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Figure S1. Related to Figure 1; Growth rate in kinase mutants. Many kinase mutants (median growth
rate of all kinases, cyan dotted line) exhibit growth rates similar to WT (red dotted line). Data is
non-normally distributed with mass center close to WT-strain. The growth curves were fitted using

non-parametric (without growth law assumption) spline model as implemented in R growFit package
(Kahm et al., 2010).
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Figure S2. Related to Figure 1; Quality of large
proteomics experiment a)microLC-SWATH-MS
(Vowinckel et al., 2018) was applied to
systematically record the  proteomes  of
Saccharomyces cerevisiae kinase gene deletion
strains. Shown are retention time stabilities during
the measurement of 397 yeast full-proteome tryptic
digests by microLC-SWATH-MS over a four-month
acquisition period. The median retention time drift
was as low as +/- 5.7%, as illustrated by the
retention of standard peptides (iRT, coloured
points). The rightmost coloured dots represent
average peptide retention time with standard
deviation (in % of IRT retention) of total
chromatographic runtime. Grey lines indicate the
processing of a standardised proteome digest
(quality control (QC) sample) to monitor instrument
performance, to normalise for batch effects, as well
as to determine adequate cut-off values for
determining differential protein expression. b)
Overlay of 397 extracted ion chromatograms
representing a typical iRT peptide (IGSEVYHNLK)
illustrates chromatographic robustness. ¢) our
microLC-SWATH-MS implementation covered the
typical chromatographic peak with a 1.31s scan
cycle so that the illustrated example peptide
IGSEVYHNLK (left) is covered by 9 MS? and 3 MS'
ions (different colours in the chromatogram), each
by 10 measurements (black dots) in the average
sample. This high coverage helps to obtain precise
quantification. d) Batch correction of
microLC-SWATH-MS proteomic data. Before batch
correction signal is technically confounded by the
acquisition date as demonstrated by variation of
external QC control samples (black triangles),
colours represent different experimental batches
acquired in the period of 4 months. Batch correction
reduces variation associated with acquisition date
as demonstrated by grouping of QC samples (right

panel). e) Technical variation of label-free protein quantification as determined by calculating coefficient of
variation of combined fragment signal batch corrected intensities in all quality control samples. x - axis is
log-scaled, dotted line is the median of the CV% values (19%). f) The coefficient of variation (CV) at
whole-process technical and biological levels. The CV of technical replicates in 93% of measured
metabolic enzymes were lower than in kinase samples, resolving biological signal from technical noise.
Kinase samples are sorted as QC replicates.
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Figure S3. Related to Figure 1; Kinase deletions in diploids. Enzyme expression in ten heterozygous
vs homozygous kinase mutants, generated by mating the MATa strains as used in our study (Mulleder et
al,, 2012) with a wild-type strain (BY4742) or a complementary kinase knock-out in the MATalpha
background. Homozygous diploid kinase mutants have much stronger gene expression changes
compared to the wild-type, relative to the corresponding heterozygous strains to which one kinase copy
was re-introduced by mating with the MATalpha kinase-wild-type strain. Histogram represents a ratio
between kinase homozygous diploid mutant and diploid BY4741-Ahis parental strain. Density plot shows
ratio between heterozygous mutants normalized by their respective MATa/MATa-Akinase  vs
MATa/MATa-WT diploids. The dotted line corresponds to no change respective to the wild-type control
proteome.
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Figure S4. Related to Figure 1; Changes in growth rate are not the main cause of differential
enzyme expression in kinase knock-outs, as the main principal components of enzyme expression
show no correlation with growth rate changes. Such correlation is however obtained between principal
components 3 and 4, that capture 5.3% and 3.8% respectively, of total enzyme expression. More than
90% of enzyme expression changes in kinase knock-outs are not associated to growth rate changes.

r=20.317
P 50.004
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Figure S5. Related to Figure 1; Correlation between mRNA and protein expression in kinase
mutants. Top: Correlation between mRNA and protein expression log, fold-changes in kinase
knock-outs. Grey points represent correlation coefficients where p-value exceeded significance cutoff
>0.01. Bottom: Fraction of differentially expressed enzymes-coding genes, in comparison to all



differentially expressed genes, at the transcriptional level in kinase deletion strains (van Wageningen et
al., 2010). Multiple kinase transcriptomes are characterized by a high number of differentially expressed
enzymes, 16% on average. As on the proteome, the total effect size does not determine the relative
occurrence of enzyme-encoding transcripts. Fold-change and p-value cutoffs for differential gene
expression were obtained from the the original publication (van Wageningen et al., 2010).
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Figure S6. Related to Figure 1; a) The more distant a kinase is to a transcription factor (TF) in a
protein-protein interaction network, the more enzyme levels it affects (Wilcoxon rank sum test, p-value <
0.05) (left). Conversely, kinases which directly interact with a transcription factor, have a higher network
centrality (middle) and an increased betweenness (right). However, their importance in PPI network had
no influence on the number of differentially expressed enzymes (b). b) Perturbation size, expressed as a
number of differentially expressed enzymes in contrast to wild type strain, is not correlated with number of
protein-protein interactions (PPI) kinase involved in (left panel) or number of shortest paths going through
kinase in PPI networks kinase (right panel). ¢) Protein degradation rate (x-axis) and the likelihood of an
enzyme to be regulated by a kinase, expressed as coefficient of variation across all kinases mutants
(y-axis) are weakly correlated. Enzyme degradation rates were obtained from (Christiano et al., 2014).
For network analysis a collection of yeast protein-protein interactions (PPl) was obtained from the
STRING database (Szklarczyk et al., 2015) (version 10, downloaded on 2015-06-03). We constructed a
high confidence (STRING score > 900) PPl network based only on experimentally validated interactions.
Transcription factor annotation were obtained based on GO slim (www.yeastgenome.org) categories by
selecting terms matching the “nucleic acid binding transcription factor activity” pattern. Graph
manipulations and network analysis were performed using the igraph library as implemented in R
package (Csardi and Nepusz, 2006).
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Figure S7. Related to Figure 2; Sensitivity analysis of differential expression. Top panel: Distribution
of correlations of kinase mutant enzyme fold-changes. The median correlation of between kinase
signatures is ~0.5. A simple linear model build on this basis shows that only 25% of expression changes
of one kinase can explain changes of the other, leaving % of the proteome changes being specific to the
typical kinase deletion. Hence, also with this metric, the conclusions holds: each kinase deletion leaves a
highly specific signature in the enzyme expression proteome. Bottom panel: Sensitivity analysis applied to
protein differential expression cutoffs in kinase knock-out strains. Symbol "X" denotes the threshold
applied in our study. As one can observe similarity of differentially expressed genes is low between
kinase knock-out proteomes even when consider no, or conservative, fold-change cutoff. Dots on the
background represent Jaccard similarity of all pairwise kinase comparisons of differentially expressed
enzymes. Please note, that as typical for enzyme expression experiments, with there are very few genes
that have very strong fold-change concentration changes, thus dots are not anymore gradually scattered
once large thresholds are applied.
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Figure S8. Related to Figure 2; Kinase mutants expression mapping to signaling pathways (part
1). Kinase signaling pathways as assembled in KEGG and REACTOME, and the kinase associations
within them, fail to explain enzyme co-expression upon kinase deletion. a) The distribution of the
correlation coefficients between enzyme expression levels in kinases mutants that are annotated to the
same signaling pathway from KEGG or Reactome databases (left panel). The distribution corresponding
to random assignment (of kinases to signaling pathways of the same size as the annotated signaling
pathways) is shown for comparison. Random pathways and signaling pathways predict enzyme
expression changes not statistically different. Right panel, distribution of p-values from tests (Wilcoxon
rank sum) comparing co-expression of canonical signalling versus 1000 times randomly assigned
pathways of the same size. Dotted red vertical line denotes a fraction of significantly detected differences
(BH adjusted p-value <0.05) between coexpression in canonical pathways and random background. b)
same as in (a), but removing YPK1/ YPK2 - the kinase pair that is most frequently annotated to signaling
kinases. In total 49 kinases were assigned to signaling pathways in both databases.
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Figure S9. Related to Figure 2; Kinase mutants expression mapping to signaling pathways (part
2). The conventional topology of signaling pathways, and the kinase associations within them, fail to
explain enzyme expression upon kinase deletion. The distribution of the overlaps in up-/downregulated
metabolic enzymes levels (>|log,(fold-change)|, BH adj. p-value < 0.01 in contrast to WT strains, see
STAR Methods) in kinases mutants that are annotated to the same signaling pathway from KEGG or
Reactome databases (left panel). The distribution corresponding to random assignment of kinases to
signaling pathways of the same size is shown for comparison. [Middle panel] distribution of median
differences of overlaps between canonical kinase and randomly assembled pathways of the same size.
Right panel, distribution of p-values from tests (Wilcoxon rank sum) comparing overlaps in canonical
signalling versus 1000 times randomly assigned pathways of the same size. Dotted red vertical line

10



denotes a fraction of significantly detected differences (BH adjusted p-value <0.05) between overlaps in
canonical pathways and random background. b) same as in (a), but removing YPK1, YPK2 - the kinase
pair that is most frequently annotated to signaling kinases. In total 49 kinases were assigned to signaling
pathways in both databases.
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Figure S10. Related to Figure 2; Co-expression of enzymes between kinase families. Definition of
kinase classes was taken from (Hunter and Plowman, 1997). a) Co-expression of metabolic enzymes
between kinase within the class of kinases, expressed as Pearson’s correlation coefficient. b,c) overlaps
of up-/downregulated metabolic enzymes in kinase mutants. P-values denote significance of one-way
ANOVA test using kinase family (classes) as categorical variable, stars depict variables that are
significantly different from mean response levels (dashed line).
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Figure S11. Related to Figure 3; Flux control variation over alcohol dehydrogenase (ADH1) in
kinase knockouts. Control of flux through alcohol dehydrogenase (ADH1) reaction shifts to other
enzymes depending on the enzymes expression in each kinase mutant. Control coefficients are ranked
with the highest as rank 1.
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Figure S12. Related to Figure 3; Flux control variation in kinase mutants using principal
component analysis. a) Principal component plot of flux control coefficients (FCC) for every kinase
mutant. FCC were not scaled. Values on axes labels represent percentage of total variance explained by
each of the component. b) Loadings for 2 principal components, for each component top 30 (absolute
values) FCC are plotted colored according to the component variable loads on.
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Figure S13. Related to Figure 3, Figure 4, Figure 5
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Figure S14. Related to Figure 3, Figure 4, Figure 5; Principal component analysis of the metabolic
profiles caused by kinase deletion. Percentages on the left and bottom axes denote the proportion of
the total metabolite concentration variance captured by the first two principal components. The arrows
denote the contribution of each metabolite towards the principal component (loading plot). In blue is
highlighted wild-type strain. For visualization purposes only, missing concentration values were imputed
as described in (Honaker et al., 2011). Metabolite abbreviations: FDP Fructose 1,6 bisphosphate, 6PGC:
6 -phosphogluconate, FDP: fructose 1,6-bisphosphate, 3PG: 3-phosphoglycerate, F6P: fructose
6-phosphate, G6P: glucose 6-phosphate, S7P: sedoheptulose 7-phosphate, PYR: pyruvate, XU5P-D:
xylulose 5-phosphate, R5P: ribose 5-phosphate, DHAP: Dihydroxyacetone phosphate, G3P:
Glyceraldehyde 3-phosphate, GLC: glucose, E4P: erythrose 4-phosphate, PEP: phosphoenolpyruvate.
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Figure S15. Related to Figure 4; Metabolite concencentration models formulated using multiple
linear regression model with exhaustive feature selection. Stats - represents adjusted R?, all models
were diagnosed for the presence of autocorrelation, outliers and influential points (Methods). Presented
models have adjusted R? value >0.25 and p.value < 0.01. In the main text the models with highest adj. R?
are presented. For ATP metabolite, due to its connectivity in metabolic network the number of explanatory
variables was exceeding the number measured samples, thus before feature selection the explanatory

16



variables were transformed onto principal components to reduce the dimensionality. From each
component we chose 2 highest absolute loadings and assigned corresponding regression coefficient

from selected feature.
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Figure S16. Related to Figure 4; No difference in absolute copy numbers between the best
explanatory variables of metabolite concentrations and the rest enzymes. The best predictors were
selected by exhaustive feature selection using multiple linear regression. For tyrosine, homo-cysteine
and ornithine the only measured directly metabolizing enzymes are the ones which are displayed and
therefore solely identified as predictors.
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Algorithm RMSE RsquaredCV Datatransformation Dataset Metabolite Pathway Network radius

1 enetModel 0.72 0.58 Box-Cox AA L—-Arginine Glutamate family 2
2 plsModel 0.61 0.67 Box—Cox AA L-Aspartate Aspartate family 2
3 plsModel 0.60 0.66 Box-Cox AA Glycine Serine family 3
4 enetModel 0.63 0.59 Box—Cox AA L—Histidine His&nucleotide 2
5 plsModel 0.73 0.57 Box—-Cox AA L-Homoserine Other 2
6 fobaModel 066 0.65 log AA L—Alanine Pyruvate family 3
7 gbmModel 0.73 0.51 log AA L-Asparagine Aspartate family 2
8 fobaModel 0.77 0.55 log AA L—Glutamate Glutamate family 3
9 plsModel 0.56 0.72 log AA L-Phenylalanine Aromatic family &
10 plsModel 0.62 0.73 log Quantile AA L-Citrulline Other !
11 fobaModel 0.75 0.55 log Quantile AA L-Glutamine Glutamate family 1
12 earthModel 0.81 0.47 log Quantile AA L-Homacysteine Other 2
13 fobaModel 0.69 0.58 log Quantile AA L-Leucine Pyruvate family 2
14 rpartModel 0.87 0.44 log Quantile AA L-Methionine Serine family 1
15 gbmModel  0.59 0.75 log Quantile AA Ornithine Other 3
16 plsModel 0.71 0.60 log Quantile AA L-Valine Pyruvate family 3
17 earthModel 0.75 0.54 log AA L-Serine Serine family 3
18 fobaModel 0.54 0.72 Box-Cox AA L-Lysine Glutamate family 2
19 rpartModel  0.80 0.51 Box-Cox AA L-Proline Glutamate family 2
20 plsModel 0.65 0.60 Box-Cox AA L-Threonine Aspartate family 3
21 fobaModel 0.52 0.75 Box-Cox AA L—Tryptophan Aromatic family 2
22 symRModel 0.77 0.52 Box-Cox AA L-Tyrosine Aromatic family 1
23 enetModel 0.82 0.41 Box-Cox PPP_AA ADP Energy metabolism 3
24 fobaModel 0.78 0.46 Box-Cox PPP_AA AMP Energy metabolism 3
25 fobaModel 0.74 0.55 Box—Cox PPP_AA Erythrose 4-phosphate PPP 2
26 enetModel 0.90 0.31 log Quantile PPP_AA ATP Energy metabolism 1
27 symRModel 0.88 0.34 Box-Cox TCA cis—Aconitate TCA 3
28 fobaModel 0.79 0.50 Box—Cox TCA D-Fructose 6-phosphate Glycolysis 2
29 plsModel 0.78 0.54 Box-Cox TCA Fumarate TCA 3
30 svmRModel 078 0.52 log TCA Acetyl-CoA TCA 2
31 fobaModel 0.86 0.39 log TCA Dihydroxyacetone phosphate Glycolysis 2
32 rpartModel  0.80 0.54 log TCA D-Glucose 6-phosphate Glycolysis 2
33 symRModel 0.75 0.48 log Quantile TCA 2-Oxoglutarate TCA 1
34 gbmModel 0.63 0.53 log Quantile TCA Citrate TCA 2
35 plsModel 0.72 0.56 log Quantile TCA Glyceraldehyde 3—phosphate Glycolysis 3
36 fobaModel 0.78 0.46 log Quantile TCA Oxaloacetate TCA 2
37 fobaModel 0.72 0.58 log Quantile TCA D-Ribulose 5-phosphate PPP 3
38 fobaModel 0.87 0.43 log Quantile TCA Succinate TCA 2
39 rpartModel  0.81 0.57 log Quantile TCA 3-Phospho-D-glycerate Glycolysis 3
40 earthModel 0.67 0.65 log TCA alpha—-D-Ribose 5-phosphate PPP 3
41 gbmModel 0.72 0.55 log TCA Sedoheptulose 7—phosphate PPP 2
42 earthModel 0.81 0.40 Box—Cox TCA L-Malate TCA 3
43 fobaModel 0.58 0.69 Box—Cox TCA Phosphoenolpyruvate Glycolysis 3
44 gbmModel 0.80 0.48 Box-Cox TCA Pyruvate Glycolysis 2
45 plsModel 0.73 0.53 Box-Cox TCA D-Fructose 1,6-bisphosphate Glycolysis 3
46 enetModel 0.70 0.56 Box-Cox TCA 6-Phospho-D-gluconate PPP 3

Figure S17. Related to Figure 5; Best performing ML algorithms for metabolite concentration
predictions. Metabolite data was Box-Cox transformed using the maximum log-likelihood method for
parameter estimation. RsquaredCV - 100 times repeated 10-fold cross-validated R2. Algorithms
abbreviations: enetModel - Elastic net regression, plsModel - partial least squares regression, fobaModel
- ridge regression with variable selection, earthmodel - multivariate adaptive regression splines,
svmRModel - support vector machine regression, Hyperparameter tuning grid ranges for each algorithm
are deposited at github https://github.com/alzel/regression_models/blob/master/regression_models.R
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Figure S18. Related to Figure 5; Regulatory specificity of enzyme predictors. Kinases interact with
metabolite concentrations with different degree of specificity, illustrated as response similarity distribution
for each metabolite. More distant values (upper density plots) imply specific response in metabolite
predictors. To compare predictor responses between metabolites, predictors were standardized (to mean
zero and unit variance), and then the Euclidean distance of standardized enzyme expression was
computed pairwise between each kinase mutant and normalized to 100% by the most distant kinase pair.
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Based on estimated steady-state fluxes

Based on enzyme expression proteome with integrated enzyme expression data
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Figure S19. Related to Figure 6; Correlation between enzyme expression and metabolic fluxes.
The nonlinear nature of metabolism regulation as highlighted by a low correlation of enzyme expression
and fluxes - that were estimated by upon introducing experimentally measured enzyme abundances
change into a quantitative model of glycolysis (Smallbone et al., 2013). Hierarchical clustering of kinase
mutants on the basis the enzyme expression levels (left panel) and mutant fluxes calculated using same
enzyme abundance for modelling (right panel). Each variable, either flux and proteins MS signal levels,
were standardized by subtracting mean of the value and dividing by its standard deviation among all
mutants. Using Euclidean distance between strain profiles both matrices then were hierarchically
clustered with complete linkage agglomeration. Replicates of proteomics measurements were averaged
per genotype and were used for both analyses.
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Figure S20. Related to Figure 6; Correlation between metabolite concentrations and metabolic
fluxes. Metabolite concentrations are highly correlated with metabolic fluxes highlighting stronger
dependency of the flux on metabolite levels rather than enzymes in kinetic model of central carbon
metabolism. Analogous results were reported in several recent recent studies (Hackett et al., 2016;
Millard et al., 2017). Hierarchical clustering of kinase mutants on the basis of modeled metabolite
concentrations with incorporated enzyme expression levels (left panel) and mutant fluxes calculated using
same enzyme abundance for modelling (right panel). Each variable, either flux and proteins MS signal
levels, were standardized by subtracting mean of the value and dividing by its standard deviation among
all mutants. Using Euclidean distance between strain profiles both matrices then were hierarchically
clustered with complete linkage agglomeration. Replicates of proteomics measurements were averaged
per genotype and were used for both analyses.
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Figure S21. Related to Figure 6; Correlation between metabolite levels and enzyme abundances.
Distribution of Pearson’s correlation coefficients between metabolite levels and all measured enzyme
abundances across all kinase mutants.

22



PC1 .proteome

PC1.proteome

PC1.proteome

PC1.proteome

PC1.metabolome

PC2.metabolome

PC3.metabolome

PC4.metabolome

r=-2. 2e 01 =*-2.0g501 6+r=—Tfa7e—01 24re hge-d'a.
44 pe eéq 02 o 257 pg '5'26 55 o, p = 8.9e-02
. ?. ¢ 0.0+ %‘,‘\. 1 * *
o0 [ ] [ ]
07 °8, o A ° \“ ' s 2+
. . P, .‘ —25- ‘P o |
4 g% 8 ‘e . . ) e o
o -5.0- 0 .i. Pl
. . o oo ®
-10 0 10 20 -0 0 10 20 —10 0 10 20 -10 0 10 20
PC2.proteome PC2.proteome PC2.proteome PC2.proteome
PC1.metabolome PC2.metabolome PC3.metabolome PC4.metabolome
=1 96_01. r=-8.66%01, 6-r=-6.8eD7% 2-1=-1.46-4
4-p= sae,oe‘ = p =5.1e-01 p=1.9c8fadee
4+ . . P
L]
24 .r .
L)
0- \%ﬁ’: LN
. —2- LT
. . * i ‘\O "' .l. e
-20 -10 0 10 20 -20 -10 0 10 20 -20 -10 0 10 20 -20 .10 0 10 20

PC3.proteome

PC1.metabolome

PC3.proteome

PC2.metabolome

PC3.proteome

PC3.metabolome

PC3.proteome

PC4.metabolome

r=25e-01 4,

Metabolite principal component

L]

r=-1.0e- 01 s
25'p‘-33€~&1

2
0.0+ '\.-;%:.T

r= 4.2e-0é
p = 1.8e-05

1p =2.6e-

—1®c i o°

(ﬂ‘.‘

[ ] [ ’
2.5+ o ot .
& e e . . .,.‘i-. :
-4 - e ,°, 5.0 .'..
. P, | e
46-10 5 0 5 10 45-10 5 0 5 10 45-10-5 0 5 10 -15-10 -5 0 & 10

PC4.proteome

PC1.metabolome

PC4.proteome

PC2.metabolome

PC4.proteome

PC3.metabolome

PC4.proteome

PC4.metabolome

r=25Je-02 6-r= 66a02 2- 1 5 -Po-02
[ ]
4-p= !s 301 o ) p =5.2e-01 1_pa¢.!&rg .
1 e o e 9
0 ‘ ® . 0- ] a.... °
1L 2+ eos ol
] L ) .“ i ° L] .
30.?’ . o. 9\' -1 ." ] ) . °
—4+ - % 0-
‘. W R
L [ ®e e ® o L e® %o
0 10 20 0 10 20 0 10 20 10 20

Proteome principal component

Figure S22. Related to Figure 6; Correlation of first four principal components of metabolite and
proteome data. Before performing principal component analysis, each dataset was scaled, mean
centered and normalized to unit variance. Metabolite data from dataset 1 (Supplementary Figure 20) was
used for analysis. Missing metabolite measurements were imputed using amelia (Honaker et al., 2011).
Replicates of proteomics measurements were averaged per genotype. Data was matched by genotype.
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