Cell Metabolism, Volume 25

Supplemental Information

Hypothalamic-Pituitary Axis Regulates

Hydrogen Sulfide Production

Christopher Hine, Hyo-Jeong Kim, Yan Zhu, Eylul Harputlugil, Alban Longchamp, Marina Souza Matos, Preeti Ramadoss, Kevin Bauerle, Lear Brace, John M. Asara, C. Keith Ozaki, Sheue-yann Cheng, Subhankar Singha, Kyo Han Ahn, Alec Kimmelman, Ffolliott M. Fisher, Pavlos Pissios, Dominic J. Withers, Colin Selman, Rui Wang, Kelvin Yen, Valter D. Longo, Pinchas Cohen, Andrzej Bartke, John J. Kopchick, Richard Miller, Anthony N. Hollenberg, and James R. Mitchell

0.10-

0.05 -

Control

Lanreotide

Day

90-

Figure S2

CBS

CGL

CBS

Actin

WT FGF21-OE

*

FGF21 OE

С

8×10⁴

6×10⁴

4×10⁴

2×10⁴

0-

Saline

Peak Area

Homocysteine

ŝ

SAM/SAH

Cystathionine

□ Saline ■ T3

Cysteine 4×10^5 2×10^5 2×10^5 5^{3} 6^{3} 5^{3} 4^{3}

Supplemental Figure Legends:

Figure S1: Pharmacological impact on hepatic CGL and CBS expression in WT and Dwarf mice. (A) Liver CGL and CBS protein expression in18-month old Ames Dwarf and WT mice after early life saline or growth hormone (GH) injection (n=3/group). Asterisk indicates the significance of the difference between WT +Saline and Ames Dwarf +Saline and pound indicates the significance of the difference between +Saline and +GH in the Ames Dwarf groups, */#p<0.05. (B) Liver CGL and CBS protein expression in WT male mice after one-week of saline or lanreotide treatment (n=4/group). Asterisk indicates the significance of the difference between Saline and Lanreotide group, *p<0.05. (C) %Change in body mass relative to starting weight (n=4/group) and (D) gram of food eaten per gram of mouse body weight (n=4) during the one-week lanreotide treatment. Error bars are +/- standard error of the mean (SEM). *Related to Figure 1*

Figure S2: Growth Hormone Signaling, but Not Insulin, Represses H₂S Production Pathways *in vivo.* **(A) Hepatic CGL and CBS protein expression in male mice injected for two weeks with saline, IGF-1, or GH (n=5/group). Asterisk indicates the significance of the difference between the experimental groups and the saline control group, *p<0.05. (B)** Hepatic CGL mRNA expression in control or GH injected rats. Original source data from NCBI GeoProfile GDS862 / 8.2.2.10 / Cth (Ahluwalia, Clodfelter, & Waxman, 2004). Asterisk indicates the significance of the difference between Control and +GH, *p<0.05. (C) Liver CGL and CBS protein expression from male and female WT and IRS-1 KO mice (n=3/group). Asterisk indicates the significance of the difference between WT and KO within sex, *p<0.05. (D) Hepatic H₂S production capacity in WT or liver specific insulin receptor knockout; L-IRKO, mice (n=5). Asterisk indicates the significance of the difference between WT and L-IRKO, *p<0.05. (E) Analysis of H₂S producing enzymes CGL and CBS in the livers of WT or FGF21 Over Expressing; OE, mice (n=6). Asterisk indicates the significance of the difference between WT and FGF21 OE, *p<0.05. Error bars are +/- standard error of the mean (SEM). *Related to Figure 2*

Figure S3: Growth Hormone Signaling Represses H₂S Production Pathways in vitro. (A-B) Endogenous H₂S production in WT or CGL KO primary mouse dermal fibroblasts as measured via florescent probe and 2-photon florescent microscopy (A) or spectrophotometry (B) under different media conditions +/-PAG&AOAA (n=3). Asterisk indicates the significance of the difference between Complete and -Serum, and pound indicates the significance of the difference between CGL WT-Serum and CGL KO-Serum or the -Serum+PAG+AOAA groups, */#p<0.05. Scale bars indicate 100µm. (C) Measurement of endogenous H_2S production via florescent probe and spectrophotometry (n=3) in mouse primary hepatocytes under various growth conditions +/-Serum+/-GH. Asterisk indicates the significance of the difference between Complete and pound indicates the significance of the difference between –Serum and –Serum+GH; */#p<0.05. (D-E) Western blot analysis of phospho- and total- Stat5 protein expression in primary hepatocytes grown w/ serum (D) and w/o serum (E) as a function of GH addition. (F) IGF-I mRNA expression in mouse primary hepatocytes as a function of +/-Serum and +/-GH in the media (n=3). Asterisk indicates the significance of the difference between Comp-GH, and pound indicates the significance of the difference between -Serum-GH and -Serum+GH; */#p<0.05. (G-H) Measurement of endogenous H₂S production via P3 florescent probe and spectrophotometry in mouse primary hepatocytes under various growth conditions: (G) +/-Serum +/-GH +/-AZD1480, (H) +/-FGF21. Asterisks indicates the significance of the difference between Complete, pound indicates the significance of the differences between -Serum, and dollar sign indicates the significance of the difference between +GH; */#/\$p<0.05. (I) CGL and CBS mRNA expression in primary mouse hepatocytes grown in complete (Comp) media or in media lacking serum (-Serum), (n=3). (J) Western blot analysis of CGL and CBS expression in primary hepatocytes grown in Complete or -Serum media (n=2). (K-L) Measurement of endogenous H₂S production via florescent probe and spectrophotometry in mouse primary hepatocytes grown in media +/- Serum and +/- the autophagy inhibitor BAF (n=3) (K) or CQ (n=3) (L). Asterisks indicates the significance of the difference between Complete and -Serum and pound sign indicates the significance of the difference between -Serum-BAF and -Serum+BAF (K), or -Serum-CQ and -Serum+CQ (L), */#<0.05. (M-N) Western blot analysis showing knockdown of ATG5 or ATG7 in hepa1-6 cells with lentiviral shRNA (M) or ATG5 and ATG7 knockout in MEF cells (N). Error bars are +/- standard error of the mean (SEM). Related to Figure 3

Figure S4: Hypothyroidism Boosts and Thyroid Hormone Represses Hepatic H₂S Production and alters TSP Pathway *in vivo*. (A) Thyroid hormone receptor target gene mRNA expression (n=4) and (B) fresh homogenate H₂S production capacity (n=6) in livers from mice under various hypo-, hyper-, or eu-thyroid states. Asterisk indicates the significance of the difference from the hypothyroid (PTU+Saline) state; *p<0.05. (C) Liver metabolites related to sulfur amino acid metabolism in mice treated with T3 vs. vehicle control (saline) as indicated (n=5/group). Asterisk indicates the significance of the difference between vehicle and +T3; *p<0.05. Error bars are +/- standard error of the mean (SEM). *Related to Figure 4*

Figure S5: Hyperthyroidism Modifies the Hepatic Methionine Cycle and Transsulfuration Pathway *in vivo*. (A) Liver metabolites related to sulfur amino acid metabolism in mice treated with GC-1 vs. vehicle control (saline) as indicated (n=6-8). Asterisk indicates the significance of the difference between vehicle and +GC-1; *p<0.05. (B) Liver mRNA expression of thyroid hormone target related and sulfur amino acid metabolism related genes as a function of liver thyroid hormone receptor beta (TRb) status (n=4-5/group). Asterisks indicates the significance of the differences between Het (TRb^{PV/+}) and homo (TRb^{PV/PV}); */#p<0.05. (C,D) Liver ATF4 protein expression from male and female Snell Dwarf and WT (C, n=3/group) and GHRKO and WT (D, n=3/group) mice. Asterisks indicate the significance of the difference between WT and experimental group within sex. *p<0.05. Error bars are +/- standard error of the mean (SEM). *Related to Figure 5*

Figure S6: Thyroid Hormone and Growth Hormone Effects on Hepa1 Cell Sulfur Amino Acid Metabolism Genes mRNA Expression. Analysis of mRNA expression in Hepa1 cells after overnight treatment with T3, GH, or T3 and GH (n=3). Asterisk indicates the significance of the difference from the Control group and pound indicates the significance of the difference from the T3 & GH group; $*^{\#}p<0.05$. Error bars are +/- standard error of the mean (SEM). *Related to Figure 6*

Figure S7: CGL Status Alters the Effects of Experimental Hypothyroidism. (**A**) Quantitation of Western blot data on H₂S producing enzymes normalized to actin (n=3) in the livers of CGL WT and KO mice after 3-weeks of Normal or PTU diet. Asterisk indicates the significance of the difference between Normal and PTU diet groups within genotype; *p<0.05. (**B**, **C**) Food eaten per gram of mouse (n=4-5, **B**) and changes in body mass (n=4-5, **C**) in CGL WT and KO mice on Normal or PTU diets for 3-weeks. (**D**) Body mass of CGL WT and KO mice before and after a 3-day fast (n=3-4/group). (**E**) Liver H₂S production capacity from mice injected with AD-Null (control) or AD-CGL (CGL overexpression) 1-week prior (n=4/group). (**F**) Serum T4 (ug/dL) after a two day fast in CGL KO mice +/- NaHS supplementation (n=4/group). (**G-H**) Serum IGF-1 in mice treated with a single NaHS injection 24-hours prior (n=4/group , **G**) and in mice given drinking water supplemented with NaHS and GYY4137 over a two week period (n=4, **H**). Asterisks indicate the significance of the difference compared to baseline serum IGF-1 levels; *p<0.05. Error bars are +/- standard error of the mean (SEM). *Related to Figure* 7

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Oligonucleotides		
IGF-1 F: TGCTTGCTCACCTTCACCA IGF-1 R:	N/A	N/A
CAACACTCATCCACAATGCC		
GHR F: ATTCACCAAGTGTCGTTCCC GHR R:	N/A	N/A
TCCATTCCTGGGTCCATTCA		
CGL F: TTGGATCGAAACACCCACAAA CGL R:	N/A	N/A
AGCCGACTATTGAGGTCATCA		
CBS F: GGGACAAGGATCGAGTCTGGA CBS R:	N/A	N/A
AGCACTGTGTGATAATGTGGG		
HPRT F:TTTCCCTGGTTAAGCAGTACAGCCC HPRT	N/A	N/A
R:TGGCCTGTATCCAACACTTCGAGA		
RPI 13 FTTCGGCTGAAGCCTACCAGAAAGT RPI 13	Ν/Δ	NI/Δ
R:TCTTCCGATAGTGCATCTTGGCCT		
	ΝΙ/Δ	NI/Δ
R: TGCACCATTATCCTGCATGT		
CTGGCAAGTGAGCAAAACTGT		IN/A
		Ν1/Λ
CCTGGCATCTCATCTCAGC	IN/A	IN/A
BHMTF: TTAGAAUGUTTAAATGUUGGAG BHMTK: GATGAAGCTGACGAACTGCCT	N/A	N/A
	N/A	N/A
CGL	N/A	Mm00461247_m1
CBS	N/A	Mm00460654_m1
MTR	N/A	Mm01340053 m1
	N/A	Mm00839358_m1
GPD2	N/A	Mm00439082_m1
THRSP	N/A	Mm01273967_m1
GSTA2	N/A	Mm00833353_mH
		M=00502021 == 1
FBX021	N/A	Mm00523921_m1

TSH alpha	N/A	Mm01209400_m1
TSH beta	N/A	Mm00437190_m1
PGC-1a	N/A	Mm01208835_m1
FGF21	N/A	Mm00840165_g1
MAT1A Promoter F: CTCCTCCACTGTCCTTGCTTG	N/A	N/A
MAT1A Promoter R: GGCAGATCTTTGGCAGAATCC		
MAT1A intron 4 F: CACGTGCATGGGTAGAGGGAC	N/A	N/A
MAT1a intron 4 R: CTTTTCCACCTCCCCGAGGTC		
GNMT exon 5 F: GGCTCAGGGAATGACGCAACC	N/A	N/A
GNMT exon 5 R: CTCTCCTGCCAAACCACGTCA		
CBS intron 1 F: CCTTGTGCGGGACCCAGTTGG	N/A	N/A
CBS intron 1 R: GCGAATGTGGCCCAGGGTATC		
CBS intron 2 F: GCACACCTGACCCTGTATCC	N/A	N/A
CBS intron 2 R: CTGCTGTCCTTGGTTGGACT		
CGL promoter F: GGGCCTTAAGGCCTGATCTTG	N/A	N/A
CGL promoter R: CAGCACTGAGGTGCAGCACTC		
BHMT promoter F: CGCATCCTCATGCAATGATC	N/A	N/A
BHMT promoter R: CTGAGGTCGCTGCTAGCTCGTC		

Supplemental Table S1: List of DNA Oligos (Related to STAR Methods Key Resources Table)