Global involvement of lysine crotonylation in protein modification and transcription regulation in rice

Shuai Liu^{1#}, Chao Xue^{1#}, Yuan Fang², Gang Chen¹, Xiaojun Peng³, Yong Zhou¹, Chen Chen¹, Guanqing Liu¹, Minghong Gu¹, Kai Wang⁴, Wenli Zhang², Yufeng Wu^{2*}, Zhiyun Gong^{1*}

1: Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China

2: The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China

3: Jingjie PTM BioLab (Hangzhou) Co. Ltd., Hangzhou 310018, China

4: Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China

#: These authors contributed equally to this work.

*Corresponding authors E-mail address: zygong@yzu.edu.cn or yfwu@njau.edu.cn

SUPPORTING INFORMATION

Supplemental_Fig_S1. Quality control validation of MS data. (A) Mass error distribution of all identified peptides. (B) Distribution of crotonylated peptides based on their length. (C) Distribution of cronylated proteins based on their number of cronylated peptides.

Supplemental_Fig_S2. Representative MS/MS spectra of validated crotonylated peptides in rice seedling. (A) Crotonylpeptide TIMP-(crotonyl)K-DIQLA with crotonylation site at K122 in histone H3. (B) Crotonylpeptide IQGIT-(crotonyl)K-PAIR with crotonylation site at K31 in histone H4. (C) Crotonylpeptide LEV-(crotonyl)K-EIAEIM with crotonylation site at K817 in chaperone protein C1pC2. (D) Crotonylpeptide LAEEG-(crotonyl)K-VAIR with crotonylation site at K205 in ribosome-recycling factor.

Supplemental_Fig_S3. Functional annotation of lysine crotonylome. Representative GO annotations of Kcr sites for (A) biological process, (B) molecular function, and (C) cellular component, and (D) KEGG pathway analysis of lysine-crotonylated proteins.

Supplemental_Fig_S4. WB analysis in green and albinao seedlings. (A) The morphology of green seedlings and albino seedlings derived from anther culture of *Oryza sativa* variety "Nipponbare". (B) WB analysis was performed using anti-Kcr antibody in green seedlings and albino seedlings derived from anther culture.

Supplemental_Fig_S5. Protein-protein interaction network. The balls represent crotonylated proteins. The size of the balls represents the numbers of Kcr modification in each figure.

Supplemental_Fig_S6. IF and WB analysis were performed using anti-H3K14cr antibody. (A) The specificity antibody H3K14cr (green) was detected in two-week-old rice root by immunofluorescence, and nuclei was stained with DAPI (red). Scale bars: 5μm. (B) Western blotting analysis in rice seedlings whole protein and histone.

Supplemental_Fig_S7. Distribution of H3K14cr density around differentially expressed

genes. (A) Genome-wide distribution of histone H3K14cr in the rice genome. (B) Distribution of H3K14cr density around differentially expressed genes. The H3K14cr modification was calculated by the number of reads per kilobase of the mapped genomic region. The arrow indicates the direction of transcription from transcription start site (TSS). The rice genes were divided into five categories based the expression level from top 20% to bottom 20% (0-20%).

Supplemental_Fig_S8. Expression comparisons of genes associated with different combinations of histone modifications. The non-TE gene expression values (FPKM) of each combination were indicated by box plots. All: all rice genes. Kcr: genes with Kcr modification but not only. Kcr+K9ac: genes with both Kcr and H3K9ac. Kcr only: Genes only with Kcr. The rest may be deduced by analogy. The *** indicated the significant difference between two combinations (p<2.2e-16, Kolmogorov-Smirnov test).

Supplemental_Fig_S9. The distribution of histone Kcr in 12 chromosomes of rice.

Supplemental_Fig_S10. The phylogenic tree of p300/CBP homologous genes in rice, maize, wheat and Arabidopsis genome.

Supplemental_Table_S1. Protein annotation summary

Supplemental_Table_S2. Gene ontology annotation detail.

Supplemental_Table_S3. Protein-protein interaction network.

Supplemental_Table_S4. Seven Kcr sites identified in rice histones.

Supplemental_Table_S5. Summary of ChIP-seq data.

Supplemental_Table_S6. The lists of all enriched regions with Kcr and H3K14cr.

Supplemental_Table_S7. Confirmation of peak sites and non-peak sites by quantitative PCR.

Supplemental_Table_S8. Over-represented functions of genes associated with Kcr modification.

Supplemental_Fig_S1. Quality control validation of MS data. (A) Mass error distribution of all identified peptides. (B) Distribution of crotonylated peptides based on their length. (C) Distribution of cronylated proteins based on their number of cronylated peptides.

Supplemental_Fig_S2. Representative MS/MS spectra of validated crotonylated peptides in rice seedling. (A) Crotonylpeptide TIMP-(crotonyl)K-DIQLA with crotonylation site at K122 in histone H3. (B) Crotonylpeptide IQGIT-(crotonyl)K-PAIR with crotonylation site at K31 in histone H4. (C) Crotonylpeptide LEV-(crotonyl)K-EIAEIM with crotonylation site at K817 in chaperone protein C1pC2. (D) Crotonylpeptide LAEEG-(crotonyl)K-VAIR with crotonylation site at K205 in ribosome-recycling factor.

-log10(Fisher's test p value) 16 18

9

biological_process

molecular_function

cellular_component

electron transporter, transferring electrons within the cyclic proton-transporting ATPase activity, rotational mechanism phosphoglycerate kinase activity ATPase activity, coupled to transmembrane movement of ions cation-transporting ATPase activity proton-transporting ATP synthase activity, rotational mechanism ATPase activity, coupled to transmembrane movement of ions hydrogen ion transmembrane transporter activity iron-sulfur cluster binding

Supplemental_Fig_S3. Functional annotation of lysine crotonylome. Representative GO annotations of Kcr sites for (A) biological process, (B) molecular function, and (C) cellular component, and (D) KEGG pathway analysis of lysine-crotonylated proteins.

6

В

Α

D

С

Supplemental_Fig_S4. WB analysis in green and albinao seedlings. (A) The morphology of green seedlings and albino seedlings derived from anther culture of Oryza sativa variety "Nipponbare". (B) WB analysis was performed using anti-Kcr antibody in green seedlings and albino seedlings derived from anther culture.

Supplemental_Fig_S5. Protein-protein interaction network. The balls represent crotonylated proteins. The size of the balls represents the numbers of Kcr modification in each figure.

Supplemental_Fig_S6. IF and WB analysis were performed using anti-H3K14cr antibody. (A) The specificity antibody H3K14cr (green) was detected in two-week-old rice root by immunofluorescence, and nuclei was stained with DAPI (red). Scale bars: 5μ m. (B) Western blotting analysis in rice seedlings whole protein and histone.

Supplemental_Fig_S7. Distribution of H3K14cr density around differentially expressed genes. (A) Genome-wide distribution of histone H3K14cr in the rice genome. (B) Distribution of H3K14cr density around differentially expressed genes. The H3K14cr modification was calculated by the number of reads per kilobase of the mapped genomic region. The arrow indicates the direction of transcription from transcription start site (TSS). The rice genes were divided into five categories based the expression level from top 20% to bottom 20% (0-20%).

Supplemental_Fig_S8. Expression comparisons of genes associated with different combinations of histone modifications. The non-TE gene expression values (FPKM) of each combination were indicated by box plots. All: all rice genes. Kcr: genes with Kcr modification but not only. Kcr+K9ac: genes with both Kcr and H3K9ac. Kcr only: Genes only with Kcr. The rest may be deduced by analogy. The *** indicated the significant difference between two combinations (p<2.2e-16, Kolmogorov-Smirnov test).

Supplemental_Fig_S9. The distribution of histone Kcr in 12 chromosomes of rice.

Supplemental_Fig_S10. The phylogenic tree of p300/CBP homologous genes in rice, maize, wheat and Arabidopsis genome.

Protein ID	Modified sequence	Position	Subcellular Location	Domain desc
Q0JQL7	_HAVSEGTK(cr)AVTK_	33	cytosol	Histone-fold; Histone H2B;
Q2RAD9	_EIAQDFK(cr)TDLR_	80	nuclear	II' dana aana
Q2RAD9	_STGGK(cr)APR_	15	nuclear	Histone core;
Q2RAD9	_VTIMPK(cr)DIQLAR_	123	nuclear	Histone H3:
Q2RAD9	_YQK(cr)STELLIR_	57	nuclear	
Q7XUC9	_DNIQGITK(cr)PAIR_	32	nuclear	Histone H4, conserved
Q7XUC9	_K(cr)TVTAM(ox)DVVYALK_	80	nuclear	site; Histone core;

Supplementary Table 4. Seven Kcr sites identified in rice histones

Libraries	Reads number	Mappable reads	Peaks	Common peaks	
Kcr (pan-antibody) replicate1	13,308,307	$\sim \! 88\%$	17514	10022	
Kcr (pan-antibody) replicate2	12,219,425	$\sim \! 88\%$	12343	10925	
H3K14cr replicate 1	77,102,925	~84%	21519	10012	
H3K14cr replicate 2	41,081,814	~80%	30856	18813	

Supplementary Table 5. Summary of ChIP-seq data

Genomic						
Region	qPCR ¹	qPCR ²	Forward Primer	Rverse Primer	-10*log10(pvalue)	Peak
Os04g02060	0	5.03	GAACCAGACGAAGACCAT	CGGACAGTTACGAATTGC	138.62	peak sites
Os09g15850	0	4.23	CAGGAATGGATGAGGAAGAT	GGATTGTGACGAACCTTTG	138.84	peak sites
Os06g03860	0	3.58	CCTGTGGTAACTGCTAACT	CCTAACTTGTCAACCTATTCC	90.10	peak sites
Os03g14400	0	3.22	GGTGCGTGCTACTGAATT	GCTGGCTAATGTCGGATT	107.95	peak sites
Os12g09000	0	3.32	ATTCATGTGGTGCCAGAG	AAGATTCGTGGAACTTGGA	97.77	peak sites
Os05g03140	0	2.95	AAGAAGGAGAAGAGCAAGAG	GGCGAAGACGATGAAGAA	207.81	peak sites
Os02g01790	0	1.85	CCTCTTATGAAGCCTGATACT	CGGTTGGTTGAATGATTGG	351.35	peak sites
Os07g01310	0	4.35	TAACGCTTACTCTGCTCTC	ACCTGTCCTCAATTCAATCT	76.20	peak sites
Os08g01590	0	1.63	CATCAACACAGATACTCATACC	CACAACCTCTAATGTCTACTG	207.85	peak sites
Os04g02850	0	4.21	GCAGCAGCTAGAAGAAGG	GTACGCCATGATGAGGAC	116.31	peak sites
Os11g03734	0	1.73	CTGGAGCCAACACATCAA	ACAGACAACCTCTATCCTTAC	157.44	peak sites
Os02g13430	0	0.57	GTCTGGTGAGTTGCCTGATACG	TGTTGTTGATGGTGTCGCAGTC	165.87	peak sites
Os01g18630	0	-0.34	TTGCGAGATGGCTGTTGTCT	GCTGGTGCGACATAGCAAAG	64.23	peak sites
Os01g03010	0	0.29	ACTATGGTGGCTGTCTACA	CGATGCTTAACGGTTCTTG	-	non-peak sites
Os02g16260	0	-0.66	ATAATCATCGCTGCTCCATA	CTGTCCACATCAAGTCGTA	-	non-peak sites
Os03g03150	0	-0.39	GGATGCCACTCGTTGTAA	ATGGTGAAGGATGCTCTTG	-	non-peak sites
Os04g03080	0	-3.07	CATCCACTATTGCCACTGT	CCTTACTGAGAACCTACCATT		non-peak sites
Os05g03840	0	-0.38	AGAATCATCGTGGCTTGTA	CGTCCTGTTCCATTGTCA		non-peak sites
Os06g02380	0	2.74	AGCCTTATCCTCTCCTCTC	ATCCACCGAATCCTCCAA	-	non-peak sites
Os07g17160	0	-2.09	GCAATCTGGAAGGAGTTCA	CCGTGATGACTAATGTGTAAC	-	non-peak sites
Os08g03670	0	-0.15	ACGAAGAATCACCTGACAAT	ACATAGACGCCACGAGAT	-	non-peak sites
Os09g06770	0	3.61	CCAGCTAATCAATCATCATCG	ATCGTTCCGTTCTATCCAG	-	non-peak sites
Os10g17630	0	-2.94	AACATCTGCTATGCTAAGGT	TTGCTATTCCGTGTGACTAA	-	non-peak sites
Os12g19470	0	-1.94	GCACCACATGCTTGGATAGG	TAAGTTGCAGTGTGCTGCCT	-	non-peak sites
Os02g08110	0	-2.10	AATGTCTCGTCCAGTTCTAG	ACTACCTCCATCGTGCTAT	-	non-peak sites
Os09g03500	0	-2.56	CCTCATACATCCTCCATCC	GGCATACAACCTACTCCAT	-	non-peak sites
Os11g06490	0	-2.19	GGTAAGGAGGACGGAGTAT	CACAAGAAGTAACGGTAAGAC	-	non-peak sites

Supplementary Table 7. Confirmation of peak sites and non-peak sites by quantitative PCR

1Normalized C(t) of input DNA .

2Normalized riangle C(t) of ChIP DNA .

GO term	Ontology	Description	Number in	Number	FDR
			input list	in Ref	
GO:0044249	Р	cellular biosynthetic process	256	890	0.0057
GO:0034645	Р	cellular macromolecule biosynthetic	256	890	0.0057
		process			
GO:0009059	Р	macromolecule biosynthetic process	256	890	0.0057
GO:0006412	Р	translation	256	890	0.0057
GO:0010467	Р	gene expression	300	1076	0.0073
GO:0019538	Р	protein metabolic process	1451	6088	0.023
GO:0044267	Р	cellular protein metabolic process	1164	4849	0.035
GO:0043170	Р	macromolecule metabolic process	1580	6691	0.035
GO:0005198	F	structural molecule activity	192	672	0.039
GO:0000166	F	nucleotide binding	858	3490	0.039
GO:0005829	С	cytosol	854	3345	0.0017
GO:0005737	С	cytoplasm	2771	11866	0.0021
GO:0005622	С	intracellular	3483	15144	0.0023
GO:0044444	С	cytoplasmic part	2558	10930	0.0023
GO:0031974	С	membrane-enclosed lumen	215	743	0.003
GO:0031981	С	nuclear lumen	215	743	0.003
GO:0043233	С	organelle lumen	215	743	0.003
GO:0044424	С	intracellular part	3333	14514	0.003
GO:0005730	С	nucleolus	152	495	0.003
GO:0005886	С	plasma membrane	1040	4240	0.003
GO:0070013	С	intracellular organelle lumen	215	743	0.003
GO:0044428	С	nuclear part	239	844	0.0031
GO:0044446	С	intracellular organelle part	239	844	0.0031
GO:0044422	С	organelle part	239	844	0.0031
GO:0005794	С	Golgi apparatus	138	460	0.0094
GO:0043232	С	intracellular	326	1237	0.014
		non-membrane-bounded organelle			
GO:0043228	С	non-membrane-bounded organelle	326	1237	0.014
GO:0044464	С	cell part	4386	19532	0.026
GO:0005840	С	ribosome	172	624	0.036
GO:0030529	С	ribonucleoprotein complex	172	624	0.036
GO:0032991	С	macromolecular complex	172	624	0.036

Supplementary Table 8. Over-represented functions of genes associated with Kcr

modification.