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Figure S1. Staufen-SunTag particles are functional and move at different velocities in different areas of the oocyte. (A-A") Staufen-SunTag in
staulP3/staulv¥] ovaries with Vasa staining. In the absence of endogenous Staufen, Staufen-SunTag forms a tight crescent at the posterior pole of the oocyte
(A, arrowhead) and recruits Vasa to the posterior pole (A", arrowhead; n = 67). (B) No Vasa accumulation at the posterior pole in staul®3/staul¥] oocytes (n
= 72). (C and D) Plot profile of Staufen-SunTag and Vasa along the oocyte cortex in A and B. The fluorescent intensity peak of Vasa staining overlaps the
fluorescent intensity peak of the Staufen-SuriTag signal in the Staufen-SunTag-rescued staul®3/staul¥®] oocyte (C), whereas there is no clear peak of Vasa
staining at the posterior pole in staul®3/staul”? mutant (D). (E and F) Staufen-SunTag in staul®3/staul¥%] ovaries with Staufen staining. (E'and E") Individual
channels of either Staufen-SunTag (E') or Staufen staining (E") shown in E. (F-F") A magnified area of E indicated by the dashed box. In the absence of
endogenous Staufen, Staufen-SunTag forms a tight crescent at the posterior pole and Staufen puncta (arrowheads) in the cytoplasm of the oocyte. Both the
crescent and cytoplasmic puncta are positive for Staufen staining (n = 30). (G) No Staufen staining in the staul®3/staul”? oocyte. (H) Histograms of Staufen-
SunTag velocities in control cytoplasmic (n = 3,491), control lateral cortex (n = 2,144), control posterior cortex (n = 542), and MyoV mutant posterior cortex
(n=1,084). This is the same set of data as in Fig. 1 C. () Average velocities and histograms of Staufen-SunTag particles at different distances from the cortex
of the posterior half of control oocytes tracked by Nikon Elements: 0-7 um, n = 6,073; 7-14 um, n = 2,324; 14-21 um, n = 876; and >21 um, n = 4,250. Bars:
50 pm (main images); 10 pm (insets).
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Figure S2. GFP-Staufen forms an RNP complex in S2 cells and is transported by kinesin-1. (A) A schematic illustration of the GFP-Staufen construct
used in this study. GFP s fused to the N terminus of full-length Drosophila Staufen that carries five dsRNA-binding domains. (B) IP of GFP-Staufen pulls down
the endogenous Staufen, indicating GFP-Staufen forms a complex with endogenous Staufen (lane 2). Two controls were used: (1) parental cell lines were
subjected to GFP-IP (lane 1), and (2) preimmune IgG was used for GFP-Staufen cell lines (lane 3). (C) Staufen associates with KHC. IP using anti-GFP antibody
in parental S2 (-) or stable cell lines expressing GFP-Staufen (+) showed that Staufen associates with KHC. (D and E) Characterization of cell lines stably
expressing GFP-Staufen. (D) Parental S2 and GFP-Staufen cell lines were treated with or without dsRNA containing the coding region of Staufen (Stau-RNAi).
Immunoblotting for Staufen confirmed that both endogenous and ectopic expression of Staufen were knocked down (KD) upon RNAi treatment. (E) RT-PCR
of osk mRNA from GFP-IP in GFP-Staufen cells. no RT lane, no RT-PCR (negative control); lanes 1 and 2 are total RNA from Drosophila embryos, and S2 cells
were used as positive control. Lanes 3 and 4 are GFP-IP from untransfected and GFP-Staufen cells, respectively. Lane 5 is rabbit IgG-IP control from GFP-
Staufen cells. (F) Staufen uses two adaptors for kinesin-1. GFP-Staufen movement in Khc-RNAJ, Klc-RNAJ, btz-RNAJ, or Klc-RNAi + btz-RNAi showed that
both KLC and Btz are required for Staufen movement.
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Figure S3.  KHC™“*A does not affect Staufen transport along microtubules, and chimeric Unc104-Ktail motor cannot transport Staufen particles.
(A) A temporal color-coded image of GFP-Staufen transport in an S2 cell treated with CytoD. GFP-Staufen transport is shown as rainbow tracks in the
microtubule-filled processes. (B) Quantification of velocities (mean + 95% confidence intervals) of GFP-Staufen in four conditions: (1) control, n = 962; (2) Khc
3'UTR-dsRNA, n = 221; (3) Khc 3'UTR-dsRNA*KHCWT-BFP, n = 1,135; and (4) Khc 3'UTR-dsRNA*KHC™*A-BFP, n = 771. Percentages of tracked particles with
velocity >0.1 um/s: (1) control, 37.9% (365/962); (2) Khc 3'UTR- dsRNA, 1.4% (3/221); (3) Khc 3'UTR-dsRNA*KHC"T-BFP, 29.4% (334/1,135); and (4) Khc 3'UTR-
dsRNA*KHC™*A-BFP, 37.7% (291/771). (C) KHC™ ™ tail interacts with Tm1C as efficiently as KHCWT tail. GFP or GFP-Tm1C was cotransfected with either
TagRFP-Khc"T tail or TagRFP-Khc™t* tail (without the motor domain; residues 345-975). GFP and GFP-Tm1C were pulled down by anti-GFP beads and probed
with both TagRFP antibody (top) and anti-GFP antibody (bottom). (D) GFP-Staufen particles in S2 cells were tracked in four following conditions: (1) control
(no dsRNA); (2) Khc 3'-UTR dsRNA; (3) Khc 3'-UTR dsRNA*KHC-BFP (only coding region; no 3'UTR); and (4) Khc 3'-UTR dsRNA*Unc104-Ktail-BFP. The
percentage of particles with >2.5 um trajectory was calculated as a readout of GFP-Staufen motility in S2 cells: (1) control, 21.7% (n = 865); (2) Khc 3'-UTR
dsRNA, 2.6% (n = 270); (3) Khc 3'-UTR dsRNA*KHC-BFP, 19.9% (n = 861); and (4); Khc 3'-UTR dsRNA*Unc104-Ktail-BFP, 3.0% (n = 395). (E) The chimeric motor
tail does not interact with Tm1C. GFP-Tm1C was cotransfected with either TagRFP- KhcWT tail (Khc residues 345-975) or TagRFP-LZ-Ktail (leucine zipper-Ktail
residues 905-975). GFP-Tm1C was pulled down by anti-GFP beads and probe with both TagRFP antibody (top) and anti-GFP antibody (bottom). (F and H)
Chimeric Unc104-Ktail does not rescue Staufen transport along microtubules but partially rescues slow streaming in stage 9 oocytes. (H) Average velocities
(mean + 95% confidence intervals) and histograms of Staufen-SunTag velocities. Percentages of fast-moving particles (>100 nm/s): Khc-RNAJ, 6.5% (34/527),
and Unc104-Ktail+Khc-RNAJ, 6.1% (25/410).
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Figure S4. Inhibition of transport only causes osk/Staufen mislocalization in stage 9 oocytes, while simultaneous inhibition of transport and
streaming completely abolishes osk/Staufen posterior localization in stage 9 and stage 10B oocytes. (A-C) Knockdown of KLC in the germ line by Klc-
TRiP RNAi-HMS00883 driven by nos-Gal4-VPI6 led to cytoplasmic mislocalization in 100% of the stage 9 oocytes (A and C) but no defects in 88.8% of the
stage 10B oocytes (B and C). (D-F) Knockdown of KLC in the germ line by Klc-TRiP RNAi-HMS02429 driven by nos-Gal4-VP16 led to cytoplasmic
mislocalization in 78.1% of the stage 9 oocytes (D and F) but no defects in the stage 10B oocytes (E and F). (G-1) Knockdown of Btz in the germ line by btz-
TRiP RNAi-HMS04337 driven by nos-Gal4-VP16 led to cytoplasmic mislocalization in 55.0% of the stage 9 oocytes (G and ) but no defects in the stage 10B
oocytes (H and I). (J-M) Tubulin staining in control (J), nos>Klc-TRiP RNAi-GL00535 (K), nos>btz-RNAIi-TRiP.GLC01869 (L), and nos>Klc-TRiP RNAi-GL00535
+ btz-RNAI-TRIP.GLC01869 (M) oocytes. Images were processed using the Log function in Image] to show dim tubulin signal in the oocytes in the presence
of the bright signal in the follicle cells. (N-Q) GFP-Patronin in control (N), nos>Klc-TRiP RNAi-GL00535 (O), nos>btz-TRiP RNAi-GLC01869 (P), and nos>Klc-
TRiP RNAi-GL00535 + btz-RNAi-TRiP.GLC01869 (Q) oocytes. Normalized GFP-Patronin signal along the cortex of the oocyte was quantified in following
genotypes as a readout of the microtubule gradient: N, control, n = 28; O, nos>Klc-TRiP RNAi-GL00535, n = 34; P, nos>btz-TRiP RNAi-GLC01869, n = 38; and
Q, nos>Klc-TRiP RNAi-GL00535 + btz-RNAI-TRIP.GLC01869, n = 30 (see the Quantification of GFP-Patronin in the oocytes section of Materials and methods
for more details). (R) Quantification of Staufen staining along the oocyte cortex (left) and along anterior-posterior axis (right) in listed genotypes. Absolute
fluorescence intensity (AU) of Staufen staining was plotted as a function of the normalized distance (illustrated as yellow lines in the cartoon from 0 to 1; see
the Quantification of Staufen staining in the oocytes section of Materials and methods for more details). (S-Z) smFISH against osk mRNA in control (S, n =
32; T, n=49),in Khc™* (U, n = 20; V, n = 27), Klc and btz double RNAi (W, n = 42; X, n = 53), and Khc™ with Klc and btz double RNAI (Y, n = 46; Z, n = 29).
All the images were acquired and processed identically. Bars, 50 pm.
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Figure S5. MyoV functions as a local anchorage for Staufen. (A) Microtubules (green; labeled by Dm1a tubulin staining) penetrated actin-enriched (red;
labeled by rhodamine-phalloidin) lamellipodia in an S2 cell after CK666 treatment. (B and C) Temporal color-coded images showing GFP-Staufen movement
in a control cell (B) and a MyoV-RNAi S2 cell (C). More GFP-Staufen movements (rainbow tracks) were seen in the MyoV-RNAi cells. (B’ and C') A magnified
area at the lamellipodia (dashed line box) of B and C. Bars: 5 um (main images); 2 um (insets). (D) Quantification of GFP-Staufen movement in control and
MyoV-RNAi cells. Average trajectories (total length of trajectory >2.2 um/total number of particles) for control cells and MyoV-RNAi cells are 0.63 + 0.17 pm
and 1.76 + 0.46 um (mean + SEM), respectively. (E) BiolD pulldown assay showed that MyoV binds to the Staufen RNP complex. Drosophila WT S2 cells and
GFP-Stau-BirA* S2 cells were treated with biotin, lysed, pulled down by streptavidin-coated beads, and blotted against a-MyoV antibody. MyoV was only
pulled down in the GFP-Stau-BirA* cells. (F and G) Staufen staining in control oocytes showed a compact posterior crescent at both stage 9 (F) and at stage
10B (G). (H and 1) Ectopic expression of the dominant-negative MyoV mutant MyoV-GT caused Staufen mislocalization at both stage 9 and stage 10B
(H, 70.6%, n=17;1,42.1%, n = 19). Bars, 50 um.

mat atub-GFP-Staufen

Video 1. Staufen localization and movement in streaming oocytes. Two representative examples of a mat atub- GFP-Staufen
oocyte and a nos>Staufen-SunTag oocyte, respectively. Both GFP-Staufen and Staufen-SunTag formed posterior crescents and
labeled cytoplasmic particles that were circulated with ooplasmic streaming. Both videos were imaged using identical conditions.
To note, Staufen-SunTag labeling is much brighter than the GFP-Staufen. Bar, 50 pm.

Video 2. Streaming circulates Staufen particles to the anchorage site. Staufen-SunTag particles were circulating along with
the cytoplasmic flow and significantly slowed down near the posterior pole; some particles got incorporated into the posterior
crescent. Bar, 50 um.

Video 3. Staufen particles move on microtubules in S2 cells. GFP-Staufen formed discrete particles and moved bidirectionally
in the microtubule-filled processes induced by 5 puM CytoD treatment. Bar, 5 pm.
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Control [, MyoV-GT

Video 4. Inhibition of MyoV abolishes the deceleration of Staufen particles near the posterior cortex. Distinct behaviors of
Staufen-SunTag particles were observed near the posterior pole in control and MyoV mutant oocytes. Neither deceleration nor

incorporation of Staufen-SunTag particles near the posterior pole of the oocyte with ectopic expression of MyoV-GT (right) com-
pared with the control one (left). Bar, 50 um.
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