Supplementary Information for Properties of Lithium Trivanadate Film Electrode Formed on Garnet- Type Oxide Solid Electrolyte by Aerosol Deposition Ryoji Inada *, Kohei Okuno, Shunsuke Kito, Tomohiro Tojo and Yoji Sakurai Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan **Figure S1.** X-ray diffractometer (XRD) patterns (**top**) and scanning electron microscope (SEM) image (**bottom**) for sintered Li_{6.55}La₃Zr_{1.55}Ta_{0.45}O₁₂ (LLZT) used in this work. LLZT has a cubic garnet structure without any impurity phases and a dense structure composed of LLZT grains with an average size of 5 μ m. **Figure S2.** Illustration (**left**) and photo (**right**) of cell fixture for composing a LiV3O8 (LVO)/LLZT/Li all-solid-state cell sample. **Figure S3.** Galvanostatic charge and discharge curves for LVO film electrode (thickness = 2.5 m) formed on a SUS316L plate in an organic liquid electrolyte. LVO film is used as working electrode, where as a single Li foil serves as both counter and reference electrodes. The electrolyte solution was 1 mol LiPF₆ in a mixture or ethylene carbonate (EC) and dimethyl carbonate (DMC) with a volume ratio of 1:1. Together with Celgard 3501 as a separator, these components were assembled in a CR2032 coin type cell in a dry Ar filled grove box. **Figure S4.** Galvanostatic charge and discharge curves for a LVO/LLZT/Li solid-state cell at 100 C and different current densities: (**a**) 0.030 mA cm⁻², (**b**) 0.060 mA cm⁻², (**c**) 0.090 mA cm⁻², (**d**) 0.120 mA cm⁻² and (**e**) 0.240 mA cm⁻². The measurement at one specific current density is repeated for five cycles. Note that current density of 0.030 mA cm⁻² corresponds to 30 mA g⁻¹ for the LVO electrode. **C** 54. (COII Figure S4. (Continued).