## **Supporting Information**

## Biochemical properties and in planta effects of NopM, a rhizobial E3 ubiquitin ligase

Chang-Chao Xu, Di Zhang, Dagmar R. Hann, Zhi-Ping Xie, and Christian Staehelin Journal of Biological Chemistry

This file contains:

Supplemental Figure S1: Amino acid sequence of NopM.

Supplemental Figure S2: Schematic representation of NopM variants used in this study.

Supplemental Figure S3: Effects of USP5 on autoubiquitination of NopM.

Supplemental Figure S4: Analysis of intermolecular transfer of ubiquitin in autoubiquitination reactions with NEL or NEL-C338A proteins.

Supplemental Figure S5: Subcellular localization of NopM in Arabidopsis protoplasts.

Supplemental Table S1: Strains and plasmids used in this work.

Supplemental Table S2: Primers used in this work.

| 1   | MNVQRPGLAV | GPLFENPESE | SSEPG <b>S</b> PAAA | ARWVEASTEA          | EASAASSSQG | QIVAAPTAEE                  |
|-----|------------|------------|---------------------|---------------------|------------|-----------------------------|
| 61  | RPWEGRPQEA | VSRTRAWREA | GDVDEPLDLS          | FLSLTPLSIP          | LVSGLRRLNV | NNNQLGDLPD                  |
| 121 | TLPGTLLELE | ASENRLTRLP | DLPAGLQRLN          | VENNRLTNLP          | EPLPAALEWL | GAGYNQLTRL                  |
| 181 | PEMIPPELIW | LGARNNQLTS | VPESLLTQLG          | QWSSIDLENN          | PLPHGVQTNL | VTAMHAAGYA                  |
| 241 | GPQIFLPMGP | VELARRPLHE | VVADWLEGDL          | ETVAAWRGFA          | NEQGARDYAH | FLDRLRTTVN                  |
| 301 | YGNDAFRQAV | AIGLRQAVAR | PQLRAQYFEQ          | ASGASDS <b>C</b> ED | RITLTWNGMQ | TALLIADVED                  |
| 361 | GVYDGSLHQL | LQHGRVMFRL | EALDGIARET          | VNSLRRTDPD          | ADIDEIEVYL | AYQTQLRDTL                  |
| 421 | ELRHVAPDMR | FLNVSHVTEE | DVARAASSVR          | ELEARGFGEY          | VATRWQPWER | VMRRIAPASH                  |
| 481 | AAMQEQLIEA | MGEEFRSRLD | EKLAEHGLTG          | DADAERVFGA          | EILNDIARRI | <b>K</b> GETME <b>K</b> VLR |
|     |            |            |                     |                     |            |                             |

541 GRGLEL

S26: Phosphorylation site identified in this study C338: Catalytic cysteine

D340: Predicted catalytic acid

**D**404: Predicted catalytic base

K502, K531 and K537: Predicted autoubiquitination sites

**Supplemental Figure S1.** Amino acid sequence of NopM (nodulation outer protein M of *Sinorhizobium* sp. NGR234; accession number: NP\_443862). S26 was identified as potential phosphorylation site in this study. The C338 residue is required for catalytic activity (Xin et al. 2012, PLoS Pathog. 8(5): e1002707). D340 and D404 are predicted to function as catalytic acid and catalytic base, respectively (Keszei and Sicheri, 2017, Proc. Natl. Acad. Sci. USA 114: 1311-1316). The lysine residues K502, K531 and K537 are predicted autoubiquitination sites.



**Supplemental Figure S2.** Schematic representation of NopM variants used in this study. The LRR domain contains several leucine-rich repeats and the C-terminal NEL (novel E3 ubiquitin ligase domain) domain is necessary for catalytic activity. The C338A variant lacks enzyme activity and the C338S variant likely forms a mono-ubiquitinated conjugate. The S26A variant was used in the phosphorylation experiments. The K3xR variant without lysine residues and the enzymatically inactive form K3xR-C338A were used in autoubiquitination tests. The NEL protein (residues 255-546 with an N-terminal methionine) showed strong enzymatic activity while the corresponding full-length protein NEL-C338A was inactive. Proteins with corresponding tags were expressed in *Escherichia coli*.



**Supplemental Figure S3.** Effects of USP5 on autoubiquitination of NopM. The USP5 enzyme (0.5  $\mu$ g) was added to the ubiquitination reaction system containing E1, E2, His-tagged NopM and either ubiquitin (Ub) or the K48R ubiquitin variant. Reactions were performed at 37 °C for the indicated time. Autoubiquitination of His-NopM was visualized by Western blot analysis with anti-NopM antibodies.



**Supplemental Figure S4.** Analysis of intermolecular transfer of ubiquitin in autoubiquitination reactions with NEL or NEL-C338A proteins. The ubiquitination reactions with E1, E2 and indicated proteins were performed at 37 °C for 1.5 h. (A) Reactions with His-NEL and Flag-C338A resulted in no (or very low) intermolecular transfer of ubiquitin. Autoubiquitination reactions with Flag-NopM alone or His-NopM with Flag-C338A were performed for comparison. Flag-C338A was detected on a Western blot with an anti-Flag antibody. (B) Incubation of His-NEL with Flag-NEL(C338A) resulted in no (or very low) intermolecular transfer of ubiquitin. Flag-NEL(C338A) or His-NEL alone were used in control reactions. Reaction products were analyzed on Western blots with anti-NopM or anti-Flag antibodies. (C) Incubation of His-NopM with Flag-NEL(C338A) also resulted in no (or very low) intermolecular transfer of ubiquitin. Control reactions were performed with His-NopM or Flag-NEL(C338A) alone. Western blots were performed with anti-NopM or anti-Flag antibodies.



**Supplemental Figure S5.** Subcellular localization of NopM in *Arabidopsis* protoplasts. NopM, C338A fused with a C-terminal GFP tag, were transiently expressed in *Arabidopsis* protoplasts. GFP was expressed alone as a control. Co-expressed ARF4-RFP served as a nuclear marker. Protoplasts were microscopically analyzed for green fluorescence (GF), red fluorescence (RF) and under bright field conditions. Bars: 20 µm.

Supplemental Table S1. Strains and plasmids used in this work.

| Strains or Plasmids                                    | Description*                                                                                                                                                                                 | Reference or Source                                                                       |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Escherichia coli DH5α                                  | supE44 $\Delta$ lacU169 ( $\Phi$ 80 lacZ $\Delta$ M15)<br>hsdR17 recA1 endA1 gyrA96 thi-1, relA1                                                                                             | Invitrogen, Carlsbad, CA, USA                                                             |
| Escherichia coli BL21 (DE3)                            | $F ompT hsdSB (r_B m_B) gal dcm (DE3)$                                                                                                                                                       | Novagen (Merck Chemicals,<br>Darmstadt, Germany)                                          |
| Agrobacterium tumefaciens EHA105                       | A hypervirulent Agrobacterium tumefaciens strain (Rif <sup>f</sup> )                                                                                                                         | Hood et al., 1993                                                                         |
| Agrobacterium rhizogenes LBA9402                       | Harboring the root-inducing (Ri) plasmid pRil855 (Rif <sup>r</sup> )                                                                                                                         | Hooykaas et al., 1977                                                                     |
| GFP-expressing <i>Mesorhizobium loti</i><br>MAFF303099 | <i>Mesorhizobium loti</i> MAFF303099 derivative constitutively expressing GFP (Rif <sup>r</sup> )                                                                                            | Kindly provided by Zhong-Ming<br>Zhang, Huazhong Agricultural<br>University, Wuhan, China |
| pET28a                                                 | Expression vector for production of His tagged proteins (Kan <sup>r</sup> )                                                                                                                  | Novagen (Darmstadt, Germany)                                                              |
| pET28a- <i>nopM</i>                                    | A pET28a derivative carrying an <i>EcoR</i> I- <i>BamH</i> I fragment containing the <i>nopM</i> coding region amplified from genomic DNA of NGR234 with primers 1 and 2 (Kan <sup>r</sup> ) | This study                                                                                |

| pET28a-NEL                  | A pET28a derivative carrying an <i>EcoR</i> I- <i>BamH</i> I fragment encoding the NEL domain amplified from genomic DNA of NGR234 with primers 2 and 45 (Kan <sup>r</sup> )                 | This study          |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| pRT104                      | Vector containing the cauliflower mosaic virus 35S promoter and a poly-(A) signal (Amp <sup>r</sup> )                                                                                        | Töpfer et al., 1987 |
| pRT104- <i>nopM</i>         | A pRT104 derivative carrying an <i>EcoR</i> I- <i>BamH</i> I fragment containing the <i>nopM</i> coding region amplified from genomic DNA of NGR234 with primers 3 and 4 (Amp <sup>r</sup> ) | This study          |
| pRT104- <i>nopM</i> (C338A) | PCR-based site directed mutagenesis of pRT104- <i>nopM</i> ; amplification with primers 9 and 10 to substitute Cys338 with alanine (C338A) (Amp <sup>r</sup> )                               | This study          |
| pRT104- <i>nopM</i> (C338S) | PCR-based site directed mutagenesis of pRT104- <i>nopM</i> ; amplification with primers 5 and 6 to substitute Cys338 with serine (C338S) (Amp <sup>r</sup> )                                 | This study          |
| pRT104- <i>nopM</i> (D340N) | PCR-based site directed mutagenesis of pRT104- <i>nopM</i> ; amplification with primers 7 and 8 to substitute Asp340 with Asn (D340N) (Amp <sup>r</sup> )                                    | This study          |
| pRT104- <i>nopM</i> (S26A)  | PCR-based site directed mutagenesis of pRT104- <i>nopM</i> ; amplification with primers 46 and 47 to substitute Ser26 with alanine (S26A) (Amp <sup>r</sup> )                                | This study          |

| pRT104- <i>nopM</i> (C338A-K502R)     | PCR-based site directed mutagenesis of pRT104- <i>nopM</i> (C338A); amplification with primers 11 and 12 to substitute Lys502 with arginine (K502R) (Amp <sup>r</sup> )                                | This study                  |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| pRT104- <i>nopM</i> (C338A-K502&531R) | PCR-based site directed mutagenesis of pRT104- <i>nopM</i> (C338A-K502R); amplification with primers 13 and 14 to substitute Lys531 with arginine (K531R) (Amp <sup>r</sup> )                          | This study                  |
| pRT104- <i>nopM</i> (C338A-K3xR)      | PCR-based site directed mutagenesis of pRT104- <i>nopM</i> (C338A-K502&531R); amplification with primers 15 and 16 to substitute Lys537 with arginine (K537R) (Amp <sup>r</sup> )                      | This study                  |
| pET28a- <i>nopM</i> (C338A)           | A pET28a derivative carrying an <i>EcoR</i> I- <i>BamH</i> I fragment containing <i>nopM</i> (C338A) coding region amplified from pRT104- <i>nopM</i> (C338A) with primers 1 and 2 (Kan <sup>r</sup> ) | This study                  |
| pCAMBIA 1302                          | Binary vector with a cauliflower mosaic virus (CaMV) 35S promoter and a coding sequence of GFP, (Kan <sup>r</sup> )                                                                                    | Cambia, Canberra, Australia |
| pCAMBIA 1302-nopM                     | A pCAMBIA 1302 derivative carrying a 35S CaMV- <i>nopM</i> fragment released from pRT104- <i>nopM</i> with <i>Hin</i> d III (Kan <sup>r</sup> )                                                        | This study                  |
| pCAMBIA 1302- <i>nopM</i> (C338A)     | A pCAMBIA 1302 derivative carrying a 35S<br>CaMV- <i>nopM</i> (C338A) fragment released from<br>pRT104- <i>nopM</i> (C338A) with <i>Hin</i> d III (Kan <sup>r</sup> )                                  | This study                  |

| pCAMBIA 1302-nopM(D340N)        | A pCAMBIA 1302 derivative carrying a 35S<br>CaMV- <i>nopM</i> (D340N) fragment released from<br>pRT104- <i>nopM</i> (D340N) with <i>Hin</i> d III (Kan <sup>r</sup> )                                                      | This study                                                                                                              |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| pCAMBIA1302-nopM(S26D)          | A pCAMBIA 1302 derivative carrying a 35S<br>CaMV- <i>nopM</i> (S26D) fragment released from<br>pRT104- <i>nopM</i> (S26D) with <i>Hind</i> III (Kan <sup>r</sup> )                                                         | This study                                                                                                              |
| pCAMBIA1302- <i>nopM</i> (S26A) | A pCAMBIA 1302 derivative carrying a 35S<br>CaMV– <i>nopM</i> (S26A) fragment released from<br>pRT104- <i>nopM</i> (S26A) with <i>Hin</i> d III (Kan <sup>r</sup> )                                                        | This study                                                                                                              |
| pCAMBIA 1302-nopM-gfp           | A pCAMBIA 1302 derivative carrying the <i>nopM</i> coding region amplified from pRT104- <i>nopM</i> with primers 41 and 42; amplicon inserted with <i>Spe</i> I (Kan <sup>r</sup> )                                        | This study                                                                                                              |
| pX-DR                           | Transient expression vector with a coding sequence of DsRed under the control of a CaMV 35S promoter; contains the suicide gene marker <i>ccdB</i> inserted between two <i>Xcm</i> I restriction sites (Amp <sup>r</sup> ) | Kindly provided by Guo-Liang<br>Wang (Hunan Agricultural<br>University, Changsha, China)<br>(Chen <i>et al.</i> , 2009) |
| pX-DR- <i>nopM</i>              | A pX-DR derivative carrying a <i>nopM</i> fragment amplified with primers 43 and 44 from genomic DNA of NGR234 and inserted with <i>Xcm</i> I (Amp <sup>r</sup> )                                                          | This study                                                                                                              |

| pSAT1-nEYFP-N1                   | A bi-molecular fluorescence complementation vector with a multiple cloning site followed by the N-terminal coding region of enhanced YFP; expression under the control of a CaMV 35S promoter (Amp <sup>r</sup> ) | Kindly provided by Nan Yao,<br>Sun Yat-Sen University,<br>Guangzhou, China (Citovsky <i>et al.</i> , 2006) |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| pSAT1-cEYFP-N1                   | A bi-molecular fluorescence complementation vector with a multiple cloning site followed by the C-terminal coding region of enhanced YFP; expression under the control of a CaMV 35S promoter (Amp <sup>r</sup> ) | Kindly provided by Nan Yao,<br>Sun Yat-Sen University,<br>Guangzhou, China (Citovsky <i>et al.</i> , 2006) |
| pSAT1-nEYFP-N1- <i>nopM</i>      | A pSAT1-nEYFP-N1 derivative carrying an <i>Eco</i> R I- <i>Bam</i> H I fragment containing the <i>nopM</i> coding region amplified from pRT104- <i>nopM</i> with primers 39 and 40 (Amp <sup>r</sup> )            | This study                                                                                                 |
| pSAT1-cEYFP-N1- <i>nopM</i>      | A pSAT1-cEYFP-N1 derivative carrying an <i>Eco</i> R I- <i>Bam</i> H I fragment containing the <i>nopM</i> coding region amplified from pRT104- <i>nopM</i> with primers 39 and 40 (Amp <sup>r</sup> )            | This study                                                                                                 |
| pET28a- <i>nopM</i> (C338A-K3xR) | A pET28a derivative carrying an <i>Eco</i> R I- <i>Bam</i> H I fragment containing the <i>nopM</i> (C338A-K3xR) sequence amplified from pRT104- <i>nopM</i> (C338A-K3xR) with primers 1 and 2 (Kan <sup>r</sup> ) | This study                                                                                                 |
| pET28a- <i>nopM</i> (K3xR)       | A pET28a- <i>nopM</i> (C338A-K3xR) derivative produced by site directed mutagenesis with primers 52 and 53 to substitute Ala338 with Cys (Kan <sup>r</sup> )                                                      | This study                                                                                                 |

| pET28a-E1(AtUBA2)          | A pET28a derivative carrying an <i>EcoR</i> I- <i>Not</i> I fragment<br>containing the <i>UBA2</i> (At5g06460) coding region amplified<br>from cDNA of <i>A. thaliana</i> ecotype C24 with primers 19 and<br>20 (Kan <sup>r</sup> )  | This study |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| pET28a-E2( <i>AtUBC8</i> ) | A pET28a derivative carrying an <i>EcoR</i> I- <i>Hind</i> III fragment containing the <i>Ubc8</i> (At5g53300) coding region amplified from cDNA of <i>A. thaliana</i> ecotype C24 with primers 21 and 22 (Kan <sup>r</sup> )        | This study |
| pET28a-Ub                  | A pET28a derivative carrying an <i>EcoR</i> I- <i>BamH</i> I fragment containing part of the <i>UBQ14</i> (At4g02890) coding region amplified from cDNA of <i>A. thaliana</i> ecotype C24 with primers 23 and 24 (Kan <sup>r</sup> ) | This study |
| pET28a-Ub(K48R)            | A pET28a- <i>Ub</i> derivative produced by site directed mutagenesis with primers 35 and 36 to substitute Lys48 with Arg (K48R) (Kan <sup>r</sup> )                                                                                  | This study |
| pET28a-Ub(K11R)            | A pET28a- <i>Ub</i> derivative produced by site directed mutagenesis with primers 27 and 28 to substitute Lys11 with Arg (K11R) (Kan <sup>r</sup> )                                                                                  | This study |
| pET28a-Ub(K6R)             | A pET28a- <i>Ub</i> derivative produced by site directed mutagenesis with primers 25 and 26 to substitute Lys6 with                                                                                                                  | This study |

Arg (K6R) (Kan<sup>r</sup>)

| pET28a-Ub(K33R)           | A pET28a- <i>Ub</i> derivative produced by site directed mutagenesis with primers 33 and 34 to substitute Lys33 with Arg (K33R) (Kan <sup>r</sup> )                                               | This study                                                   |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| pGEX-4t-1                 | Prokaryotic expression vector for production of GST fusion proteins (Kan <sup>r</sup> )                                                                                                           | Amersham Biosciences/GE<br>Healthcare,<br>Buckinghamshire,UK |
| pGEX-4t-1-nopM            | A pGEX-4t-1 derivative carrying an <i>Eco</i> R I- <i>Bam</i> H I fragment containing the <i>nopM</i> coding region amplified from genomic DNA of NGR234 with primers 1 and 2 (Amp <sup>r</sup> ) | This study                                                   |
| pGEX-NtSIPK               | pGEX-4T-1 derivative carrying a BamHI-EcoRI fragment containing the coding region of <i>SIPK</i> of <i>Nicotiana tabacum</i> (Amp <sup>r</sup> )                                                  | Ge et al., 2016                                              |
| pGEX-NtMEK2 <sup>DD</sup> | pGEX-4T-1 derivative carrying a SmaI-NotI fragment containing the coding region of <i>MEK2</i> <sup>DD</sup> of <i>Nicotiana tabacum</i> (Amp <sup>r</sup> )                                      | Ge et al., 2016                                              |
| pGEX-LjSIP2               | pGEX-4T-1 derivative containing the coding region of <i>SIP2</i> of <i>Lotus japonicus</i> (Amp <sup>r</sup> )                                                                                    | Chen et al., 2012                                            |

| pET28a- <i>flag-nopM</i>         | A pET28a derivative carrying an <i>Eco</i> R I- <i>Bam</i> H I fragment containing the <i>nopM</i> coding region amplified from genomic DNA of NGR234 with primers 2 and 50 (Kan <sup>r</sup> )                          | This study                                                     |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| pET28a- <i>flag-nopM</i> (C338A) | A pET28a derivative carrying an <i>Eco</i> R I- <i>Bam</i> H I fragment containing the <i>nopM</i> coding region amplified from pRT104- <i>nopM</i> (C338A) with primers 2 and 50 (Kan <sup>r</sup> )                    | This study                                                     |
| pET28a-Flag- <i>nopM</i> (C338S) | A pET28a derivative carrying an <i>Eco</i> R I- <i>Bam</i> H I fragment containing the <i>nopM</i> coding region amplified from pRT104- <i>nopM</i> (C338S) with primers 2 and 50 (Kan <sup>r</sup> )                    | This study                                                     |
| pISV2678                         | Binary vector with a double cauliflower mosaic virus (CaMV) 35S promoter                                                                                                                                                 | Kindly provided by Eva<br>Kondorosi, Gif-sur Yvette,<br>France |
| pISV(RFP)                        | A pISV2678 derivative containing a 35S CaMV- <i>RFP</i> -poly A cassette (Kan <sup>r</sup> )                                                                                                                             | Constructed by Feng Yang (Yang, 2014)                          |
| pISV(RFP)- <i>nopM</i>           | A pISV(RFP) derivative containing a 35S<br>CaMV– <i>nopM</i> -poly A cassette (Kan <sup>r</sup> ); a <i>Cla</i> I- <i>Eco</i> R I<br>fragment containing the coding region of <i>nopM</i> was<br>inserted into pISV(RFP) | Constructed by Feng Yang<br>(Yang, 2014)                       |
| pET28a-Flag-NEL(C338A)           | A pET28a derivative carrying an <i>Eco</i> R I- <i>Bam</i> H I fragment containing the <i>NEL</i> (C338A) coding region amplified from                                                                                   | This study                                                     |

## pET28a-nopM(C338A) with primers 2 and 51 (Kan<sup>r</sup>)

pISV(RFP)-nopM(C338A)

A pISV(RFP) derivative containing a 35S CaMV–*nopM*(C338A)-poly A cassette (Kan<sup>r</sup>); a *Cla* I-*Eco*R I fragment containing the coding region of *nopM*(C338A) was inserted into pISV(RFP) This study

\*Amp<sup>r</sup>, Kan<sup>r</sup>, Rif<sup>r</sup> resistance to ampicillin, kanamycin and rifampin, respectively.

References cited in Table S1:

- Chen, S., Songkumarn, P., Liu, J., and Wang, G. L. (2009) A versatile zero background T-vector system for gene cloning and functional genomics. *Plant Physiol.* **150**, 1111-1121
- Chen, T., Zhu, H., Ke, D., Cai, K., Wang, C., Gou, H., Hong, Z., and Zhang, Z. (2012) A MAP kinase kinase interacts with SymRK and regulates nodule organogenesis in *Lotus japonicus*. *Plant Cell*. **24**, 823-38
- Citovsky, V., Lee, L. Y., Vyas, S., Glick, E., Chen, M. H., Vainstein, A., Gafni, Y., Gelvin, S. B., and Tzfira, T. (2006) Subcellular localization of interacting proteins by bimolecular fluorescence complementation *in planta*. *J. Mol. Biol.* **362**, 1120-1131
- Ge, Y. Y., Xiang, Q. W., Wagner, C., Zhang, D., Xie, Z. P., and Staehelin, C. (2016) The type 3 effector NopL of *Sinorhizobium* sp. strain NGR234 is a mitogen-activated protein kinase substrate. *J. Exp. Bot.* **67**, 2483-2494

Hood, E. E., Gelvin, S. B., Melchers, S., and Hoekema A. (1993) New Agrobacterium helper plasmids for gene transfer to plants (EHA105).

*Transgenic Res.* **2**, 208-218.

- Hooykaas, P. J. J., Klapwijk, P. M., Nuti, M. P., Schilperoort, R. A., and Rörsch, A. (1977) Transfer of the *Agrobacterium tumefaciens* Ti plasmid to a-virulent agrobacteria and to *Rhizobium* explanta. *Microbiology* **98**, 477-484
- Töpfer, R., Matzeit, V., Gronenborn, B., Schell, J., and Steinbiss, H. H. (1987) A set of plant expression vectors for transcriptional and translational fusions. *Nucleic Acids Res.* **15**, 5890
- Yang, F. (2014) Expression of type 3 effector genes from *Rhizobium* sp. strain NGR234 in *Lotus japonicus* and *Galega orientalis*. Master's thesis, Sun Yat-sen University, Guangzhou, China

Supplemental Table S2. Primers used in this work.

| No.      | Sequence (5' to 3')                                                                | Restriction site | Description                                                                       |
|----------|------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------|
| 1<br>2   | cg <u>ggatcc</u> atgaatgtacaacggcccgg<br>cg <u>gaattc</u> tcacagctcaagaccgcgacc    | BamH I<br>EcoR I | For construction of pET28a- <i>nopM</i> .                                         |
| 3<br>4   | ccg <u>gaatte</u> atgaatgtac aacggcccgg<br>cgc <u>ggatcc</u> tcacagctca agaccgcgac | EcoR I<br>BamH I | For construction of pRT104- <i>nopM</i> .                                         |
| 5<br>6   | ggagctagcgatagctcagaggatcgcatt act agtaatgcgatcctctgagctatcgctagc tcc              |                  | Site-directed mutagenesis; for construction of pRT104- <i>nopM</i> (C338S).       |
| 7<br>8   | ctagcgatagctgtgagaatcgcattactttgacc<br>ggtcaaagtaatgcgattctcacagctatcgctag         |                  | Site-directed mutagenesis; for construction of pRT104- <i>nopM</i> (D340N).       |
| 9<br>10  | ggagctagcgatagcgctgaggatcgcattact<br>agtaatgcgatcctcagcgctatcgctagctcc             |                  | Site-directed mutagenesis; for construction of pRT104- <i>nopM</i> (C338A).       |
| 11<br>12 | ccgcttggacgaacggctcgccgagcacgg<br>ccgtgctcggcgagccgttcgtccaagcgg                   |                  | Site-directed mutagenesis; for construction of pRT104- <i>nopM</i> (C338A-K502R). |
| 13       | cgcccgcaggatccgaggcgagacaatggag                                                    |                  | Site-directed mutagenesis; for construction of                                    |

| 14       | ctccattgtctcgcctcggatcctgcgggcg                                                            |                                    | pRT104- <i>nopM</i> (C338A-K502R&K531R).                                         |
|----------|--------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------|
| 15<br>16 | cgagacaatggagcgggtgcttcggggtcg<br>cgaccccgaagcacccgctccattgtctcg                           |                                    | Site-directed mutagenesis; for construction of pRT104- <i>nopM</i> (C338A-K3xR). |
| 17<br>18 | cg <u>gaattc</u> atgaatgtacaacggcccgg<br>cg <u>aagett</u> tcacagetcaagaccgcgacc            | <i>Eco</i> R I<br><i>Hin</i> d III | For construction of pET28a- <i>nopM</i> .                                        |
| 19<br>20 | cg <u>gaattc</u> atggaaccattcgttgttaagg<br>ataagaat <u>gcggccgc</u> tcaggcgaagtagactgatacg | <i>Eco</i> R I<br><i>Not</i> I     | For construction of pET28a- E1( <i>AtUBA2</i> ).                                 |
| 21<br>22 | cggaattc atggcgtcgaagcggatcttg ccc <u>aagctt</u> ttagcccatggcatacttctg                     | <i>Eco</i> R I<br><i>Hin</i> d III | For construction of pET28a-E2( <i>AtUBC10</i> ).                                 |
| 23<br>24 | cg <u>ggatcc</u> atgcagatct ttgttaagac<br>cg <u>gaattc</u> tcaaccaccggagcctga              | BamH I<br>EcoR I                   | For construction of pET28a-Ub( <i>AtUBQ14</i> ).                                 |
| 25<br>26 | gcagatctttgttaggactctcaccgg<br>ccggtgagagtcctaacaaagatctgc                                 |                                    | Site-directed mutagenesis; for construction of pET28a-Ub(K6R).                   |
| 27<br>28 | gacteteacegga aggactateaceete<br>gagggtgatagteetteeggtgagagte                              |                                    | Site-directed mutagenesis; for construction of pET28a-Ub(K11R).                  |
| 29<br>30 | catcgacaacgttagggccaagatccagg<br>cctggatcttggccctaacgttgtcgatg                             |                                    | Site-directed mutagenesis; for construction of pET28a-Ub(K27R).                  |

| 31<br>32 | caacgttaaggccaggatccaggataagg<br>ccttatcctggatcctggccttaacgttg                  |                  | Site-directed mutagenesis; for construction of pET28a-Ub(K29R).                                                 |
|----------|---------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------|
| 33<br>34 | caagatccaggatagggaaggcattcctc<br>gaggaatgccttccctatcctggatcttg                  |                  | Site-directed mutagenesis; for construction of pET28a-Ub(K33R).                                                 |
| 35<br>36 | gatettegetgg geggeagttggaggatg<br>catectecaactgeegeecagegaagate                 |                  | Site-directed mutagenesis; for construction of pET28a-Ub(K48R).                                                 |
| 37<br>38 | ctacaacatccagagggagtccacacttc<br>gaagtgtggactccctctggatgttgtag                  |                  | Site-directed mutagenesis; for construction of pET28a- <i>Ub</i> (K63R).                                        |
| 39<br>40 | cg <u>gaattc</u> atgaatgtacaacggcccgg<br>cg <u>ggatcc</u> c cagetcaagaccgegacce | EcoR I<br>BamH I | For construction of pSAT1-nEYFP-N1- <i>nopM</i> .                                                               |
| 41<br>42 | gg <u>actagt</u> atgaatgtacaacggcccgg<br>gg <u>actagt</u> cagctcaagaccgcgaccc   | Spe I<br>Spe I   | For construction of pCAMBIA1302-nopM-gfp.                                                                       |
| 43<br>44 | aatgaatgtacaacggcccgg<br>tcacagctcaagaccgcgaccc                                 |                  | For construction of pX-DR - <i>nopM</i>                                                                         |
| 45       | cgggatcc cagga ccgca gatct ttttg                                                | BamH I           | Upper primer used for amplification of the NEL domain sequence of <i>nopM</i> ; for construction of pET28a-NEL. |
| 46       | agttcagaac caggggctcc ggccgccgcc                                                |                  | Site-directed mutagenesis; for construction of                                                                  |

| 47       | ggcggcggccg gagcccctggt tctgaact                                     |        | pRT104- <i>nopM</i> (S26A).                                                |
|----------|----------------------------------------------------------------------|--------|----------------------------------------------------------------------------|
| 48<br>49 | agttcagaac caggggatcc ggccgccgcc<br>ggcggcggc cggatcccctg gttctgaact |        | Site-directed mutagenesis; for construction of pRT104- <i>nopM</i> (S26D). |
| 50       | cg <u>ggatcc</u> gattacaaggatgacgacgataag<br>atgaatgtacaacggcccgg    | BamH I | Upper primer; for construction of pET28a- <i>flag</i> - <i>nopM</i> .      |
| 51       | cg <u>ggatec</u> gattacaaggatgacgacgataag<br>cagga ccgca gatet ttttg | BamH I | Upper primer; for construction of pET28a- <i>flag</i> - <i>NEL</i> .       |
| 52<br>53 | gctagcgata gctgtgaggt cgcattac<br>gtaatgcgatcctcacagctatcgctagc      |        | Site-directed mutagenesis; for construction of pRT104- <i>nopM</i> (K3xR). |