
www.pnas.org/cgi/doi/10.1073/pnas. 115

Supplementary Information for

Describing Strong Correlation with Fractional-Spin Correction in Density Functional Theory

Neil Qiang Su, Chen Li and Weitao Yang

Weitao Yang.
E-mail: weitao.yang@duke.edu

This PDF file includes:

Supplementary text
Figs. S1 to S9
Tables S1 to S2
References for SI reference citations

Neil Qiang Su, Chen Li and Weitao Yang 1 of 24

1807095



Supporting Information Text

Contents

1 Energy corrections for systems with fractional charges and fractional spins 3
A The correction to the Coulomb repulsion energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
B The correction to the Hartree-Fock exchange energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
C The correction to exchange density functionals and the global fractional-charge correction . . . . . . . . . . . . 6
D The correction to correlation density functionals and the global fractional-spin correction . . . . . . . . . . . . 6

2 Fractional-Spin Localized Orbital Scaling Correction (FSLOSC) 8
A Orbital localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
B Fractional-charge correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
C Fractional-spin correction for well-separated LOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
D Fractional-spin correction for overlapping LOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
E Final fractional-spin correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
F Orbital energies of FSLOSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
G Self-consistent FSLOSC (scFSLOSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Supplemental test results. 11

2 of 24 Neil Qiang Su, Chen Li and Weitao Yang



1. Energy corrections for systems with fractional charges and fractional spins

The DFT total electronic energy (1, 2) is
ETot = TS + Eext + J + EXC, [S1]

where the four terms on the right side are the kinetic energy, the external potential energy, the electron-electron Coulomb
repulsion energy, and the exchange-correlation (XC) energy, respectively.

For a system with Nα (equal to Nα
0 + ∆Nα) alpha and Nβ (equal to Nβ

0 + ∆Nβ) beta electrons, where ∆Nα and ∆Nβ

are the fractional parts of the electron numbers, the total electronic energy should obey the flat-plane condition (3), i.e., the
energy, as a function of ∆Nα and ∆Nβ , is two flat planes intersecting in the seam of ∆Nα + ∆Nβ = 1, which is

ẼTot(Nα, Nβ) =(1−∆Nα −∆Nβ)ETot(Nα
0 , N

β
0 ) + ∆NαETot(Nα

0 + 1, Nβ
0 )

+ ∆NβETot(Nα
0 , N

β
0 + 1) [S2]

for 0 ≤ ∆Nα + ∆Nβ ≤ 1;

ẼTot(Nα, Nβ) =(∆Nα + ∆Nβ − 1)ETot(Nα
0 + 1, Nβ

0 + 1) + (1−∆Nβ)ETot(Nα
0 + 1, Nβ

0 )

+ (1−∆Nα)ETot(Nα
0 , N

β
0 + 1) [S3]

for 1 < ∆Nα + ∆Nβ ≤ 2.
Similar to the corrections for systems with fractional charges derived by imposing the linearity condition (4) on each

component of Kohn-Sham (KS) DFT energy (5), the corrections for systems with both fractional charges and fractional spins
can be obtained by imposing the flat-plane condition on each component. With the integer points kept intact, the flat-plane
counterpart for each component, Ẽcomp, is constructed in a form similar to that of total energy (Eqs. S2 and S3). The deviation
from the flat-plane counterpart for each component of the total energy can be obtained by

∆Ecomp(Nα, Nβ) = Ẽcomp(Nα, Nβ)− Ecomp(Nα, Nβ). [S4]

By adding all the deviations from each component together, we obtain

∆TS(Nα, Nβ) + ∆Eext(Nα, Nβ) + ∆J(Nα, Nβ) + ∆EXC(Nα, Nβ)

= T̃S(Nα, Nβ)− TS(Nα, Nβ) + Ẽext(Nα, Nβ)− Eext(Nα, Nβ)

+ J̃(Nα, Nβ)− J(Nα, Nβ) + ẼXC(Nα, Nβ)− EXC(Nα, Nβ)

= T̃S(Nα, Nβ) + Ẽext(Nα, Nβ) + J̃(Nα, Nβ) + ẼXC(Nα, Nβ)

− TS(Nα, Nβ)− Eext(Nα, Nβ)− J(Nα, Nβ)− EXC(Nα, Nβ)

= ẼTot(Nα, Nβ)− ETot(Nα, Nβ)

= ∆ETot(Nα, Nβ). [S5]

Here, we have made use of the relation that the flat-plane counterparts for the four components add up to the two flat planes
of the total energy, i.e. ẼTot(Nα, Nβ) = T̃S(Nα, Nβ) + Ẽext(Nα, Nβ) + J̃(Nα, Nβ) + ẼXC(Nα, Nβ), which is correct because
the flat-plane counterparts, for the four components and the total energy, are uniquely determined once the integer points
are fixed, and they are constructed with the integer points kept intact. Eq. S5 shows that the correction for the total energy
can be obtained by adding up the deviations of each component from the flat-plane counterpart, which means that sufficient
conditions for the flat-plane condition are imposed as was first demonstrated for the fractional charge correction (5).

With frozen-orbital assumption, both the kinetic energy and the external potential energy are linear functions of ∆Nα

and ∆Nβ , thus no correction is needed for these two components. Only those corrections from nonlinear functions, i.e., the
electron-electron Coulomb repulsion energy J [ρ], the Hartree-Fock (HF) exchange energy EHF

X [ρs], and XC density functionals
EDFA

XC [ρ], are needed, which will be derived in the rest of this section. In this section, we assume that all canonical orbitals (COs)
are occupied by integer (0 or 1) alpha and beta electrons, except that the f -th orbital is fractionally occupied, whose occupations
are nαf and nβf . Spin-restricted self-consistent field (SCF) (2, 6, 7) is used throughout the derivations and calculations in this
paper, therefore the spacial functions of both alpha and beta COs are the same, they are indicated as {ϕp} in the following
derivations.

It should be noted that different realizations of (generalized) KS methods are available (8, 9), such as spin-restricted and
spin-unrestricted methods. In spin-unrestricted method, the resulting Slater determinant is not necessarily a pure eigenfunction
of the square of total spin, Ŝ2, which may be "contaminated" by other spin states. In contrast, spin-restricted method
restricts the reference Slater determinant to be an eigenfunction of Ŝ2, which allows the wavefunction to possess the physically
correct spin symmetry. Thus, spin-restricted method is frequently used when the exact symmetry properties are crucial for
understanding the chemical and physical behavior of the system under study. However, for spin-restricted method, the spin
density is determined only by the singly occupied orbitals and thus has the same sign at every point in space, which can be
incorrect for some open-shell systems whose spin densities are of different signs in different regions (9–12). In comparison,
spin-unrestricted method in principle allows a broken-symmetry solution to better describe the spin density for open-shell
systems or systems in an external magnetic field; in addition, it should be able to give the spin-restricted solution when the
energy is lower. Therefore, both spin-restricted and spin-unrestricted methods are important in practical applications of DFT.
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A. The correction to the Coulomb repulsion energy. The Coulomb repulsion energy with fractional occupations is

J
[
ραNα0 +nα

f
, ρβ
N
β
0 +nβ

f

]
= 1

2

∫∫ [
ραNα0 +nα

f
(r) + ρβ

N
β
0 +nβ

f

(r)
][
ραNα0 +nα

f
(r′) + ρβ

N
β
0 +nβ

f

(r′)
]

|r− r′| drdr′

= 1
2

∫∫ [
ραNα0

(r) + nαf ρf (r) + ρβ
N
β
0

(r) + nβfρf (r)
][
ραNα0

(r′) + nαf ρf (r′) + ρβ
N
β
0

(r′) + nβfρf (r′)
]

|r− r′| drdr′

= J
[
ραNα0 , ρ

β

N
β
0

]
+ (nαf + nβf )

∫∫ ρf (r)
[
ραNα0

(r′) + ρβ
N
β
0

(r′)
]

|r− r′| drdr′ + 1
2(nαf + nβf )2

∫∫
ρf (r)ρf (r′)
|r− r′| drdr′. [S6]

Here ρσNσ (r) is the density of σ spin and ρf (r) is the density of Orbital f , |ϕf (r)|2. As Eq. S6 is a quadratic function of nαf
and nβf , the correction can be exactly derived. The flat-plane counterpart is

J̃
[
ραNα0 +nα

f
, ρβ
N
β
0 +nβ

f

]
= (1− nαf − nβf )J

[
ραNα0 , ρ

β

N
β
0

]
+ nαf J

[
ραNα0 +1, ρ

β

N
β
0

]
+ nβfJ

[
ραNα0 , ρ

β

N
β
0 +1

]
= (1− nαf − nβf )J

[
ραNα0 , ρ

β

N
β
0

]
+ nαf

{
J
[
ραNα0 , ρ

β

N
β
0

]
+
∫∫ ρf (r)

[
ραNα0

(r′) + ρβ
N
β
0

(r′)
]

|r− r′| drdr′ + 1
2

∫∫
ρf (r)ρf (r′)
|r− r′| drdr′

}
+ nβf

{
J
[
ραNα0 , ρ

β

N
β
0

]
+
∫∫ ρf (r)

[
ραNα0

(r′) + ρβ
N
β
0

(r′)
]

|r− r′| drdr′ + 1
2

∫∫
ρf (r)ρf (r′)
|r− r′| drdr′

}
= J
[
ραNα0 , ρ

β

N
β
0

]
+ (nαf + nβf )

∫∫ ρf (r)
[
ραNα0

(r′) + ρβ
N
β
0

(r′)
]

|r− r′| drdr′ + 1
2(nαf + nβf )

∫∫
ρf (r)ρf (r′)
|r− r′| drdr′ [S7]

for 0 ≤ nαf + nβf ≤ 1;

J̃
[
ραNα0 +nα

f
, ρβ
N
β
0 +nβ

f

]
= (nαf + nβf − 1)J

[
ραNα0 +1, ρ

β

N
β
0 +1

]
+ (1− nβf )J

[
ραNα0 +1, ρ

β

N
β
0

]
+ (1− nαf )J

[
ραNα0 , ρ

β

N
β
0 +1

]
= (nαf + nβf − 1)

{
J
[
ραNα0 , ρ

β

N
β
0

]
+ 2
∫∫ ρf (r)

[
ραNα0

(r′) + ρβ
N
β
0

(r′)
]

|r− r′| drdr′ + 2
∫∫

ρf (r)ρf (r′)
|r− r′| drdr′

}
+ (1− nβf )

{
J
[
ραNα0 , ρ

β

N
β
0

]
+
∫∫ ρf (r)

[
ραNα0

(r′) + ρβ
N
β
0

(r′)
]

|r− r′| drdr′ + 1
2

∫∫
ρf (r)ρf (r′)
|r− r′| drdr′

}
+ (1− nαf )

{
J
[
ραNα0 , ρ

β

N
β
0

]
+
∫∫ ρf (r)

[
ραNα0

(r′) + ρβ
N
β
0

(r′)
]

|r− r′| drdr′ + 1
2

∫∫
ρf (r)ρf (r′)
|r− r′| drdr′

}
= J
[
ραNα0 , ρ

β

N
β
0

]
+ (nαf + nβf )

∫∫ ρf (r)
[
ραNα0

(r′) + ρβ
N
β
0

(r′)
]

|r− r′| drdr′ + 1
2(3nαf + 3nβf − 2)

∫∫
ρf (r)ρf (r′)
|r− r′| drdr′ [S8]

for 1 < nαf + nβf ≤ 2. The correction to the Coulomb energy is thus obtained from the difference, J̃ − J , which is

∆J
[
ραNα0 +nα

f
, ρβ
N
β
0 +nβ

f

]
=

(nαf + nβf )− (nαf + nβf )2

2

∫∫
ρf (r)ρf (r′)
|r− r′| drdr′

=
[ (nαf − nα2

f ) + (nβf − n
β2
f )

2 − nαf nβf
] ∫∫

ρf (r)ρf (r′)
|r− r′| drdr′ [S9]

for 0 ≤ nαf + nβf ≤ 1;

∆J
[
ραNα0 +nα

f
, ρβ
N
β
0 +nβ

f

]
=

(3nαf + 3nβf − 2)− (nαf + nβf )2

2

∫∫
ρf (r)ρf (r′)
|r− r′| drdr′

=
[ (nαf − nα2

f ) + (nβf − n
β2
f )

2 − (1− nαf )(1− nβf )
] ∫∫

ρf (r)ρf (r′)
|r− r′| drdr′ [S10]

for 1 < nαf + nβf ≤ 2. Eqs. S9 and S10 can be merged into

∆J
[
ραNα0 +nα

f
, ρβ
N
β
0 +nβ

f

]
=

(nαf − nα2
f ) + (nβf − n

β2
f )

2

∫∫
ρf (r)ρf (r′)
|r− r′| drdr′ − Λ(nαf , nβf )

∫∫
ρf (r)ρf (r′)
|r− r′| drdr′, [S11]
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where

Λ(nαf , nβf ) =
{
nαf n

β
f , nαf + nβf ≤ 1

(1− nαf )(1− nβf ), nαf + nβf > 1.
[S12]

The two terms on the rhs of Eq. S11 correspond to same-spin and opposite-spin contributions respectively.

B. The correction to the Hartree-Fock exchange energy. The HF exchange energy with fractional occupations is

EHF
X
[
ραs,Nα0 +nα

f
, ρβ
s,N

β
0 +nβ

f

]
= −1

2
∑
σ

∫∫ ρσs,Nσ0 +nσ
f

(r, r′)ρσs,Nσ0 +nσ
f

(r′, r)

|r− r′| drdr′

= −1
2
∑
σ

∫∫ [
ρσs,Nσ0

(r, r′) + nσfρs,f (r, r′)
][
ρσs,Nσ0

(r′, r) + nσfρs,f (r′, r)
]

|r− r′| drdr′

= EHF
X
[
ραs,Nα0 , ρ

β

s,N
β
0

]
−
∑
σ

nσf

∫∫
ρs,f (r, r′)ρσs,Nσ0 (r′, r)

|r− r′| drdr′ − 1
2
∑
σ

nσ2
f

∫∫
ρs,f (r, r′)ρs,f (r′, r)

|r− r′| drdr′.

= EHF
X
[
ραs,Nα0 , ρ

β

s,N
β
0

]
−
∑
σ

nσf

∫∫
ρs,f (r, r′)ρσs,Nσ0 (r′, r)

|r− r′| drdr′ − 1
2
∑
σ

nσ2
f

∫∫
ρf (r)ρf (r′)
|r− r′| drdr′. [S13]

Here ρσs,Nσ (r, r′) is the reduced single-electron density matrix of σ spin and ρs,f (r, r′) is the density matrix of Orbital f ,
ϕf (r)ϕ∗f (r′). Similarly, the flat-plane counterpart of the HF exchange energy is

ẼHF
X
[
ραs,Nα0 +nα

f
, ρβ
s,N

β
0 +nβ

f

]
= (1− nαf − nβf )EHF

X
[
ραs,Nα0 , ρ

β

s,N
β
0

]
+ nαfE

HF
X
[
ραs,Nα0 +1, ρ

β

s,N
β
0

]
+ nβfE

HF
X
[
ραs,Nα0 , ρ

β

s,N
β
0 +1

]
= (1− nαf − nβf )EHF

X
[
ραs,Nα0 , ρ

β

s,N
β
0

]
+ nαf

{
EHF

X
[
ραs,Nα0 , ρ

β

s,N
β
0

]
−
∫∫

ρs,f (r, r′)ραs,Nα0 (r′, r)
|r− r′| drdr′ − 1

2

∫∫
ρf (r)ρf (r′)
|r− r′| drdr′

}
+ nβf

{
EHF

X
[
ραs,Nα0 , ρ

β

s,N
β
0

]
−
∫∫ ρs,f (r, r′)ρβ

s,N
β
0

(r′, r)

|r− r′| drdr′ − 1
2

∫∫
ρf (r)ρf (r′)
|r− r′| drdr′

}
= EHF

X
[
ραs,Nα0 , ρ

β

s,N
β
0

]
−
∑
σ

nσf

∫∫
ρs,f (r, r′)ρσs,Nσ0 (r′, r)

|r− r′| drdr′ − 1
2
∑
σ

nσf

∫∫
ρf (r)ρf (r′)
|r− r′| drdr′ [S14]

for 0 ≤ nαf + nβf ≤ 1;

ẼHF
X
[
ραs,Nα0 +nα

f
, ρβ
s,N

β
0 +nβ

f

]
= (nαf + nβf − 1)EHF

X
[
ραs,Nα0 +1, ρ

β

s,N
β
0 +1

]
+ (1− nβf )EHF

X
[
ραs,Nα0 +1, ρ

β

s,N
β
0

]
+ (1− nαf )EHF

X
[
ραs,Nα0 , ρ

β

s,N
β
0 +1

]
= (nαf + nβf − 1)

{
EHF

X
[
ραs,Nα0 , ρ

β

s,N
β
0

]
−
∑
σ

∫∫
ρs,f (r, r′)ρσs,Nσ0 (r′, r)

|r− r′| drdr′ −
∫∫

ρf (r)ρf (r′)
|r− r′| drdr′

}
+ (1− nβf )

{
EHF

X
[
ραs,Nα0 , ρ

β

s,N
β
0

]
−
∫∫

ρs,f (r, r′)ραs,Nα0 (r′, r)
|r− r′| drdr′ − 1

2

∫∫
ρf (r)ρf (r′)
|r− r′| drdr′

}
+ (1− nαf )

{
EHF

X
[
ραs,Nα0 , ρ

β

s,N
β
0

]
−
∫∫ ρs,f (r, r′)ρβ

s,N
β
0

(r′, r)

|r− r′| drdr′ − 1
2

∫∫
ρf (r)ρf (r′)
|r− r′| drdr′

}
= EHF

X
[
ραs,Nα0 , ρ

β

s,N
β
0

]
−
∑
σ

nσf

∫∫
ρs,f (r, r′)ρσs,Nσ0 (r′, r)

|r− r′| drdr′ − 1
2
∑
σ

nσf

∫∫
ρf (r)ρf (r′)
|r− r′| drdr′ [S15]

for 1 < nαf + nβf ≤ 2. Thus, Eqs S14 and S15 are of the same form, which means that there is no derivative discontinuity for
the HF exchange energy at fractional spins. The correction from the difference, ẼHF

X − EHF
X , is thus formulated as

∆EHF
X
[
ραs,Nα0 +nα

f
, ρβ
s,N

β
0 +nβ

f

]
= −

(nαf − nα2
f ) + (nβf − n

β2
f )

2

∫∫
ρf (r)ρf (r′)
|r− r′| drdr′. [S16]

Different from Eq. S11, Eq. S16 contains only the same-spin contribution, which is the same in magnitude but different in sign
as compared to the same-spin contribution of Eq. S11.
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C. The correction to exchange density functionals and the global fractional-charge correction. Different from the Coulomb
and HF exchange energies, exchange and correlation density functionals are no longer simple quadratic functions of nσf , usually
they are all kinds of complicated functions. Therefore, the exact density-functional form of correction is hard to derive and
compute, even so we can still derive a simple form that captures most of the exact correction.

The correction to exchange functionals was originally derived in (5). This correction can be obtained by focusing only on
the nαf and nβf fractional electrons, i.e.

∆EX
[
ραNα0 +nα

f
, ρβ
N
β
0 +nβ

f

]
≈ ∆EX

[
nαf ρf , n

β
fρf
]
. [S17]

Based on the LDA exchange functional (13), the correction takes the following form:

∆EX
[
nαf ρf , n

β
fρf
]

= −[(nαf − nα2
f ) + (nβf − n

β2
f )]CX

3

∫
[ρf (r)]4/3dr. [S18]

By combining those same-spin contributions from Eqs S11, S16 and S18, we finally arrive at the global fractional-charge
(FC) correction

∆EFC
CO(Nα

0 + nαf , N
β
0 + nβf ) = 1

2 [(nαf − nα2
f ) + (nβf − n

β2
f )]κFC[ρf ], [S19]

where κFC is the FC curvature, defined by

κFC[ρf ] = (1− dHF
X )
[∫∫

ρf (r)ρf (r′)
|r− r′| drdr′ − 2CX

3

∫
[ρf (r)]4/3dr

]
, [S20]

dHF
X is the amount of HF exchange energy in the parent functional. Eq. S19 can be applied to any LDA, GGA, hybrid-GGA,

etc.
Actually, the correction of Eq. S19 greatly corrects the FC error, however it enlarges the errors for systems with fractional-spin

(FS) states. To further correct the FS error, an effective treatment of the opposite-spin contribution will be introduced in next
subsection. Corresponding to the FC correction from the same-spin contribution, all the opposite-spin contribution constitutes
the FS correction.

D. The correction to correlation density functionals and the global fractional-spin correction. As the correlation energy is
much small and complicated as compared to the exchange energy, thus only the correction to the exchange energy was taken
into account in the same-spin correction. Different from the same-spin case, the opposite-spin correction seems much more
intractable. As the exchange part provides no contribution to the interaction between electrons of opposite spins, unavoidably
the correlation part has to be taken into account for a better correction. Indeed, the correction to the correlation part is so
important that its accuracy decides whether the imposed FS correction makes sense or not.

Here the FS correction is formulated as

∆EFS
CO(Nα

0 + nαf , N
β
0 + nβf ) = −Λ(nαf , nβf )κFS[ρf ], [S21]

where Λ(nαf , n
β
f ) is defined in Eq. S12, and κFS is the FS curvature, which is

κFS[ρf ] =
∫∫

ρf (r)ρf (r′)
|r− r′| drdr′ + κC[ρf ]. [S22]

The two terms on the rhs of Eq. S22 are curvatures from the Coulomb energy and the correlation functional respectively. Next,
a general form of the curvature for the correlation functional, κC[ρf ], will be derived.

First approximate correlation functionals can be expressed in form of

EC[ρ, ζ] =
∫
ρ(r)εC[ρ, ζ]dr. [S23]

εC[ρ, ζ] is the functional representing correlation energy per electron, which can be formulated as

εC[ρ, ζ] = ε0C[ρ] + (ε1C[ρ]− ε0C[ρ])g[ρ, ζ], [S24]

where ε0C[ρ] and ε1C[ρ] are the spin-compensated and fully spin-polarized correlation energy densities. Eq. S23 is general and
makes no local approximation. ρ is the total density, and ζ is the spin polarization parameter, they are obtained as

ρ(r) = ρα(r) + ρβ(r), ζ(r) = ρα(r)− ρβ(r)
ρ(r) . [S25]

These two quantities are identical to ρα and ρβ when used as basic variables of functionals, therefore any LDA, GGA, etc. can
be reformulated in form of Eq. S23.
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The functional g[ρ, ζ] in Eq. S24 serves as a weight factor between the two extreme cases ζ = 0 and ζ = 1 (2). In fact, this
functional is the main reason of the FS error in correlation functionals, which can be understood by an example: for a system
with the total density unchanged, such as H(nα, nβ) with constant total electrons (i.e. nα + nβ = C ), in this case, ε0C[ρ] and
ε1C[ρ] also remain unchanged, therefore g[ρ, ζ] is the main factor that causes the energy deviation from constant.

To extract those most important nonlinear terms, i.e. the quadratic terms, g[ρ, ζ] is expanded into Taylor series of ζ,

g[ρ, ζ] = g[ρ, ζ]|ζ=0 + ∂g[ρ, ζ]
∂ζ

∣∣∣
ζ=0

ζ + 1
2!
∂2g[ρ, ζ]

(∂ζ)2

∣∣∣
ζ=0

ζ2 + · · ·

= g(0) + g(1)ζ + g(2)ζ2 + g(3)ζ3 + g(4)ζ4 + · · · , [S26]

with
g(n) = 1

n!
∂ng[ρ, ζ]

(∂ζ)n
∣∣∣
ζ=0

. [S27]

Note that the expansion of Eq. S26 does not mean that g[ρ, ζ] depends only on ζ. To make Eq. S23 a general form of correlation
functional, g[ρ, ζ] should be allowed to depend also on ∇ζ, ∆ζ, and so on. For a g[ρ, ζ] depending on ζ, ∇ζ, ∆ζ, etc., we only
expand it on ζ, which means that the coefficients g(n) still depend on ∇ζ, ∆ζ, etc., this does not affect the derivations below.

There are three conditions that g[ρ, ζ] should obey,

g[ρ, ζ]|ζ→0 = 0, g[ρ, ζ]|ζ→1 = 1, g[ρ,−ζ] = g[ρ, ζ]. [S28]

With these conditions, Eq. S26 reduces to

g[ρ, ζ] = g(2)ζ2 + g(4)ζ4 + g(6)ζ6 + · · · , [S29]

with
g(2) + g(4) + g(6) + · · · = 1. [S30]

Using Eq. S25, we obtain

ζ2 = 1− 4ρ
αρβ

ρ2 . [S31]

By inserting ζ2 into Eq. S29, g[ρ, ζ] can be reformulated as

g[ρ, ζ] = g(2)
(

1− 4ρ
αρβ

ρ2

)
+ g(4)

(
1− 4ρ

αρβ

ρ2

)2
+ g(6)

(
1− 4ρ

αρβ

ρ2

)3
+ · · ·

= {g(2) + g(4) + g(6) + · · · } − 4{g(2) + 2g(4) + 3g(6) + · · · }ρ
αρβ

ρ2 +O
(
ραρβ

ρ2

)2

= 1− 4
{

1 +
∑
n≥2

(n− 1)g(2n)
}
ραρβ

ρ2 +O
(
ραρβ

ρ2

)2

= 1− 4(1 + η)ρ
αρβ

ρ2 +O
(
ραρβ

ρ2

)2
, [S32]

where
η =

∑
n≥2

(n− 1)g(2n). [S33]

Therefore the correlation energy of Eq. S23, can be expanded into

EC[ρ, ζ] =
∫
ρ(r)ε1C[ρ]dr− 4

∫
(1 + η)(ε1C[ρ]− ε0C[ρ])ρ

α(r)ρβ(r)
ρ(r) dr +

∫
ρ(r)(ε1C[ρ]− ε0C[ρ])O

(
ρα(r)ρβ(r)
ρ(r)2

)2
dr. [S34]

Similar to Eq. S17, now we focus only on the nαf and nβf fractional electrons. When nαf + nβf = 1, the correlation energy by
Eq. S34 is

EC[ρf , nαf − nβf ] =
∫
ρf (r)ε1C[ρf ]dr− 4nαf nβf

∫
(1 + η)ρf (r)(ε1C[ρf ]− ε0C[ρf ])dr +O(nαf nβf )2. [S35]

As we know that the energy of a system with nαf + nβf = 1 should be the same as that of the system in normal integer-spin
state (η = 1), thus we obtain the correction

∆EC[ρf , nαf − nβf ] = EC[ρf , 1]− EC[ρf , nαf − nβf ] = 4nαf nβf

∫
(1 + η)ρf (r)(ε1C[ρf ]− ε0C[ρf ])dr, [S36]

where we ignore the high order terms, O(nαf n
β
f )2. Therefore the curvature κC in Eq. S22 takes the following form:

κC[ρf ] = −4
∫

(1 + η)ρf (r)(ε1C[ρf ]− ε0C[ρf ])dr. [S37]
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η is an unknown functional defined in Eq. S33, whose exact form should be very complicated. Thus instead of deriving the
exact form, determining an appropriate constant for η can be already enough to allow a good κC. Here we use the point,
(nαf , n

β
f ) = (0.5, 0.5), to determine η, as the FS error is the largest at this point. The correct correction for this point should be

EC[ρf , 1]− EC[ρf , 0] =
∫
ρf (r)ε1C[ρf ]dr−

∫
ρf (r)ε0C[ρf ]dr, [S38]

while the correction from Eq. S36 is

∆EC[ρf , 0] =
∫

(1 + η)ρf (r)(ε1C[ρf ]− ε0C[ρf ])dr. [S39]

By comparing Eqs. S38 with S39, finally we obtain η = 0.
The correlation curvature of Eq. S37 is one of the key achievements in this paper. The form is general, which can be applied

to any LDA, GGA, etc. by bringing in different kinds of approximated ε0C and ε1C. Similar to the LDA exchange functional
used in the FC curvature, here we would like to use a simple LDA correlation functional developed recently (14). ε0C and ε1C are
approximated by form

εC[ρ] = aln
(
1 + b

rs
+ b

r2
s

)
, [S40]

where rs = (4πρ/3)−1/3, and a and b are two parameters determined by the high-density limit, they are

a = ln2− 1
2π2 ; b = 20.4562557, [S41]

for ε0C, and
a = ln2− 1

4π2 ; b = 27.4203609, [S42]

for ε1C.

2. Fractional-Spin Localized Orbital Scaling Correction (FSLOSC)

A. Orbital localization. Localized orbitals (LOs, {φp}) used in this paper are obtained by unitary transformation upon COs
({ϕp}) (15),

φp(r) =
∑
q

Upqϕq(r). [S43]

And the occupation
λσpq = 〈φp|ρσs |φq〉, [S44]

is now a matrix. For this occupation matrix, diagonal elements represent the occupations of LOs, which obey
∑

p
λσpp = Nσ.

Here we want to make clear the meaning of off-diagonal elements, λσpq, as they play a special role in the construction of
FS correction. Each off-diagonal element connects to a LO pair, with the magnitude equal to

∑occ.

i
〈φp|ϕi〉〈ϕi|φq〉, which

represents how much the pair of LOs formed from the mixing of the same occupied COs.
The LOs keep the density matrix intact via

ρσs =
∑
pq

|φp〉λσpq〈φq|. [S45]

The unitary matrix U is obtained through the minimization of the following objective function,

F [U, {ϕp}, {εp}] =
∑
p

[
〈φp|r2|φp〉 − 〈φp|r|φp〉2

]
+
∑
pq

ωpq|〈φp|ϕq〉|2

=
∑
p

[∑
rs

UprUps〈ϕr|r2|ϕs〉 −
(∑

rs

UprUps〈ϕr|r|ϕs〉
)2]

+
∑
pq

ωpqU
2
pq, [S46]

where the first term on the rhs is just the objective function of Foster-Boys localization (16), while the second term is brought
in to restrict the mixing of different COs.

To increase the ability of capturing the delocalized nature of reaction transition states, in this work we use a modified ωpq of
the form

ωpq = R2
0{exp[|εp − εq|/ε0 + erfc(η

√
dpdq)]− 1}, [S47]

where εp is the p-th CO energy; dp is used to reflect the delocalization of the p-th CO, so it is called orbital delocalization
factor. Here orbital delocalization factor takes the form of

dp =
∑
A<B

Qp(A)|RA −RB |Qp(B), [S48]
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where RA is the position of atom A, and Qp(A) represents how much the p-th CO localized on atom A, which can be obtained
from (similar to Mulliken population analysis (17))

Qp(A) =
∑
µ(∈A)

∑
ν

P pµνSνµ. [S49]

Here µ and ν are atomic orbital indices, P pµν is the density matrix of the p-th CO.
The larger the value of ωpq, the smaller the mixing of the p-th and q-th orbitals. Thus it is understandable to set the

diagonal elements, ωpp, to 0, which allows the p-th LO to retain the more component of the p-th CO. With this ωpq, the mix
between COs whose energies are far apart is suppressed. Thus core occupied and high unoccupied COs, as their energies are of
much greater magnitude as compared to that of frontier orbitals (those orbitals around HOMO and LUMO), can not mix with
unoccupied and occupied COs respectively, and the corresponding blocks of the occupation matrix remain diagonal, with the
diagonal elements equal to 1 (0). Only frontier orbitals, as the energies of occupied and unoccupied orbitals are relatively close
to each other, are possible to mix together to form fractionally occupied LOs. It means that if we only need the total electronic
energy or frontier orbital energies, then core occupied and high unoccupied COs can be excluded from the localization and
subsequent procedures to make the computational cost of the FC and FS corrections much smaller than the SCF calculation of
common density functional approximations (DFAs). Besides more delocalized COs (with larger orbital delocalization factors)
are more likely to mix with each other to form LOs, which provides a way to characterize reaction transition states because
the COs of transition states are more delocalized as compared to those of equilibrium geometries. For atoms, as the orbital
delocalization factors of all COs are equal to zero, it is hard for the COs to mix each other.

It should be noted that, in order to capture local FS information for FS correction, spin restriction is imposed during
localization. It means that we only have to optimized one set of LOs, which can be occupied by both alpha and beta electrons.
Besides, in the self-consistent calculation of FS correction, the COs and CO energies used in the localization procedure are
from the projection and diagonalization of (hDFA,α + hDFA,β)/2 in closed, open, and virtual orbital spaces.

B. Fractional-charge correction. With the LOs and the occupation matrix, The FC correction (15) is constructed as

∆EFC
LO =

∑
p

∑
σ

1
2(λσpp − λσ2

pp)κFC[ρp, ρp]−
∑
p6=q

∑
σ

1
2λ

σ2
pqκ

FC[ρp, ρq], [S50]

where the FC curvature κFC[ρp, ρq] is defined by

κFC[ρp, ρq] =
∫∫

ρp(r)ρq(r′)
|r− r′| drdr′ − 2CX

3

∫
[ρp(r)ρq(r)]2/3dr. [S51]

This curvature should be multiplied by 1− dHF
X for a hybrid parent functional. Here ρp(r) = |φp(r)|2 is the density of the p-th

LO.
The first term on the rhs of Eq. S50 is directly generalized from Eq. S19, except that it encompasses the summation over

all the fractionally occupied LOs. The second term is brought in to dispel the unwanted interactions between LO pairs. For
example, in the case of H+

2 dissociation, as the H-H bond stretched out, the first two COs would gradually become degenerate
and more and more delocalized, which compels them to mix each other and form two LOs located at these two H atoms
respectively. As there is only one alpha electron for this systems, the elements of the occupation matrix can be easily obtained
from

λαpq = 〈φp|ϕ1〉〈ϕ1|φq〉 = Up1Uq1, [S52]

and they obey
λα2

12 = λα2
21 = (U11U21)2 = U2

11U
2
21 = λα11λ

α
22. [S53]

Therefore, at dissociation limit, the second term of Eq. S50 reduces to −λα11λ
α
22
∫∫

ρ1(r)ρ2(r′)
|r−r′| drdr′, which removes the unphysical

Coulomb interaction between these two LOs.

C. Fractional-spin correction for well-separated LOs. Similarly, the global FS correction of Eq. S21 can be generalized to

∆EFS′
LO = −

∑
p

Λ(λαpp, λβpp)κFS[ρp, ρp] +
∑
p 6=q

λαpqλ
β
pqκ

FS[ρp, ρq]. [S54]

Here Λ(λαpp, λβpp) is defined in Eq. S12, and the FS curvature is

κFS[ρp, ρq] =
∫∫

ρp(r)ρq(r′)
|r− r′| drdr′ + κC[√ρpρq], [S55]

with κC defined by Eq. S37. The first term on the rhs of Eq. S54 is directly generalized from Eq. S21, which restores the
flat-plane behavior for each fragments with fractional spins. The second term corrects the erroneous long-range interaction
between fragments caused by the second term on the rhs of Eq. S50. Taking H2 as example, at dissociation limit, the total
densities on both H atoms and the Coulomb interaction between the two fragments are actually good. However the second term
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in the FC correction (Eq. S50) destroys this correct long-range interaction. With the second term of Eq. S54, the incorrect
correction from the FC part can be canceled out. Besides, for those cases with fractional charges but no fractional spins, such
as H+

2 dissociation, the second term of Eq. S54 disappears, that is what we want because the FC correction already has correct
long-range interaction for this case.

D. Fractional-spin correction for overlapping LOs. Eq. S54 repairs the dissociation limits for commonly used DFAs, however it
is still not enough for the whole potential energy curves of dissociation, actually there would be a huge bump in the curves.

Taking H2 as example, as the H-H bond stretched out, the only occupied CO will mix with LUMO to form two LOs. These
two LOs center on the two H atoms respectively, and their occupations obey

λαii = λβii, [S56]
and {

λσ11 = 1− δ
λσ22 = δ, σ = α, β,

[S57]

where the value of δ, first equal to 0, increases as the H-H distance gets larger, finally it approaches 0.5 as the two H atoms go
far away from each other. Fig. S1 depicts how the LO densities and LO occupations change along H-H bond dissociation.

Here we focus on the Coulomb interaction, as the corrections of this part are normally the largest. Since the spin densities
and total density obey the spacial symmetry, even though there are fractional alpha and beta electrons on each H atom, the
total number of electrons on each H atom is correct (equal to 1). Therefore, as the H-H bond stretched out from equilibrium,
the Coulomb interaction calculated by commonly used DFT methods is actually quite good. However the corrections to the
Coulomb interaction from both the first terms of Eqs. S50 and S54 are

δ(1− δ)
∫∫

ρ1(r)ρ1(r′)
|r− r′| drdr′ + δ(1− δ)

∫∫
ρ2(r)ρ2(r′)
|r− r′| drdr′, [S58]

and

−δ2
∫∫

ρ1(r)ρ1(r′)
|r− r′| drdr′ − δ2

∫∫
ρ2(r)ρ2(r′)
|r− r′| drdr′, [S59]

respectively. Here the second terms from both Eqs. S50 and S54 are ignored, as they cancel each other. When δ is small, the
positive correction of Eq. S58 can not be completely cancelled out by the negative correction of Eq. S59, resulting in a positive
overall correction which further worsens the already-too-high energy from mainstream DFAs. Only when δ approaches 0.5,
these two corrections cancel each other. This accounts for the good dissociation limit but a bump in the dissociation energy
curve.

Now we know that a bump comes out because the large positive FC correction can not be compensated properly by the FS
correction of Eq. S54. It happens in the region where an occupied CO begins to split into two overlapping LOs with fractional
occupations. To fix this, another correction is proposed for this region, which takes the form of

∆EFS′′
LO = −

∑
p

Γ(λαpp, λβpp)κFS[ρp, ρp], [S60]

with
Γ(λαpp, λβpp) = min(λαpp, λβpp)min(1− λαpp, 1− λβpp). [S61]

For H2 dissociation, Γ(λα11, λ
β
11) = Γ(λα22, λ

β
22) = δ(1 − δ). Thus this correction can properly compensate the large positive

correction from Eq. S58. Besides, for any LO, Eq. S61 is nonzero only when the alpha and beta occupations are both fractional,
therefore this correction takes effect only for FS problems. In addition, Eq. S60 should be multiplied by 1− dHF

X for a hybrid
parent functional, which is similar to the FC correction for a hybrid functional.

E. Final fractional-spin correction. By combining the FS corrections for both well-separated and overlapping LOs, the final FS
correction is formulated as

∆EFS
LO = −

∑
p

[
(1− Sp)Λ(λαpp, λβpp) + SpΓ(λαpp, λβpp)

]
κFS[ρp, ρp] +

∑
p 6=q

λαpqλ
β
pqκ

FS[ρp, ρq], [S62]

with
Sp = erf

(
γ
(∫ √

ρp(r)ρqpmax(r)dr
) 1

2
)
, [S63]

where the qpmax can be obtained via argmaxq(λα2
pq + λβ2

pq ). Fig. S2 illustrates how Sp changes along H-H bond dissociation.
Sp is designed to become zero when the p-th and qpmax-th LOs are well-separated, so that the correction of the p-th LO is
degraded to −Λ(λαpp, λβpp)κFS[ρp, ρp], indicating that the flat-plane condition has been imposed. When the LO pair are close to
each other, Sp is large, so the correction for overlapping LOs is turned on. Besides, since core occupied (high unoccupied)
COs cannot mix with unoccupied (occupied) COs to form fractionally occupied LOs, and the COs of atoms (with the orbital
delocalization factors equal to zero) rarely mix with each other, which makes the (λα2

pqpmax +λβ2
pqpmax) quite small and the qpmax

found meaningless, therefore we set Sq to zero when (λα2
pqpmax + λβ2

pqpmax) is almost zero. Due to Γ(λαpp, λβpp) and Λ(λαpp, λβpp),
this FS correction is derivative discontinuous.
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F. Orbital energies of FSLOSC. With both FC and FS corrections, the total energy is now formulated as

EFSLOSC
Tot = EDFA + ∆EFC

LO + ∆EFS
LO. [S64]

The orbital energies can be calculated by

εFSLOSC,σ
s = ∂EFSLOSC

Tot
∂nσs

= 〈ϕs|
δEFSLOSC

Tot
δρσs

|ϕs〉 = 〈ϕs|hFSLOSC,σ|ϕs〉 [S65]

= 〈ϕs|hDFA,σ + ∆hFC,σ + ∆hFS,σ|ϕs〉.

Here the FSLOSC effective Hamiltonian includes three parts, they are hDFA,σ from the parent DFA, ∆hFC,σ from the FC
correction, and ∆hFS,σ from the FS correction. Using frozen-orbital assumption in post-SCF calculations or ignoring the
dependence of U matrix on orbitals in self-consistent calculations, ∆hFC,σ and ∆hFS,σ are derived. ∆hFC,σ is

∆hFC,σ ≈
∑
p

(1
2 − λ

σ
pp

)
κFC[ρp, ρp]|φp〉〈φp| −

∑
p6=q

λσpqκ
FC[ρp, ρq]|φp〉〈φq|. [S66]

By contrast, the derivation of ∆hFS,σ requires extra consideration, as the FS correction is derivative discontinuous, where
Γ(λαpp, λβpp) is non-differentiable when λαpp = λβpp, and Λ(λαpp, λβpp) is non-differentiable when λαpp + λβpp = 1. Therefore, when
deriving ∂EFS

LO
∂nσs

, left or right derivative should be determined for Γ(λαpp, λβpp) and Λ(λαpp, λβpp). Inspired by the orbital energy

calculations of normal DFAs: lim∆nσ
i
→0

EDFA
Tot (N)−EDFA

Tot (N−∆nσi )
∆nσ

i
and lim∆nσa→0

EDFA
Tot (N+∆nσa )−EDFA

Tot (N)
∆nσa

are used respectively for
energies of occupied and unoccupied COs, here when we calculate the derivatives of Γ(λαpp, λβpp) and Λ(λαpp, λβpp) with respect
to λσpp, left derivatives are used for λσpp ≥ 0.5 while right derivatives are used for λσpp < 0.5. Therefore, we obtain

∂Γ(λαpp, λβpp)
∂λαpp

=
{

1− λβpp, λαpp < λβpp ‖ λαpp = λβpp & λαpp ≥ 0.5
−λβpp, λαpp > λβpp ‖ λαpp = λβpp & λαpp < 0.5,

[S67]

and

∂Λ(λαpp, λβpp)
∂λαpp

=
{
λβpp, λαpp + λβpp < 1 ‖ λαpp + λβpp = 1 & λαpp ≥ 0.5
−(1− λβpp), λαpp + λβpp > 1 ‖ λαpp + λβpp = 1 & λαpp < 0.5.

[S68]

With this, the effective Hamiltonian from the FS correction is

∆hFS,α ≈−
∑
p

[
(1− Sp)

∂Λ(λαpp, λβpp)
∂λαpp

+ Sp
∂Γ(λαpp, λβpp)

∂λαpp

]
κFS[ρp, ρp]|φp〉〈φp| [S69]

+
∑
p6=q

λβpqκ
FS[ρp, ρq]|φp〉〈φq|.

Similarly, ∆hFS,β can be derived.

G. Self-consistent FSLOSC (scFSLOSC). The FSLOSC derived above can be applied as a general approach to existing DFAs,
such as LDAs, GGAs, and hybrid GGAs. There are two ways to implement the FSLOSC calculation. One is post-SCF
calculation, after the restricted SCF calculation of the parent functional, the COs and CO energies are used to do orbital
localization, and then calculate the FSLOSC total energy by Eq. S64 and orbital energies by Eq. S65.

The other one is self-consistent calculation of FSLOSC, i.e. scFSLOSC. With the FSLOSC effective Hamiltonian derived in
previous subsection, one can follow the routine restricted SCF calculation or use some gradient optimization algorithm to
obtain a set of optimized orbitals and density, based on which the FSLOSC energy is subsequently calculated. As mentioned
above, the effective Hamiltonian in previous subsection is derived based on the frozen-orbital assumption, thus we prefer the
gradient algorithm together with line search for better convergence.

3. Supplemental test results.

In the main text, only the results of BLYP (18, 19) and (sc)FSLOSC-BLYP are shown. Here more test results of FSLOSC
based on LDA (13, 20) and B3LYP (21, 22) are provided.

In this work, all the calculations of DFT and post-HF wave-function methods are based on restricted SCF for both close-shell
and open-shell systems. DFT calculations were performed using an in-house developed QM4D program (23), while coupled
cluster calculations using Gaussian09 program (24), and MCSCF calculations using NWChem program (25). The basis sets
used are 6-311++G(3df, 3pd) (26–28) for HTBH38/08, NHTBH38/08 (29, 30), and G2-97 test sets (31); cc-pVTZ (32) for
flat-plane tests (H and Li atoms), H+

2 , H2, C2H6, C2H4, C2, N2, P2 and CO; 6-31G(d, p) (33, 34) for HF, 6-31G for NH3 and
H8; and crenbl basis set (35) for C60. For FSLOSC calculation, only those COs with energies range from -30 to 10 eV are
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taken into account for orbital localization and subsequent procedures, which makes the computational cost of the FC and FS
corrections much smaller than that of calculating SCF-converged COs.

Tab. S1 shows the overall performance of DFAs and FSLOSC-DFAs on predicting barrier heights. The test is based on
hydrogen transfer barrier heights (HTBH38/08) and non-hydrogen transfer barrier heights (NHTBH38/08), both these two test
sets include 19 reactions with both forward and reverse reaction barrier heights. For this test, FSLOSC-DFAs show obvious
improvement over their parent DFAs.

Tab. S2 shows the overall performance of DFAs and FSLOSC-DFAs on thermochemistry, the atomization energies exclusive of
the zero-point energies are examined. The G2-97 test set is used, which includes five subsets: G2-1, non-hydrogen, hydrocarbon,
substituted hydrocarbon, inorganic hydrides and radicals. For this test, FSLOSC-DFAs show comparable results to their parent
DFAs.

Fig. S3 shows the performance of FSLOSC-LDA on energies of H and Li atoms with fractional charges and fractional spins.
As is well known that the exact energies should show two flat planes intersecting at nα + nβ = 1 for H atom. Commonly used
DFAs, such as LDA and BLYP, show great deviation from the flat planes. FSLOSC-LDA displays nearly flat-plane behavior.
Besides, this good performance is maintained for the Li atom, which indicates that the FS correction generally corrects the FS
errors in commonly used DFAs.

Fig. S4 compares the calculated −εHOMO (−εLUMO) with reference vertical ionization potentials Ive (vertical electron affinities
Ave). The CCSD(T) calculations and extrapolated to infinite basis limit are used to obtain the reference data. The testing
molecules are from the G2-97 set, where H2S(2A1), N2(2Πu), C6H6, C7H8, H6C6O and H7C6O are exclusive from the εHOMO
or Ive calculations. LDA shows mean absolute deviations (MADs) of 4.29 and 3.85 eV from reference Ive and Ave respectively,
the deviations are greatly reduced by FSLOSC-LDA, whose MADs are 0.53 and 0.85 eV.

Figs. S5-S8 show the performance of FSLOSC-DFAs on predicting potential energy curves of systems with strong correlation.
FSLOSC-DFAs not only show nice potential energy curves for dissociations of the cationic system H+

2 (Fig. S5(a)), single-bond
systems H2 (Fig. S5(b)) and H3C-CH3 (Fig. S5(c)), but also for double-bond twisted in C2H4 (Fig. S5(d)), multiple-bond
dissociations of C2 (both X1Σ+

g and B1∆g), N2, and P2 (Fig. S6). For the cases of heteroatom molecules, Fig. S7 shows
that LDA and BLYP give incorrect charge distribution for the dissociation of both single-bond HF and multiple-bond CO,
which results in fractionally charged fragments at large interatomic distance. That is why FSLOSC-DFAs based on the
densities of commonly used DFAs do not improve the dissociation limits. With the SCF calculations of FSLOSC-DFAs, i.e.
scFSLOSC-DFAs, the charges as well as the energies at dissociation limits are corrected. Fig. S8 shows other difficult cases for
DFT methods, namely, the simultaneous dissociation of one, two, three N-H bonds in NH3, and the process of pulling apart
eight H atoms in a cubic H8. scFSLOSC-DFAs also improves greatly the behaviors of DFAs. Note that the dissociation limits
still have some deviations, especially for H8 , since the FS curvature is not perfect for H atom; see Fig. S9.

The success of (sc)FSLOSC-DFAs for these cases indicates the robustness of the FS correction, it provides a viable scheme
to rescue the failure of mainstream DFAs for strong correlation.
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Table S1. Mean absolute deviations(MADs, in kcal/mol) computed on the HTBH38/08 and NHTBH38/08 test sets for reaction barriersa.

LDA FSLOSC-LDA BLYP FSLOSC-BLYP B3LYP FSLOSC-B3LYP
HTBH38/08 17.58 13.87 7.37 5.23 3.55 2.33

NHTBH38/08 12.34 7.95 8.28 5.82 4.04 2.92
mean 14.96 10.91 7.83 5.53 3.80 2.63

aHTBH: Hydrogen Transfer Barrier Heights; NHTBH: Non-Hydrogen Transfer Barrier Heights. Geometries and experimental data are
from refs. (29, 30)

Table S2. Mean absolute deviations(MADs, in kcal/mol) computed on the G2-97 test set for atomization energiesa.

LDA FSLOSC-LDA BLYP FSLOSC-BLYP B3LYP FSLOSC-B3LYP
G2-1(55) 36.05 35.58 5.57 5.84 2.77 3.58

Non-hydrogen(21) 91.93 92.02 15.30 16.28 5.93 6.50
Hydrocarbons(17) 143.54 142.43 7.12 8.14 1.73 2.03

Substituted Hydrocarbons(42) 121.49 120.68 6.64 6.89 3.14 2.50
Inorganic hydrides and radicals(13) 74.10 72.66 5.65 6.26 3.50 2.71

mean(148) 83.91 83.26 7.44 7.92 3.27 3.43
a Geometries and experimental data are from ref. (31)
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Fig. S1. LO densities plotted along the bonding axis of H2 at the internuclear distance of (a) RH−H = 1Å, (b) RH−H = 2Å, and (c) RH−H = 8Å. The two H atoms
locate at x = 0 and x = RH−H respectively. (c) Potential energy curves for H2 bond dissociation. The total energy of two doublet H atoms are set to zero. All densities and
energies are in a.u.
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Fig. S2. Sp of Eq. S63 plotted as a function of H-H bond distance for H2 dissociation. The first two localized orbitals are examined.
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Fig. S3. Energies computed by FSLOSC-LDA for (a) H and (b) Li atoms with fractional charges and fractional spins. All energies are in a.u.

16 of 24 Neil Qiang Su, Chen Li and Weitao Yang



- 2 0 2 4 6 8 1 0 1 2 1 4 1 6 1 8

0

5

1 0

1 5

2 0

  L D A
  F S L O S C - L D A

   I v e       A v e

R e f .  I v e  a n d  A v e ( e V )
Fig. S4. Calculated −εHOMO (−εLUMO) versus reference Ive (Ave) for 64 (47) molecules from G2-97 set. The solid line indicates −εHOMO = Ive or −εLUMO = Ave.
All data are in eV.
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Fig. S5. Potential energy curves for H-H bond dissociation in (a) H+
2 and (b) H2, C-C bond dissociation in (c) C2H6, and C=C double bond twisted in (d) C2H4. The total

energies of a doublet H atom, two doublet H atoms, two doublet ·CH3 fragments, and C2H4 with HCCH torsion angle at θ = 0 are set to zero for H+
2 , H2, C2H6, and C2H4

respectively. The reference results are HF for H+
2 , CCSD for H2, MRCI+Q for C2H6, and MR-ccCA for C2H4. Reference energies and geometries are from refs. (36) and (37)

for C2H6 and C2H4 respectively. All energies are in a.u.
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Fig. S6. Potential energy curves for C-C multiple-bond dissociation in C2 (two singlet states (a) X1Σ+
g and (b) B1∆g are calculated, the ground state is X1Σ+

g for short C-C
bond length then switches to B1∆g as the bond stretched, the wavefunctions of ground-state X1Σ+

g and B1∆g are used as initial guesses to obtain the whole curves for
both states), (c) N-N triple-bond dissociation in N2, and (d) P-P triple-bond dissociation in P2. The total energies of two triplet C atoms, two quartet N atoms, and two quartet P
atoms are set to zero for C2, N2, and P2 respectively. The reference energies are: CEEIS results from ref. (38) for C2, and MRCI+Q results from ref. (39) for both N2 and P2.
All energies are in a.u.
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Fig. S7. (a) Potential energy curve and charge on H atom along H-F single-bond dissociation in HF; (b) Potential energy curve and charge on C atom along C-O multiple-bond
dissociation in CO. The total energies of a doublet H atom and a doublet F atom, and a triplet C atom and a triplet O atom are set to zero for HF and CO respectively. Full CI
results from ref. (40) and MRCI+Q results from ref. (41) are used as reference for HF and CO respectively. Both energies and charges are in a.u.
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Fig. S8. Potential energy curves for (a) one N-H bond dissociation, (b) two N-H bonds dissociation at the same time, (c) all three N-H bonds dissociation at the same time in
NH3, and (d) outstretching all the eight H atoms in cubic hydrogens H8. The total energies of a doublet H atom and a doublet NH2 fragment, two doublet H atoms and a triplet
NH fragment, three doublet H atoms and a quartet N atom, and eight doublet H atoms are set to zero for (a), (b), (c) and (d) respectively. The calculated Full CI results are used
as reference. All energies are in a.u.
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