## Supporting Information for

## Surface Structuring and Water Interactions of Nanocellulose Filaments Modified with Organosilanes toward Wearable Materials

Ana G. Cunha<sup>\*†</sup>, Meri Lundahl<sup>†</sup>, Mohd Farhan Ansari<sup>‡#</sup>, Leena-Sisko Johansson<sup>†</sup>, Joseph M. Campbell<sup>†</sup>, Orlando J. Rojas<sup>\*†</sup>

<sup>†</sup>Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, 00076 Aalto, Finland. \* Email: aggncunha@gmail.com (A.G.C.), +46 73 059 7910 and orlando.rojas@aalto.fi (O.J.R.), +358 50 512 4227.

<sup>‡</sup>Department of Fibre and Polymer Technology and <sup>#</sup>Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden

This Supporting Information document contains two figures and two tables in three pages.

**Thermogravimetric analysis (TGA).** TGA was carried out using a TA Instruments Q500 Thermogravimetric Analyzer. Filament samples of *ca*. 2 mg were heated from 40 to 800 °C at 10 °C.min<sup>-1</sup> in an inert environment provided by a 20 mL.min<sup>-1</sup> nitrogen purge.

Thermograms (Figure S1) showed that the unmodified filament exhibited the typical thermal degradation behavior of unmodified cellulose nanofibrils, presenting a single main step of thermal degradation, with maximum decomposition rate ( $Td_{max}$ ) at 308 °C. The modified filaments were shown to be slightly less stable (except the TCf5 sample), since they started decomposing at lower temperatures, albeit with a less abrupt decay, probably due to a corresponding lower heat transfer to cellulose, resulting from the presence of the inorganic coating around the filament. Moreover, their thermograms revealed a slightly more complex degradation behavior, with additional decomposition steps (compared to that of the unmodified filament). The first step, with  $Td_{max1}$  around 220-240 °C, is attributed to the decomposition of the organic functions (methyl groups) in the hybrid coatings. Additionally, the  $Td_{max2}$  for the second decomposition step decreased, compared to the equivalent  $Td_{max}$  in the precursor CNF

filament, varying in the range 292-300 °C (except for the TCf5 sample, to which it was 314 °C). Nonetheless, the higher amount of final residue at *ca*. 800 °C for the modified filaments corroborates the presence of an inorganic environment around them.



Figure S1. TGA thermograms of unmodified and organosilane-modified CNF filaments.



**Figure S2.** SEM micrographs at different magnifications of unmodified and organosilanemodified CNF filaments: Ref (a and d), TCf5 (b and e) and TCf20 (c and f) at 100x (a, b and c) and 500x (d, e and f) magnification.

## **Contact angle**

|       | Contact angle (°) |             |               | Surface energy (mJ.m <sup>-2</sup> ) |                         |       |
|-------|-------------------|-------------|---------------|--------------------------------------|-------------------------|-------|
|       | Water             | Formamide   | Diiodomethane | Polar contribution                   | Dispersive contribution | Total |
| Ref   | $57 \pm 3$        | $37 \pm 6$  | $61 \pm 4$    | 19.48                                | 27.87                   | 47.35 |
| TCf5  | $85\pm5$          | $91 \pm 2$  | $79 \pm 10$   | 7.80                                 | 13.53                   | 21.34 |
| TCf10 | $96\pm9$          | $94 \pm 2$  | $87 \pm 5$    | 4.52                                 | 11.81                   | 16.34 |
| TCf15 | $100 \pm 1$       | $99\pm5$    | $90 \pm 5$    | 3.60                                 | 10.45                   | 14.05 |
| TCf20 | $116 \pm 3$       | $102 \pm 2$ | $100 \pm 10$  | 0.88                                 | 8.90                    | 9.77  |
| DCf5  | $94\pm 6$         | $99 \pm 3$  | $75 \pm 4$    | 3.38                                 | 14.86                   | 18.23 |
| DCf10 | $94 \pm 3$        | $98\pm5$    | $78 \pm 3$    | 3.82                                 | 13.94                   | 17.76 |
| DCf15 | $98\pm3$          | $98 \pm 2$  | $77 \pm 6$    | 2.42                                 | 15.00                   | 17.43 |
| DCf20 | $96 \pm 3$        | $98 \pm 4$  | $80 \pm 5$    | 3.43                                 | 13.53                   | 16.97 |

**Table S1.** Contact angles of given fluids on unmodified and organosilane-modified CNF filaments with the calculated surface energy.

## **Tensile strength**

**Table S2.** Tensile strength and Young's modulus of unmodified and organosilane-modified CNF filaments in dry and wet conditions.

|       | Dry con                   | nditions                 | Wet conditions            |                             |  |
|-------|---------------------------|--------------------------|---------------------------|-----------------------------|--|
|       | Tensile<br>strength (MPa) | Young's<br>Modulus (GPa) | Tensile<br>strength (MPa) | Young's<br>Modulus<br>(MPa) |  |
| Ref   | $161.9\pm17.9$            | $9.1 \pm 0.6$            | $1.9 \pm 0.2$             | $184.2\pm29.6$              |  |
| TCf5  | $179.4 \pm 14.8$          | $11.1 \pm 0.2$           | $3.0 \pm 0.4$             | $158.3 \pm 14.4$            |  |
| TCf20 | $147.9 \pm 14.2$          | $8.3\pm1.0$              | $3.2 \pm 0.4$             | $185.7\pm12.0$              |  |
| DCf5  | $162.4 \pm 7.1$           | $9.1 \pm 0.7$            | $3.0\pm0.5$               | $236.1\pm60.3$              |  |
| DCf20 | $127\pm17.1$              | $7.5 \pm 1.0$            | $4.9\pm0.7$               | $280.6\pm78.6$              |  |