (Kagawa et al., 2014; McKinley et al., 2015), our results
are largely consistent with previous studies that identified severe
chromosome alignment problems in cells depleted of CENP-
OPQUR (Bancroft et al., 2015; Hori et al., 2008b; Hua et al.,
2011; McAinsh et al., 2006; McClelland et al., 2007; Minoshima
et al., 2005; Toso et al., 2009). We further document the chromo-
some alignment problems caused by CENP-P depletion in Fig-
ures S7D-S7F. The importance of CENP-OPQUR is further
corroborated by a recent study that identified CENP-O and
CENP-P in a group of gene products involved in chromosome
alignment and whose depletion is compatible with cell viability
but only in presence of a functional spindle assembly checkpoint
(Raaijmakers et al., 2018). This is consistent with the idea that, in
the absence of the CENP-OPQUR complex, achievement of bi-
orientation is delayed and a call on the spindle checkpoint to
delay mitotic exit is issued, without which cells undergo a cata-
strophic, lethal division. Our analysis indicates that, besides its
contributions to the recruitment and regulation of Plk1 and
CENP-E (Ahonen et al., 2005; Bancroft et al., 2015; Hori et al.,
2008b; Kang et al., 2006, 2011; Nishino et al., 2006), CENP-
OPQUR contributes to chromosome alignment through direct
microtubule binding. In conclusion, our study fills an important
gap in our understanding of human kinetochores and paves
the way to full functional reconstitution of kinetochore function
in the test tube.
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STARXxMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal GFP ABCAM #AB6556; RRID: AB_305564
Rabbit polyclonal anti-CENP-OP Generated in house N/A

Mouse monoclonal anti-CENP-P ABCAM #AB66058; RRID: AB_1523338
Goat polyclonal anti-CENP-QU Generated in house N/A

Mouse monoclonal anti-CENP-Q ABCAM #AB57539; RRID: AB_940733
Mouse monoclonal anti-CENP-R ABCAM #AB57098; RRID: AB_304751
Rabbit polyclonal anti-CENP-HK Generated in house #S10930

Mouse polyclonal anti-CENP-A Gene Tex #GTX13939; RRID: AB_369391
Mouse monoclonal anti-CENP-A ABCAM #AB13939; RRID: AB_300766

Rabbit polyclonal anti-CENP-C(23-410)
Rabbit polyclonal anti-CENP-N(1-212)
Rabbit polyclonal anti-CENP-E

Human anti-centromere (CREST)

Trazzi et al., 2009

Generated in house

Meraldi Lab; Meraldi et al., 2004
Antibodies Inc.

#S1410

N/A

N/A

Cat#15-234-0001; RRID: AB_2687472

Bacterial and Virus Strains

E.coli: BL21(DE3)-RIL strain Agilent Technologies #230240
Chemicals, Peptides, and Recombinant Proteins

HRV 3C Prescision Protease Generated in house N/A

TEV Protease Generated in house N/A

Lambda phosphatase Generated in house N/A
Protease-inhibitor mix HP Plus Serva Cat#39107
Sortase A delta 59 (S.aureus) Hidde Ploegh Lab Addgene:Cat#51139
Alexa Fluor 488 C5 maleimide Protein labeling kit ThermoFisher #A10254

Alexa Fluor 647 C2 maleimide Protein labeling kit ThermoFisher #A20347

Alexa Fluor 405 Carboxylic acid, succinimidyl ester ThermoFisher #A30000

Protein labeling kit

NHS-Rhodamine labeling kit Thermo Scientific #46406
FAM-LPETGG Genscript N/A

PhosSTOP phosphatase inhibitor Roche Cat#04906845001
(+)-S-Trityl-L-cysteine (STLC) Sigma Aldrich #164739
RO-3306 Millipore #217699

MG-132 Calbiochem CAS 133407-82-6
MG-132 Sigma SML1135

Uranyl formate SPI Supplies CAS#16984-59-1
Fetal bovine serum (FBS) Clonetech #631107

Fetal bovine serum (FBS) Sigma Cat:f7524 Batch:111M3395
Zeocin Invitrogen Cat#R25001
L-glutamine PAN Biotech P04-80100
Nocodazole Sigma Cat#M1404
CENP-C(1-544) Musacchio Lab; Screpanti et al., 2011 N/A

CENP-HIKM Musacchio Lab, Basilico et al., 2014 N/A

CENP-LN Musacchio Lab, Pentakota et al., 2017 N/A
CENP-CHIKM Musacchio Lab; Klare et al. 2015 N/A

NDC80 complex Musacchio Lab; Huis In ’t Veld et al., 2016 N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

MIS12 complex Musacchio Lab; Petrovic et al., 2014 N/A

KNL1 complex Musacchio Lab; Petrovic et al., 2014 N/A

CENP-A NCP Musacchio Lab; Weir et al., 2016 N/A

Tubulin (in TIRF experiment) purified from pig brains N/A N/A
poly-L-lysine-poly-ethylene-glycol-biotin SUSOS-AG PLL (20) -g[3.5]- PEG(2)/PEGDbi)
streptavidin Sigma S4762; CAS#: 9013-20-1

GMP-CPP
Porcine tubulin (biotin labelled)
HiLyte 647 labeled porcine tubulin

Jena Biosciences
Cytoskeleton
Cytoskeleton

GpCpp, NU-405S CAS#: 14997-54-7
Cat. # T333P-A
Cat. # TL670M-A

Paclitaxel (Taxol) Sigma T7402; CAS#: 33069-62-4

Glucose oxidase Sigma G7141; CAS#:9001-37-1

Catalase Sigma SRE0041
CAS#:9001-05-2

DAPI Sigma D9542

PenStrep Gibco 15-140

Fugene6 Promega E2691

Oligofectamine Invitrogen 12252011

Critical Commercial Assays

QlAquick Kit Qiagen 28704

Mini-prep kit Qiagen 27104

Maxi-prep kit Qiagen 10023

Experimental Models: Cell Lines

Trichoplusia ni:BTI-Thao38 Garry W Blissard Lab N/A

S.frugiperda:Sf9 cells ThermoFisher Cat#12659017

Hela cells IEO Milan N/A

Human: Flp-IN T-Rex HelLa S.S. Taylor, University of Manchester N/A

Human: Flp-In T-Rex HeLa-GFP-CENP-O This paper N/A

Human: Flp-In T-Rex HeLa-GFP-CENP-P This paper N/A

Human: Flp-In T-Rex HeLa-GFP-CENP-P(F116G) This paper N/A

Human: Flp-In T-Rex HelLa-GFP-CENP-Q This paper N/A

Human: Hela K cells Meraldi Lab N/A

Human: HelLa K-CENP-Q-eGFP This paper N/A

Human: HelLa K-CENP-Q(Ndc80(1-80))-eGFP This paper N/A

Human: Flp-In T-Rex HelLa-GFP-CENP-U This paper N/A

Human: Flp-In T-Rex HeLa-GFP-CENP-R This paper N/A

Experimental Models: Organisms/Strains

E.coli: BL21(DE3)-RIL strain Agilent Technologies #230240

E.coli: BL21CodonPlus(DE3)-RIL strain Agilent Technologies #230280

Oligonucleotides

CENP-O siRNA:
5’-UAGGAGACCAGACUCAUAU-3’

CENP-P SMARTpool:
5’-GUGCAAGAGAGAACAACUA-3’
5’-AGUCAUUGUUUGGAGGAUA-3’
5’-UAUCGUAAGCGCACGUUUA-3’
5-CCUAAGUGCUAUAUCGAUC-3’

CENP-P siRNA
5’-GAACCCTGGTAGGACTGCTTGGAAT-3’

Dharmacon

Dharmacon

Invitrogen Stealth; Amaro et al., 2010

(Continued on next page)
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Continued
REAGENT or RESOURCE SOURCE IDENTIFIER
CENP-Q SMARTpool: Dharmacon

5’-GAGUUAAUGACUGGGAAUA-3’,
5’-AUGGAAAGGGCACGAGACA-3’
5’-ACAAAGCACACUAACCUAA-3’
5’-UGUCAGAGAAAUAAGGUUAG-3’

CENP-Q siRNA: Invitrogen Stealth; Bancroft et al., 2015
5'-GGUCUGGCAUUACUACAGGAAGAAA-3'
CENP-R SMARTpool: Dharmacon

5’-GAAGUUGGAUGGUCUGUUA-3’
5’-UGACAGCUAUGAAUUCCUU-3’
5’-UAAGUAGUAUACAGGCUUU-3’
5’-GAAUUCAUGAUGUUGCUAU-3’

CENP-H siRNA: Dharmacon
5’-CUAGUGUGCUCAUGGAUAA-3’
CENP-L siRNA: Dharmacon
5’-UUUAUCAGCCACAAGAUUA-3’
CENP-N SMARTpool: Dharmacon

5’-CUACCUACGUGGUGUUACUA-3’
5’-GUUCAGCACUUGAUCCAUC-3’
5’-AUACACCGCUUCUGGGUCA-3’
5’-ACACAAAGCCAAACCAGUA-3’

Recombinant DNA

pGEX-2rbs Musacchio Lab N/A
pGEX-2rbs-CENP-R This study N/A
pGEX-2rbs-CENP-C(1-544) Screpanti et al., 2011 N/A
pGEX-2rbs-CENP-C(1-544)-SNAP This study N/A

MultiBac Geneva Biotech N/A
pFL-6His-CENP-P:CENP-O This study N/A
pFL-6His-CENP-P(F116G):CENP-O This study N/A
pFL-6His-CENP-Q:CENP-U This study N/A
pUCDM-CENP-R This study N/A

pLIB Peters Lab. Addgene #80610
pBIG1A Peters Lab. Addgene #80611
pLIB CENP-O This study N/A

pLIB CENP-P This study N/A

pLIB CENP-Q This study N/A

pLIB CENP-Q(68-C) This study N/A

pLIB CENP-U This study N/A

pLIB CENP-R This study N/A

pBIG1A with CENP-OPQUR (His-CENP-Q) This study N/A

pBIG1A with CENP-OPQ(68-C)UR (His-CENP-Q) This study N/A

pCDNA 5/FRT/TO Invitrogen Cat#V6520-20
pPCDNA 5/FRT/TO EGFP Musacchio Lab; Krenn et al., 2012 N/A

pCDNA 5/FRT/TO EGFP-CENP-O This study N/A

pCDNA 5/FRT/TO EGFP-CENP-P This study N/A

pCDNA 5/FRT/TO EGFP-CENP-P(F116G) This study N/A

pCDNA 5/FRT/TO EGFP-CENP-Q This study N/A

pCDNA 5/FRT/TO EGFP-CENP-U This study N/A

pCDNA 5/FRT/TO EGFP-CENP-R This study N/A
peGFP-C1 Clontech #6085-1

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER
PCENP-Q-eGFP McAinsh Lab; Bancroft et al., 2015 N/A
pCENP-Q(NDC80(1-80))-eGFP This study N/A

Software and Algorithms

GraphPad Prism 6.0
Imaris 7.3.4 32-bit
ImageJ 1.46 r
SoftWorx

Image Lab

UCSF Chimera
SPHIRE suit
SEDFIT

SEDNTERP

GUSSI

PrDOS
COILS

GraphPad software
Bitplane

NIH

Applied Precision
Bio-rad

Pettersen et al., 2004
Moriya et al., 2017
Schuck, 2000

Laue et al., 1992

Chad Brautigam

Ishida and Kinoshita, 2007
Lupas et al., 1991

http://www.graphpad.com
http://www.bitplane.com/imaris
http://imaged.nih.gov/ij/

NA

https://www.bio-rad.com/de-de
/product/image-lab-software?
ID=KRE6P5E8Z

http://www.cgl.ucsf.edu/chimera
http://www.sphire.mpg.de
http://www.analyticalultracentrifugation.
com/default.htm
http://bitcwiki.sr.unh.edu/index.php/
Main_Page
http://biophysics.swmed.edu/MBR/
software.html
http://prdos.hgc.jp/cgi-bin/top.cgi
https://embnet.vital-it.ch/software/
COILS_form.html

Deposited Data

Mendeley data

This paper

https://doi.org/10.17632/yv552m8s98.1

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to and will be fulfilled by Andrea Musacchio (andrea.musacchio@mpi-

dortmund.mpg.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

cDNAs used for expression of recombinant proteins were either of human origin, or generated synthetically based on human
sequences. Hela (female Cervix Adenocarcinoma) and USOS cells were grown in DMEM (PAN Biotech) supplemented with 10%
FBS, penicillin and streptomycin and 2 mM L-glutamine. Cells were grown in a humidified atmosphere of 37 °C and 5% CO..

METHOD DETAILS

Plasmids

For expression and purification of recombinant proteins, synthetic codon optimized DNA (Genscript) encoding human CENP-O,
CENP-P, CENP-Q, CENP-U and CENP-C were used. The gene encoding for CENP-R was PCR amplified from human cDNA.
CENP-R was subcloned in pGEX-6P-2rbs, a modified pGEX-6P vector (GE Healthcare) as a C-terminal 3C precision cleavable
tag fusion to the sequence encoding GST and in Multibac pUCDM vector with no tag. CENP-P and CENP-PF'"%% were subcloned
in a MultiBac pFL-derived vector (Bieniossek et al., 2012) with an N-terminal TEV cleavable 6xHis tag, under the control of the
polh promoter. A codon optimized human CENP-O was subcloned in the 2nd MCS of the same vector, under the control of the
p10 promoter. Simultaneously, others pFL-based vectors were created with an N-terminal TEV cleavable 6xHis tag on CENP-Q,
or CENP-Q%8-C and CENP-U under the control of the polh and p10 promoters, respectively. CENP-C (residues 1 to 544) was PCR
amplified using a forward primer carrying Bglll and a reverse primer carrying BamH1-Stop-Sall and subsequently cloned in the first
cassette of pGEX-6P-2rbs. The SNAP tag was amplified with primers carrying BamH1 (forward) and Sall (reverse) and was cloned
into the pGEX-CENPC'%** construct using the same sites resulting in C-terminal tagging. Site- directed mutagenesis, performed
with QuickChange Mutagenesis kit (Agilent Technologies) was used to generate mutant versions of recombinant proteins. Constructs
were sequence verified.

Plasmids for stable cell lines were generated in pPCDNAS5/FRT/TO-EGFP-IRES, a modified version of the pCDNA5/FRT/TO vector
(Invitrogen, Carlsbad, CA). The control plasmid for EGFP expression was created by PCR amplifying the EGFP sequence from
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pEGFP-C1 (Takara Bio Inc.) and cloning it into the pcDNA5/FRT/TO vector previously modified to carry an internal ribosomal entry
site (IRES) sequence to create the pcDNA5/FRT/TO EGFP-IRES vector (Petrovic et al., 2010). All plasmids used in the study for
mammalian expression were derived from the pPCDNA5/FRT/TO-EGFP-IRES and used for genomic integration and expression of hu-
man CENP-OPQUR proteins. To create all EGFP tagged proteins, we amplified individual CENP-OPQUR full-length proteins by PCR
from full-length human cDNA. RNAi-resistant CENP-O and CENP-P were amplified from codon-optimized cDNA synthesized by
GeneArt (Life Technologies) and then subcloned into the pcDNA5/FRT/TO EGFP-IRES vector using the restriction sites BamHI
and Xhol. Mutant construct, CENP-P F116G, was created by site-directed mutagenesis of CENP-O and CENP-P siRNA resistant
constructs respectively. All clones were sequence verified.

Protein expression and purification

Escherichia coli BL21 (DE3) cells harboring vectors expressing CENP-R were grown in Terrific Broth at 37°C to an ODggg 0f 0.6 - 0.8,
when 0.2 mM IPTG was added and the culture was grown at 18°C for ~15 hours. Cell pellets were resuspended in lysis buffer (20 mM
Tris/HCI pH 6.8, 300 mM NaCl, 10% glycerol and 5 mM 2-mercaptoethanol) supplemented with protease inhibitor cocktail (Serva),
lysed by sonication and cleared by centrifugation at 108,000 g at 4°C for 1 hour. The cleared lysate was filtered (0.8 pum) and applied to
Glutathione Sepharose 4 Fast Flow beads (GE Healthcare) pre-equilibrated in lysis buffer, incubated at 4°C for 2 hours, washed with
50 volumes of lysis buffer and subjected to an overnight cleavage reaction with HRV 3C Prescision Protease (in house generated)
to separate CENP-R from GST. The sample containing CENP-R was loaded on 5ml HiTrap Heparin HP column (GE Healthcare)
pre-equilibrated in 20 mM Tris/HCI pH 6.8, 300 mM NaCl, 5% glycerol, 0.5 mM EDTA and 1 mM DTT. The sample was eluted
with a linear gradient of 300 - 1000 mM NaCl in 15 bed column volumes. Fractions containing CENP-R were pooled, concentrated
and loaded onto a Superdex 200 16/60 SEC column (GE Healthcare) pre-equilibrated in SEC buffer (20 mM Tris/HCI pH 6.8, 500 mM
NaCl, 5% (v/v) glycerol and 1 mM TCEP). Fractions containing CENP-R were concentrated, flash-frozen in liquid nitrogen and stored
at -80°C.

Expression and purification of CENP-OPQUR (and CENP-OPQ®-°UR, CENP-OPQU, CENP-OP (and CENP-OPF116G), and
CENP-QU (and CENP-Q%8CU) complexes was carried out in insect cells using a MultiBac system. Production of high-titer V2 virus
was carried out separately for pFL-CENP-P-6xHis:CENP-O, pFL-CENP-Q-6xHis:CENP-U and pUCDM-CENP-R in Sf9 cells. Thao38
insect cells (Hashimoto et al., 2012) were used for expression (96 hours, 27°C) after which the cells were centrifuged, washed once in
PBS, and resuspended in lysis buffer. Cell pellets infected with CENP-OP (or its mutants) virus were resuspended in lysis buffer
(20 mM Tris/HCI pH 8.0, 300 mM NaCl, 5 mM imidazole, 5% (v/v) glycerol and 5 mM 2-mercaptoethanol) supplemented with protease
inhibitor cocktail, lysed and cleared. The cleared lysate was applied to 5 ml HisTALON Cartridges pre-packed with TALON Superflow
Resin (Clontech) pre-equilibrated in lysis buffer, washed with 10 volumes of lysis buffer. Bound proteins were eluted with lysis buffer
supplemented with 250 mM imidazole. Tag cleavage with TEV protease (in house production) was performed for 15 hours at 4°C and
the fractions containing the CENP-OP complex were then diluted in 10 volumes of 20 mM Tris/HCI pH 8.0, 5% glycerol, 0.5 mM EDTA
and 1 mM DTT. Resource Q anion exchange chromatography column (GE Healthcare) was pre-equilibrated in 20 mM Tris/HCI
pH 8.0, 30 mM NaCl, 5% (v/v) glycerol, 0.5 mM EDTA and 1 mM DTT. The sample now adjusted to a salt concentration of 30 mM
was loaded onto the Resource Q column and eluted with a linear gradient of 30 - 500 mM NaCl in 15 bed column volumes. Fractions
containing CENP-OP complex were pooled and de-phosphorylated by Lambda-phosphatase (in house production) for ~15 hours
at 4C. The sample was after concentrated and loaded onto a Superdex 200 10/300 or 16/60 SEC column (GE Healthcare) pre-
equilibrated in SEC buffer (20 mM Tris pH 8.0, 150 mM NaCl, 5% (v/v) glycerol and 1 mM TCEP). Fractions containing CENP-OP
complex were concentrated, flash-frozen in liquid nitrogen and stored at -80°C.

Cell pellets infected with CENP-QU, CENP-Q®®°, CENP-OPQU, CENP-OPQUR and CENP-OPQ®®*°UR viruses were resus-
pended in lysis buffer (20 mM Tris/HCI pH 6.8, 300 mM NaCl, 5 mM imidazole, 5% glycerol and 5 mM B-mercaptoethanol) supple-
mented with protease inhibitor cocktail, lysed and cleared. The cleared lysate was applied to 5ml HisTALON column pre- equilibrated
in lysis buffer, washed with 10 volumes of lysis buffer. Bound proteins were eluted with lysis buffer supplemented with 250 mM imid-
azole. Tag cleavage was performed with TEV protease. The sample was loaded on 5 ml HiTrap Heparin HP column (GE Healthcare)
pre-equilibrated in 20 mM Tris/HCI pH 6.8, 300 mM NaCl, 5% glycerol, 0.5 mM EDTA and 1 mM DTT. The sample was eluted with a
linear gradient of 300 mM - 1M NaCl in 15 bed column volumes. Fractions containing the complexes of interest were pooled and
de-phosphorylated. Following which the sample was concentrated and loaded onto a Superdex 200 10/30 or 16/60 SEC column
pre-equilibrated in SEC buffer (20 mM Tris pH 6.8, 500 mM NaCl, 5% (v/v) glycerol and 1 mM TCEP). The relevant fractions were
pooled, concentrated, flash-frozen in liquid nitrogen and stored at -80°C.

Escherichia coli BL21 (DE3) cells harboring vectors expressing CENP-C'3*4-SNAP were grown in Terrific Broth at 37°C to an
ODgqo of 0.6 - 0.8, at which time 0.2 mM IPTG was added and the culture was grown at 18°C for ~15 hours. Cell pellets were resus-
pended in lysis buffer (25 mM Na-Hepes pH 7.5, 300 mM NaCl, 1 mM DTT and 1 mM PMSF) supplemented with protease inhibitor
cocktail (Serva), lysed by sonication and cleared by centrifugation at 108,000 g at 4°C for 1 hour. The cleared lysate was filtered
(0.8 um) and applied to Glutathione Sepharose 4 Fast Flow beads (GE Healthcare) pre-equilibrated in lysis buffer, incubated at
4°C for 2 hours, washed with 50 volumes of lysis buffer and subjected to an overnight cleavage reaction with HRV 3C Prescision
Protease to separate CENP-C'-5*4-SNAP from GST. The sample containing CENP-C'-5** was loaded onto a Resource S 6 ml column
column (GE Healthcare) pre-equilibrated in 20 mM Tris/HCI pH 6.8, 300 mM NaCl, 5% glycerol, 0.5 mM EDTA and 1 mM DTT. The
sample was eluted with a linear gradient of 300 - 2000 mM NaCl in 15 bed column volumes. Fractions containing CENP-C'-%** were
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pooled, concentrated and loaded onto a Superdex200 16/60 SEC column (GE Healthcare) pre-equilibrated in SEC buffer (20 mM
Tris/HCI pH 6.8, 500 mM NaCl, 5% (v/v) glycerol and 1 mM TCEP). Fractions containing CENP-C were concentrated, flash-frozen
in liquid nitrogen and stored at -80°C. Other proteins were purified with detailed protocols (Basilico et al., 2014; Klare et al., 2015;
Petrovic et al., 2014; Petrovic et al., 2010; Tachiwana et al., 2015; Weir et al., 2016).

Protein fluorescence labeling

CENP-OP, CENP-QU, CENP-Q®®-°U, CENP-OPQU, CENP-OPQUR, CENP-OPQ®CUR, CENP-LN, and the KMN complex were
labeled using different Alexa Fluor protein labeling kit (Thermo Fisher Scientific) according to the manufacturer instructions. Purified
S. aureus Sortase (Guimaraes et al., 2013) was used to label CENP-QU with LPETGG peptides with a N-terminally conjugated fluo-
rescein amidite (FAM) (Genscript). Labeling was performed for ~14 hr at 4°C in the presence of 10 mM CaClI2 using molar ratios of
Sortase, CENP-QU, and peptide of approximately 1:20:200. CENP-QU™M was separated from Sortase and the unreacted peptides
by size-exclusion chromatography.

Electroporation of CENP-OPQUR into mitotic and interphase cells

Hela cells depleted for both CENP-P and CENP-Q were harvested, washed in PBS and electroporated with 3.5 uM of either
recombinant Alexa-488 labeled CENP-OPQUR or CENP-OPQ®®"CUR. As control we used Alexa-488. Following electroporation
(Neon Transfection System, Thermo Fisher) and recovery, cells were either fixed for IF, or synchronized in G2 with 9 pM RO-3306
(Millipore) for 16 hours and then released from G2 in the presence of 5 uM STLC for 2 hours (Sigma-Aldrich). Following STLC
wash-out, cells were grown for 150 minutes in media containing 5 uM MG132 (Calbiochem), fixed, prepared for immunofluorescence
analysis and then scored for the presence of uncongressed choromosomes. Results are representing the average and standard
deviation of two replicated experiments. In total, between 603 and 731 cells were scored for each condition. Experiments were
imaged on a Deltavision Elite System (see below for description). Scale bar is 5 um.

Analytical SEC analysis

Analytical size exclusion chromatography was carried out on a Superdex 200 5/150 or Superose 6 5/150 in a buffer containing 20 mM
Na-HEPES pH 7.5, 300 mM NaCl, 5% glycerol and 1 mM TCEP on an AKTA micro system. All samples were eluted under isocratic
conditions at 4°C in SEC buffer (20 mM Hepes pH 7.5, 300 mM NaCl, 5% Glycerol and 1 mM TCEP) at a flow rate of 0.2 ml/min. Elution
of proteins was monitored at 280 nm. 100 pl fractions were collected and analysed by SDS-PAGE and Coomassie blue staining. To
detect the formation of a complex, proteins were mixed at the concentrations of 5 uM (except CENP-ANCP, with a concentration of
2.5 pM) in 50 pl, incubated for at least 1 hr on ice and then subjected to SEC.

Co-infection and co-purification of CENP-R with CENP-OPQUR subunits

For each His-pull-down experiment, 50 ml of freshly diluted Thao38 cells at a density of 106 cells/ml in serum-free medium (Sf-900 Il
SFM, Life Technologies) were co-infected with CENP-R virus and CENP-O/His-CENP-P or/and CENP-U/HisCENP-Q viruses using a
virus:culture ratio of 1:30 for each virus at 27°C for 96 hours. Cell pellets were resuspended in lysis buffer (20 mM Tris pH 6.8, 500 mM
NaCl, 5 mM imidazole, 10% (v/v) glycerol and 1 mM TCEP) supplemented with protease inhibitor cocktail (Serva), lysed by sonication
and cleared by centrifugation at 108,000 g at 4°C for 30 min. The cleared lysate was applied to 1 ml HisTALON column (GE Health-
care) pre-equilibrated in lysis buffer, washed with 10 volumes of lysis buffer and eluted with lysis buffer supplemented with 250 mM
imidazole. Samples of total lysate, supernatant, flow through and elution were analysed by SDS-PAGE, Coomassie blue staining and
by western blotting.

Sample preparation for electron microscopy

The protein samples (CENP-OPQU and CENP-OPQUR) were separated on a Superdex 200 10/300 or Superose 6 10/300 SEC col-
umn (pre-equilibrated in 20 mM Na-HEPES pH 7.5, 300 mM NaCl and 1 mM TCEP). The fractions of interest were pooled and concen-
trated to 15 uM. Purified CENP-HI**®KM, CENP-LN and CENP-OPQUR complexes were incubated at 15 uM in 500 pl for 1 hour at 4C
and separated on a Superose 6 10/300. The fractions containing the 11 proteins complex were pooled and concentrated to 15 uM.
Samples were purified and stabilized via the GraFix method (Kastner et al., 2008): two 2 ml gradients ranging from 20 to 50% glycerol
in 20 MM Na-HEPES pH 7.5, 300 mM NaCl and 1 mM TCEP were set up. In one of the gradients, the 50% solution contained 0.025%
of glutaraldehyde. 30 pl of sample was applied to each gradient and centrifuged by ultracentrifugation at 150,000 g at 4°C for 16
hours. The samples from the cross-linked gradient and the non-cross-linked gradient were fractionated and analyzed by SDS-
PAGE, Coomassie blue staining and immunoblotting. The fractions of interest were buffer exchanged to 20 mM HEPES pH 7.5,
300 mM NaCl, 2.5% (v/v) glycerol and 1mM TCEP with PD SpinTrap G-25 column (GE Healthcare) prior EM experiment. 4 ul of
the samples was used non-diluted. To analyze microtubule bundling by CENP-OPQUR, 4 pl of the pellets fraction of the microtubule
co-sedimentation assay (prepared as described below) was used non-diluted.

Preparation of negative stain specimens and electron microscopy

Negative stain specimens were prepared as described previously (Brocker et al., 2012). 4 ul of the cross-linked sample were
absorbed at 25 °C for 1 min onto freshly glow-discharged 400 mesh carbon-coated copper grids (G2400C, Plano GmbH, Wetzlar,
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Germany). Depending on particle density incubation time was elongated to 30 min in a humidity-controlled environment. Excess
sample was blotted by touching a Whatman filter paper and washed with four droplets of SEC buffer and exposed to freshly prepared
0.75% uranyl formate solution (SPI Supplies/Structure Probe, West Chester, PA) for about 1 min. Excess negative stain solution
was blotted and the specimen air-dried. Specimens were inspected with a JEM1400 microscope (Jeol, Tokio, Japan) equipped
with a LaB6 cathode and operated at an acceleration voltage of 120 kV. Digital micrographs were recorded at a corrected
magnification of 82,524x using a 4k x 4k CMOS camera F416 (TVIPS, Gauting, Germany). Single particles were manually selected,
aligned and classified using the Iterative Stable Alignment and Clustering (ISAC) approach implemented in SPHIRE (www.sphire.
mpg.de) (Moriya et al., 2017). The initial datasets contained 4745, 3260, 10515 single particles for the CENP-OPQU, -OPQUR,
-HI***KMLNOPQUR complexes respectively. The best ISAC class averages were used to calculate the 3D reconstruction using
the VIPER approach (Penczek et al., 2014). The complete dataset of raw particles was used to refine the initial models. For
CENP-OPQU and -OPQUR the iterative projection matching (sxali3d) implemented in SPHIRE was used until convergence was
achieved. The CENP-HI***KMLNOPQUR complex was refined using the Meridien implemented in SPHIRE (Moriya et al., 2017).
The resolution of the final reconstructions was estimated by the Fourier shell correlation (FSC) criterion 0.5 to be 22-23 A. UCSF
Chimera (Pettersen et al., 2004) was used to visualize and analyze the EM data and to prepare EM figures. Fitting of the subcom-
plexes was done using the implemented “fit in map” function of Chimera. The 3D reconstruction of the CENP-HI***KM complex
(green) was published before (Basilico et al., 2014).

Analytical ultracentrifugation (AUC)
Sedimentation velocity experiments were performed in an Optima XL-A analytical ultracentrifuge (Beckman Coulter, Palo Alto,
US-CA) with Epon charcoal-filled double-sector quartz cells and an An-60 Ti rotor (Beckman Coulter, Palo Alto, US-CA). Samples
were centrifuged at 203,000xg at 20°C and 500 radial absorbance scans at either 280 nm and collected with a time interval of
1 min. Data was analysed using the SEDFIT software (Schuck, 2000) in terms of continuous distribution function of sedimentation
coefficients (c(S)). The protein partial specific volume was estimated from the amino acid sequence using the program SEDNTERP.
Data were plotted using the program GUSSI, which is freely available from http://biophysics.swmed.edu/MBR/software.html
Analysis of CENP-R and CENP-QU were carried out at 20°C in 20 mM Tris pH 6.8, 5% glycerol, 300 mM NaCl and 1 mM TCEP
(leading to values of buffer density of 1.02542 g/ml and viscosity of 1.199 cP). Analysis of CENP-OP was carried out at 20°C in
20 mM Tris pH 8.0, 5% glycerol, 300 mM NaCl and 1 mM TCEP (leading to values of buffer density of 1.02542 g/ml and viscosity
of 1.199 cP). Analysis for CENP-OPQU and CENP-HI*®KMLNOPQUR were performed in 20 mM Na-HEPES, 5% glycerol,
300 mM NaCl and 1 mM TCEP (leading to values of buffer density of 1.04039 g/ml and viscosity of 1.300 cP). Analysis of CENP-
OPQUR was carried out at 20°C in 20 mM Tris pH 6.8, 5% glycerol, 500 mM NaCl and 1 mM TCEP (leading to values of buffer density
of 1.03352 g/ml and viscosity of 1.217 cP). The calculate values of the partial specific volume [V(bar), inverse of density] at 20°C for
CENP-R is 0.73707 ml/g, CENP-OP is 0.73725 ml/g, CENP-QU is 0.73376 ml/g, CENP-OPQU is 0.73537 ml/g, CENP-OPQUR is
0.73558 ml/g and for CENP-HI***KMLNOPQUR is 0.73975 ml/g.

Microtubule co-sedimentation assays

Tubulin was purchased from Cytoskeleton, Inc. (Denver, CO) and was polymerized according to manufacturer’s instructions. Micro-
tubules and proteins were mixed in a final volume of 20 ulin 80 mM Pipes, pH 6.8, 125 mM KCI, 2 mM MgCI2, 1 mM EGTA and 10 uM
Taxol. 0 and 5 uM taxol-stabilized microtubules (tubulin dimer concentration), and 1 uM protein of interest (protein monomer con-
centration) were mixed in 20 pl reactions. Reaction mixtures were incubated for 10 min at room temperature, transferred onto
120 pl of cushion buffer (80 mM Pipes, pH 6.8, 125 mM KCI, 1 mM MgCI2, 1 mM EGTA, 50% glycerol and 10 uM taxol) and ultra-
centrifuged at 350,000 g for 10 min at 25 °C. Supernatants and pellets were analyzed by SDS—polyacrylamide gel electrophoresis
(SDS-PAGE). Quantification was carried out as described previously (Ciferri et al., 2008). Briefly, gel densitometry was carried out
with Image Lab (Biorad). Bound fractions were obtained by dividing values of the pellet fraction by the sum of pellet and supernatant.
Normalized binding data was fitted using GraphPad Prism (GraphPad software, Inc.).

Microtubule binding assay on spinning disc confocal microscope

Cover slips and glass slides were cleaned by sonication in isopropanol and 1 M KOH or 1% Hellmanex and 70% ethanol, respec-
tively. After functionalization of cover slips with 5% biotinylated poly-L-lysine- PEG for 30 min, flow cells were created with a volume
of 10-15 pl. Flow cells were passivated with 1% pluronic F-127 for 1 h and coated with avidin for 30-45 min. After incubation with
100 nM microtubules (10% biotinylated, 10% Rhodamine labeled, Cytoskeleton, Inc., polymerized according to manufacturer’s
instructions) for 10-20 min. Proteins of interest were added in 80 mM Pipes (pH 6.8), 125 mM KCI, 1 mM EGTA, 1 mM MgCI2 and
20 uM Taxol). Flow cells were sealed with wax and imaged with spinning disk confocal microscopy on a 3i Marianas system.

TIRF microscopy

The experiments were performed and analysed as described previously (Drechsler and McAinsh, 2016) with the following modifica-
tions: Each flow cell contained either 1 nM Alexa488-labeled CENP-OPQU, 1 nM Alexa488-labeled CENP-OPQUR, or 1 nM
Alexa488-labeled NDC80 in 80 mM Pipes, pH 6.8, 1 mM MgCI2, 1 mM EGTA, 1 mM DTT, 20 mM glucose, 0.1 mg/ml k-casein,
0.54 mg/ml glucose oxidase and 0.27 mg/ml catalase. Taxol-stabilised microtubules were labeled 1:30 with biotin and Hilyte647
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(Cytoskeleton) and bound to the glass surface of a flow chamber. The assay mix was then flowed into the chamber and sealed with
VALAP. Time-lapse sequences for Alexa488-labeled CENP-OPQU (488 nm excitation, exposure 100 ms, 1fr/s) were recorded for a
duration of 200 s at 35°C; longer videos were not possible because of bleaching. Time lapse for Alexa488-labeled NDC80 (including
Alexa488-labeled CENP-OPQUR for direct comparison) were recorded for 40 s (488 nm excitation, exposure 60 ms, 100 ms/frame).
All experiments were done on a CELLR/TIRF microscope (Olympus) equipped with an ImageEM emCCD camera (Hamamatsu pho-
tonics) and a 100x 1.49NA objective.

SNAP-CENP-C pull-down experiments

CENP-C'®**_SNAP was covalently labeled with biotinylated benzylguanin (“Snap-biotin” reagent, New England Biolabs) according
to manufacturer’s protocols. In a typical assay, 20 pul of streptavidin (STV)-coated beads (Pierce Streptavidin UltraLink Resin, Thermo
Scientific) were used, per sample, and washed two times with 300 pl bead buffer (10 mM Hepes pH 7.5, 300 mM NaCl, 5% glycerol,
2 mM TCEP and 0.05% Triton X-100). The beads were re- suspended in 25 pl solution containing the proteins of interest at 2 uM and
the mixture was incubated for 10 min on ice. To remove unbound materials from the beads, they were washed two times with 200 ul
bead buffer. Samples were boiled in SDS loading buffer and subsequently analyzed by western blot. The following antibodies were
used: CENP-P (Mouse monoclonal ABCAM ab66058, 1:1000), CENP-Q (Mouse monoclonal ABCAM ab57539 , 1:1000), CENP-R
(Mouse monoclonal ABCAM ab57098 , 1:1000), CENP-HK (rabbit polyclonal antibody SI0930 raised against the full-length human
CENP-HK complex; 1:1000 (Klare et al., 2015)), CENP-N (rabbit polyclonal antibody SI0930 raised against CENP-N1-212 peptide;
1:1000), CENP-C (rabbit polyclonal antibody SI410 raised against CENP-C23-410 peptide; 1:1000; (Trazzi et al., 2009)). Secondary
antibodies were anti-mouse, and anti-rabbit (Amersham, part of GE Healthcare) affinity purified with horseradish peroxidase
conjugate (working dilution 1:10000).

Cell culture and transfection

U20S cells, a gift from A. Bird (MPI-Dortmund, Germany), were grown in DMEM (PAN Biotech, Aidenbach, Germany) supplemented
with 10% FBS (Clontech, part of Takara Bio group, Shiga, Japan), penicillin and streptomycin (GIBCO, Carlsbad, CA), and 2 mM
L-glutamine (PAN Biotech).

Flpin T-REx HelLa cells used to generate stable doxycycline-inducible cell lines were a gift from SS Taylor (University of
Manchester, Manchester, England, UK). Flp-In T-REx host cell lines were maintained in DMEM (PAN Biotech, Aidenbach, Germany)
with 10% tetracycline-free FBS (Clontech) supplemented with 50 ng/ml Zeocin (Invitrogen) and 2 mM L-glutamine (PAN Biotech).
FIp-In T-REx HelLa expression cell lines were generated as previously described (Krenn et al., 2012). Gene expression was induced
by addition of 0.2-0.5 pg/ml doxycycline (Sigma, St. Louis, MO) for 48 to 72 hr.

Proteins were depleted by siRNA, transfected into cells using HiPerFect transfection reagent (Qiagen) as per the manufactures in-
structions. Cells were treated with CENP-O siRNA (Dharmacon; 5’-UAGGAGACCAGACUCAUAU-3’) or CENP-P siRNA (Dharmacon
SMARTpool; 5-GUGCAAGAGAGAACAACUA-3’, 5-AGUCAUUGUUUGGAGGAUA-3’, 5-UAUCGUAAGCGCACGUUUA-3’, and
5-CCUAAGUGCUAUAUCGAUC-3’) for 48 h. While treatments of CENP-Q siRNA (Dharmacon SMARTpool; 5’-GAGUUAAUGACUGG
GAAUA-3’, 5-AUGGAAAGGGCACGAGACA-3’, 5-ACAAAGCACACUAACCUAA-3’, and 5-UGUCAGAGAAAUAAGGUUAG-3’),
CENP-R (ITGB3BP, Dharmacon SMARTpool; 5’-GAAGUUGGAUGGUCUGUUA-3’, 5’-UGACAGCUAUGAAUUCCUU-3’, 5’-UAAG
UAGUAUACAGGCUUU-3’, and 5’-GAAUUCAUGAUGUUGCUAU-3’), CENP-H (Dharmacon; 5-CUAGUGUGCUCAUGGAUAA-3’),
CENP-L (Dharmacon; 5’-UUUAUCAGCCACAAGAUUA-3’), or CENP-N (Dharmacon SMARTpool; 5-CUACCUACGUGGUGUUA
CUA-3’, 5-GUUCAGCACUUGAUCCAUC-3’, 5’-AUACACCGCUUCUGGGUCA-3’, and 5’-ACACAAAGCCAAACCAGUA-3’) were
for 72 h.

Immunofluorescence
Flpln T-REx HeLa cells were grown on coverslips precoated with poly-D-Lysine (Millipore, 15 ug/ml). For co-localization experiments,
FlpIn T-REx HeLa cells expressing full length GFP tagged CENP-R were synchronized overnight, 32 h or 56 h after siRNA transfection,
in RO-3306 (Calbiochem) then released into 3.3 uM nocodazole (Sigma-Aldrich) for 2-3 h before fixation. For monopolar spindle re-
covery experiments U20S cells were treated overnight in 5 uM (+)-S-Trityl-L-Cysteine (STLC, Sigma-Aldrich), then released and fixed
after 3 h. To determine how CENP-O F158G and CENP-P F116G localize in metaphase, cells were fixed following their respective
48 h siRNA treatment. To investigate CENP-OPQUR recruitment following CENP-H, -L, or -N siRNA treatment cells were synchro-
nized using 330 nM nocodazole for 15 h, 56 h after siRNA transfection. Cells were fixed as described (De Antoni et al., 2012). Alter-
natively cells were fixed using 4% paraformaldehyde, and permeablised using 0.25% Triton X-100. Cells were stained for GFP (Goat
polyclonal, 1:500 (Poser et al., 2008) or GFP-Boost, Chromoteck gba-488, 1:400), CENP-OP (Rabbit polyclonal, raised against full
length CENP-OP complex, 1:500), CENP-QU (Goat, raised against full length CENP-QU complex, 1:500), CENP-HK (rabbit poly-
clonal antibody SI0930 raised against the full-length human CENP-HK complex; 1:400, CREST/anti-centromere antibodies (Anti-
bodies, Inc., Davis, CA, 1:100), CENP-A (Rabbit, Ossolengo, 1:500 or Mouse, Gene Tex GTX13939, 1:500) diluted in 5% boiled
donkey serum in PHEM (Pipes, Hepes, EGTA, and MgCl2) for 2 h (PFA fixation) or over night (PHEM fixation) (De Antoni et al., 2012).
Donkey anti-human and donkey anti-goat Alexa Fluor 647, donkey anti-mouse, donkey anti-rabbit, and donkey anti-goat rhoda-
mine, donkey anti-mouse and donkey anti-goat Alexa Fluor 488, donkey anti-human, donkey anti-rabbit, and donkey anti-mouse
Alexa Fluor 405 (Jackson ImmunoResearch Laboratories, Inc., West Grove, PA), as well as donkey anti-mouse and chicken anti-rab-
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bit Alexa Fluor 647, and donkey anti-rabbit Alexa Fluor 488 (Invitrogen) were used as secondary antibodies. DNA was stained with
0.5 ug/ml DAPI (Serva), and coverslips were mounted with Mowiol mounting media (Calbiochem). Cells were imaged using either a3i
Marianas system or a Deltavision Elyte System. The spinning disk confocal device on the 3i Marianas system equipped with an Axio
Observer Z1 microscope (Zeiss), a CSU-X1 confocal scanner unit (Yokogawa Electric Corporation, Tokyo, Japan), Plan-Apochromat
63x or 100x/1.4NA Oil Objectives (Zeiss), and Orca Flash 4.0 sCMOS Camera (Hamamatsu). Images were acquired as z-sections at
0.2 um. Images were converted into maximal intensity projections, exported, and converted into 8-bit. Quantification of kinetochore
signals was performed on unmodified 16-bit z-series images using Imaris 7.3.4 32-bit software (Bitplane, Zurich, Switzerland). After
background subtraction, all signals were normalized to CREST or CENP-A. Measurements were exported in Excel (Microsoft)
and graphed with GraphPad Prism 6.0 (GraphPad Software, San Diego California USA). The Deltavision Elite System (GE
Healthcare, UK) is equipped with an IX-71 inverted microscope (Olympus, Japan), UPlanFLN 40x/1.3NA objective or a PLAPON
60x/1.42NA objective (Olympus) and a pco.edge sCMOS camera (PCO-TECH Inc., USA).

Live cell imaging

Cells were plated on an 8 well 15 p-Slide (Ibidi, Martinsried, Germany). CENP-P was depleted as previously described for 48 h prior to
imaging. For asynchronous cells, FIpln T-REx HelLa cells were transferred into CO2 Independent Medium (Gibco) 16 h before time-
lapse. Two hours before imaging SiR-Hoechst DNA dye (Spirochrome) was added. Timelapse demonstrating recovery from noco-
dazole treatment utilized U20S cells drugged overnight with 330 nM nocodazole in CO2 Independent Medium (Gibco). SiR-Hoechst
DNA dye (Spirochrome) was added into the nocodazole containing media 2 h before imaging. Cells were released from nocodazole
by washing three times with PBS and then placed in CO2 Independent Media (Gibco) containing SiR-Hoechst DNA dye (Spiro-
chrome). Where indicated, 0.5 uM Reversine was added to cells after release. Cells were imaged every 2 min for 12 h in a heated
chamber (37°C) with a Deltavision Elite System. Images were acquired as Z-sections (using the softWoRx software from Deltavision)
and converted into maximal intensity projections TIFF files for illustrative purposes.

Immunoprecipitation and immunoblotting

To generate mitotic populations for immunoprecipitation experiments, cells were treated with 330 nM nocodazole for 16 hr. Mitotic
cells were then harvested by mitotic shake off and lysed in lysis buffer (25 mM Tris pH 7.5, 100 mM NaCl, 5 mM MgCl, 10% Glycerol,
0.2% NP-40, 1 mM NaF, Benzonase (Sigma), supplemented with protease inhibitor cocktail (Serva, Heidelberg, Germany) and
PhosSTOP phosphatase inhibitors (Roche)). Extracts were precleared using protein A-Sepharose (CL-4B; GE Healthcare) for 1 hr
at 4°C. Subsequently, extracts were incubated with GFP-Traps (ChromoTek, Martinsried, Germany; 2 pl/mg of extract) for 2 hr at
4°C. Immunoprecipitates were washed with wash buffer (25 mM Tris pH 7.5, 100 mM NaCl, 5 mM MgCl, 10% Glycerol, supple-
mented with protease inhibitor cocktail [Serva, Heidelberg, Germany] and PhosSTOP phosphatase inhibitors [Roche]). To elute
the proteins beads were incubated with 0.1 M glycine pH 2.0 for 10 min, 1 M Tris pH 9.2 was then added to neutralize eluates. Sample
buffer was added, samples boiled and analyzed by SDS-PAGE and Western blotting using 14% tricine gels.

The following antibodies were used: anti-GFP (in house made rabbit polyclonal antibody; 1:1,000), CENP-OP (Rabbit polyclonal,
raised against full length CENP-OP complex, 1:1,000), CENP-QU (Goat, raised against full length CENP-QU complex, 1:1,000),
CENP-HK [rabbit polyclonal antibody SI0930 raised against the full-length human CENP-HK complex; 1:1.000 (Klare et al., 2015)],
anti-Tubulin (mouse monoclonal; Sigma; 1:8000). Secondary antibodies were anti-mouse, anti-goat, and anti-rabbit (Amersham,
part of GE Healthcare) affinity purified with horseradish peroxidase conjugate (working dilution 1:10000). After incubation with
ECL Western blotting system (GE Healthcare), images were acquired using a BioRAD chemiDoc MP Imaging System (BioRAD).
Images were acquired using Image Lab software Version 5.2 (BioRAD). Images were adjusted using the image lab software then
exported in 8-bit tiff format for publication.

Tail-swap experiment

A cDNA encoding full-length, siRNA protected CENP-QNDC80(1-80) was ordered from GeneArt (Thermo Fisher) and subcloned into
pMC273 using EcoRl and Scal sites (replacing wild-type CENP-Q) to create CENP-QNDCB80(1-80)-eGFP (pMC614). Correct insertion
was confirmed by sequencing with the following primer 5’ ttgacgcaaatgggcggtag 3’. Production of wild-type CENP-Q-eGFP and
protection against the CENP-Q siRNA oligonucleotide are reported in (Bancroft et al., 2015). HelLa K cells (MC009) were grown on
22 mm coverslips in DMEM until 40% confluency. Cells were then transfected with control 5° GGACCUGGAGGUCUGCUGU 3’
(Sigma) or CENP-Q 5° GGUCUGGCAUUACUACAGGAAGAAA 3’ (Invitrogen Stealth) siRNA using oligofectamine and incubated in
1.5 ml MEM for 24 h. The media was replaced with 1.5 ml DMEM and the cells transfected with 1 pg of eGFP-N1 (pMCO005),
CENP-Q-eGFP (pMC308) or CENP-QNDC80(1-80)-eGFP (pMC614) using Fugene6 at 1:3 according to the manufacturers guidelines.
Cells were incubated for a further 48 h and treated with 1 uM MG132 for 90 min before fixation. Cells were fixed at room temperature
for 10 min in 20 mM PIPES pH6.8, 10 mM EGTA, 1 mM MgCl2, 0.2% Triton X-100 and 4% formaldehyde. Cells were then were then
washed three times with PBS before blocking with 3% BSA in PBS for 30 min. After blocking, the fixed cells were incubated for 1hr at
room temperature in rabbit anti-CENP-E antibody (1/1500, Meraldi lab) and CREST antisera (1/250, Antibodies Incorporated). Cells
were then washed three times in PBS and incubated for 1 h with AlexaFluor-conjugated highly cross-adsorbed secondary antibodies
(Invitrogen) before mounting on coverslips in vectashield (VectorLabs). Three dimensional image stacks of mitotic cells were acquired
in 0.2 um steps using a 100X oil-immersion 1.4 NA objective lens on an Olympus DeltaVision Elite microscope (Applied Precision,
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LLC) equipped with a DAPI, fluorescein isothiocyanate (FITC), Rhodamine or Texas Red, CY5 filter set (Chroma), solid state light
source and a CoolSNAP HQ camera (Roper Scientific). Image stacks were deconvolved using SoftWorx (Applied Precision, LLC).
Fluorescence-intensity measurements were taken manually using SoftWorx and data visualized in R or Excel (Microsoft). Figures
were prepared in illustrator (Adobe). CENP-Q and NDC8O0 tail disorder predictions were generated using PrDOS (Ishida and Kinosh-
ita, 2007) with a 5% false positive rate.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses are described in the Figure legends and in the Method Details.

DATA AND SOFTWARE AVAILABILITY

The data have been uploaded on the Mendeley server at https://doi.org/10.17632/yv552m8s98.1.
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Figure S1. Reconstitution and characterization of the human CENP-OPQUR

complex; Related to Figure 1

A-B) Elution profiles and corresponding SDS-PAGE of recombinant CENP-OP and
CENP-QU complexes. C) Elution profiles and SDS-PAGE analysis of a stoichiometric
mixture of CENP-OP (blue) and CENP-QU (red) resulting in the formation of the four
subunits complex CENP-OPQU (black). D) Elution profiles and corresponding SDS-
PAGE of recombinant CENP-OPQU obtained by co-expression. E) Sedimentation
velocity AUC demonstrated that each CENP-OPQUR complex and sub-complexes
contained single copies of each subunit. CENP-R when expressed in isolation forms a
tetramer. F) Elution profile and corresponding SDS-PAGE of recombinant CENP-R. I)
Elution profile and corresponding SDS-PAGE of recombinant CENP-OPQUR
obtained by co-expression in insect cells. G-H) Elution profiles and SDS-PAGE analysis
of stoichiometric mixtures of CENP-R and CENP-OP (in G) or CENP-QU (in H). No
strong direct interaction of isolated CENP-R with either CENP-OP or CENP-QU was
observed. Note that the gel illustrating the elution of CENP-R (middle) in panels G and
H has been intentionally duplicated to visualize elution shifts (or lack thereof). J) Insect
cell co-expression of CENP-R with CENP-OPQU (positive control) or CENP-QU
results in the identification of CENP-R in the elution fraction after purification with His-
CENP-PO and/or His-CENP-QU. When co-expressed, CENP-R does not bind CENP-
OP. Thus, CENP-R interacts predominantly with CENP-QU subunit. (T, Total cleared
lysate; SN, Soluble faction; FT, Flow Through; E, Elution). K) Representative images
show the localization of recombinant CENP-OPQUR labeled with Alexa488 (green) in
mitotic cells after electroporation into interphase cells. CREST syndrome autoantibodies
identify kinetochores. Scale bar = 5 um. L)) Elution profiles and SDS-PAGE analysis of a
stoichiometric mixture of CENP-OP (blue) and CENP-Q®“U (red) resulting in the
formation of the four subunits complex CENP-OPQ®“U (black).
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Figure S2. Localization dependencies; Related to Figure 2

A) Western blot showing the depletion of CENP-H in each of the GFP-CENP-OPQUR
HeLa FlpIn TRex stable cell lines. B-E) Representative images of HelLa FlpIn TRex cells
stably expressing GFP-CENP-O (B), GFP-CENP-P (C), GFP-CENP-R (D), and GFP-
CENP-U (E), where CENP-H, CENP-L, and CENP-N have been depleted by RNAI.
CENP-O, -P, -U, and —R are all lost from the kinetochote in the absence of CENP-H, -
L, or —N. The CENP-HK complex is also lost from kinetochores during the
aforementioned RNAi depletions. Quantification of the GFP-CENP-OPUR proteins
after the indicated depletion are shown to the right of their respective images in green,
CENP-HK is shown in red. **p =< 0.01. Graph shows results from one of three
independent experiments, a minimum of 158 (CENP-O), 113 (CENP-P), 54 (CENP-U),
or 124 (CENP-R) kinetochores were quantified for the cell line indicated in brackets. All
scale bars = 5 um. F) Assessment of depletion levels for the RNAi experiments. Western
blot showing the depletion of CENP-O, -P, -Q, or —R from FlpIn TRex cells stabling
expressing GFP-CENP-R. G) Co-localization studies were carried out by depleting
CENP-O, CENP-P, CENP-Q, or CENP-R, using RNAi, from HelLa FlpIn TRex cells
stabling expressing GFP-CENP-R. Cells were stained with antibodies targeting CENP-
OP, CENP-QU, and Nsll. Insets identify kinetochores. Scale bar = 5 pum. H)
Quantification of the co-localization of CENP-OP, CENP-QU, and GFP-CENP-R
following depletion of CENP-O, CENP-P, CENP-Q, and CENP-R in HelLa FlpIn TRex
cells. The graph shows a minimum of 276 kinetochores from at least three technical
replicas of the experiment. I) Mitotic index of cells depleted of CENP-O, CENP-P,
CENP-Q, CENP-R, or left untreated. Depletion of any CENP-O complex protein
significantly increased the mitotic index as compared to the untreated control, indicating
that CENP-OPQUR has a role in mitotic progression. **p = 0.01.
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Figure S3. RWD domains in CENP-OP and Knll have similar interaction modes

with their targets; Related to Figure 2

A-C) Elution profiles and subsequent SDS-PAGE of the recombinant CENP-C'*,
CENP-HIKM, and CENP-LN complexes. D-E) Cartoon models comparing the RWD
domains of Knll (residues 2106-2311; PDB access number 4NF9) and Ctf19 (residues
96-269; PDB access number 3ZXU). Tyr2125 of Knll is the residue responsible for the
binding of Nsll. Phel38 of Ctfl9 (F116 in human CENP-P) is conserved and its
position it close related to that of Knll Tyr2125. F) Sequence alignment of CENP-P and
Ctf19 from the indicated species in the region containing Phel16. G) Pull-down assays
using SNAP-CENP-C"™* bait. CENP-OP™'“ (2 uM) fails to bind to immobilized
CENP-CHIKMLN, and further prevents binding of CENP-QU (also at 2 uM). The
experiment shown is representative of at least 3 repeats. H) Immunoprecipitation (IP)
assays were carried out using cell lines that stably expressed GFP-CENP-P or its
respective RWD domain mutants GFP-CENP-P™'°°. The mutation of the CENP-P
RWD domain disrupted its interaction with CENP-HK and CENP-QU, while
maintaining its binding to CENP-N. Lysates from cells expressing GFP alone where

used as a control and did not interact with any of the aforementioned proteins.
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Figure S4. Analytical SEC and SDS-PAGE analysis of stoichiometric mixtures of
CENP-OPQUR with different kinetochore subunits; Related to Figures 3 and 6

A-B) The omission of CENP-LN or CENP-HIKM prevents the interaction of CENP-
OPQUR with CENP-HIKM and CENP-LN, respectively. C-F) CENP-OPQUR cannot
form a complex with any other KT subunits if it is not incorporated in the CENP-
HIKMLNOPQUR complex. Note that the gels illustrating the elution of CENP-
OPQUR in panels A-B, C-D, or E-F have been intentionally duplicated to visualize
elution shifts (or lack thereof) when mixing with potential binding partners. The same is
true of the gel illustrating the elution of the mixture containing CENP-OPQUR, CENP-
C™", MIS12C, and NDC80C, which was intentionally duplicated in panels E-F

(bottom).
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Figure S5. CENP-HIKMLNOPQUR complex and the rKT26. Related to Figures
3 and 4.

A) Primary data and fitting residuals for the AUC run in Figure 3C. B-C) SDS-PAGE
analysis of the fractions collected after GraFix procedure of the CENP-
HIKMLNOPQUR complex in absence (A) and presence (B) of glutaraldehyde (Kastner
et al,, 2008). In fraction 12, all the 11 proteins are presents (A) and form a slow migrating
band when cross-linked (B). D) Fraction 12 of the cross-linked sample was analyzed by
Western blotting and shown to contain the 11 subunits. E-F) Electron densities of
CENP-HIKM (green) and CENP-OPQUR (violet) were manually fitted into CENP-
HIKMLNOPQUR. Inspection of the volume reveals that the sub-complexes do not
occupy the full volume, leaving additional space that was attributed to the LN sub-
complex (see also Figure 3E-H). The difference map was created using Chimera and
filtered to 20 A resolution. For an additional visualization see Movie 1. Scale bar = 10
nm. G-]) Elution profiles and SDS-PAGE of recombinant subunits of human
kinetochore proteins used for the assembly of the rKT26. Every subunit or complex

elutes in a single peak with a retention volume larger than that of rK'T26.
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Figure S6. CENP-OPQUR complex binds microtubules via CENP-QU and
CENP-R subunits; Related to Figures 3 and 5

A) Representative electron micrograph area of the negatively stained CENP-OPQU
complex. Scale bar = 100 nm (10 nm, enlarged). The resolution was estimated by the
Fourier shell correlation (FSC) 0.5 criterion to be ~23 A. A Collection of class averages
of the CENP-OPQU complex derived from a data set of 4745 single particles. Selected
Reprojections of the 3D reconstruction paired with their corresponding class averages.
Scale bar = 10 nm. B) Representative electron micrograph area of the negatively stained
CENP-OPQUR complex. Scale bar = 10 nm. The resolution was estimated by the
Fourier shell correlation (FSC) 0.5 criterion to be ~23 A. A Collection of class averages
of the CENP-OPQUR complex derived from a data set of 3260 single particles. Selected
Reprojections of the 3D reconstruction paired with their corresponding class averages.
Scale bar = 10 nm. C) Representative SDS-PAGE of microtubule co-sedimentation
assays of 1 uM CENP-OP, CENP-QU, CENP-R, CENP-OPQU, CENP-OPQUR,
CENP-OPQ*“U, and CENP-OPQ®*“UR with 10 uM taxol-stabilized microtubules. P,
pellet fraction; S, soluble fraction. A subset of panels from this figure are additionally
shown in Figure 5A. D) Quantification of experiments in C. Error bars are standard
deviations calculated from three technical replicas. E) Representative electron
micrographs of negatively stained microtubules bundled upon exposure to increasing
concentration of CENP-OPQU complex. Scale bar = 40 nm. F) Additional
representatives electron micrographs of negative-stained Taxol-stabilized microtubules in
presence of CENP-OPQUR. The outline of the complex, recognizable on the
microtubule surface, suggests that the microtubule-binding moiety is in the base domain.
Scale bar = 20 nm. G) Representative electron micrograph area of the negatively stained
CENP-HIKMLNOPQUR complex. A Collection of selected reprojections of the 3D
reconstruction of the CENP-HIKMLNOPQUR complex paired with their
corresponding class averages derived from a data set of 10515 single particles. Scale bar
= 20 nm. The resolution was estimated by the Fourier shell correlation (FSC) 0.5

criterion to be ~22 A.
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Figure S7. SEC analysis demonstrating interaction of CENP-OPQ* “UR mutant
with tKT21 and various alignment and checkpoint assays; Related to Figures 6

and 7

A) Analytical SEC and SDS-PAGE analysis of stoichiometric mixtures of CENP-OPQ®
“UR with CENP-11 subunits demonstrating complex assembly. In panels B-D, we
demonstrate that depletion of CENP-OPQUR subunits is associated with a variety of
spindle assembly and chromosome alignment problems, with delayed mitotic exit and
frequent lagging chromosomes at anaphase, phenotypes that are strongly exacerbated
during recovery from spindle damage (Bancroft et al., 2015; Hori et al., 2008b; Hua et al.,
2011; McAinsh et al., 2006; McClelland et al., 2007; Minoshima et al., 2005; Toso et al.,
2009). For reasons that remain unclear, penetrance of these effects varies considerably in
different cell and organismal models (Kagawa et al., 2014; McKinley et al., 2015). After
depleting CENP-P by RNAi, we monitored the timing of mitotic progression by time-
lapse video microscopy in Hela cells. We show that addition of Reversine, an inhibitor
of the spindle assembly checkpoint kinase Mps1 (Santaguida et al., 2010), promoted very
rapid anaphase in CENP-P depleted cells, indicating that the mitotic delay is caused by
checkpoint activation (panel B). In an established chromosome bi-orientation assay, in
which Hela cells were first treated with STLC (an inhibitor of the Eg5 kinesin) to
prevent spindle bipolarization, and then allowed to bipolarize by STLC washout before
fixation, CENP-P-depleted cells contained a high proportion of chromosomes that had
failed to bi-orient, indicating that the CENP-OPQUR contributes to chromosome bi-
orientation (panel C). Finally, the chromosome alignment defects caused by depletion of
CENP-P and CENP-Q were at least partially rescued after electroporation of
recombinant CENP-OPQUR complex, but not of CENP-OPQ®“UR complex (panel
D). B) Additional immunofluorescence images of the tail-swap rescue experiment
described and quantified in Figure 7B-E. Here, we chose two cells in the same field of
view that had either received (cell 1) or not received (cell 2) the CENP-Q-eGFP rescue
construct. Note kinetochore localization of CENP-E in cells expressing CENP-Q-eGFP
and lack thereof in non-transfected cells. Scale bar 5 um. C) As in B, but showing a field
of view from cells that had (cell 1) or had not (cell 2) received the CENP-Q™P“*!#0_
eGFP transgene. D) The CENP-OPQUR complex is required for recovery from
nocodazole. Quantification of time-lapse microscopy experiments on U20S cells, either

untreated, depleted of CENP-P, or depleted of CENP-P and treated with 0.5 pM



Reversine, progressing to anaphase after release (time 0) from a 16-hour nocodazole (330
nM) treatment. E) Recovery from monopolarity is impaired in absence of the CENP-
OPQUR complex. Quantification of experiments in which U20S cells were
synchronized for 16 hours with 5 uM STLC, an Eg5 inhibitor, then released in inhibitor-
free medium containing MG132 and fixed after 3 h. Loss of the CENP-OPQUR
complex resulted in a large fraction of cells with misaligned chromosomes, indicative of
error cotrection problems. F) Cells depleted for CENP-Q/P and electroporated either
with ~ Alexa-488 labeled CENP-OPQY'UR or CENP-OPQ*“UR. Following
synchronisation with STLC treatment, cells were released MG132 containing medium for
150 minutes before being prepared for immunofluorescence analysis and scored for the
presence of uncongressed chromosomes. When compared with CENP-OPQY'UR,
electroporation of CENP-OPQ®™“UR results in a larger fraction of cells with

uncongressed chromosomes.
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Table S1. Sedimentation velocity analytical ultracentrifugation (AUC) of indicated

kinetochore complexes; Related to Figure 3



Table S1

Sedimentation velocity analytical ultracentrifugation (AUC) of indicated kinetochore complexes

Experiment Complex Predicted mass Observed mass Fricti.onal Sedime.ntation P.red.icted
(kDa) (kDa) ratio coefficient (S) stoichiometry
1 CENP-OP 66.9 75.2 1.3 3.7 1:1
2 CENP-QU 78.1 80.9 2.3 2.2 1:1
3 CENP-R 20.2 81.9 2.2 2.5 Tetramer
4 CENP-OPQU 145.0 139.9 1.8 3.5 1:1:1:1
5 CENP-OPQUR 165.2 159.1 2.2 3.5 1:1:1:1:1
6 CENP-HIKMLNOPQUR 404.0 407.7 1.7 7.7 111111111101
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