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Supplementary Figures 

 

Supplementary Figure 1. Canton variant (R459L) is biochemically different from WT G6PD. a 
Canton G6PD forms less tetramer as compared to WT G6PD in the presence of NADP+ or MgCl2, 
when cross-linked by 0.1% glutaraldehyde. Some dissociation of oligomers was observed at a high 
concentration of cofactors possibly due to NADPH production as a result of enzyme reaction with 
either bacterial NADP+ or G6P or both copurified with the enzymes. b Representative Western 
blot showing turnover rate of G6PD protein in lymphocytes after inhibition of de novo protein 
biosynthesis with cycloheximide. c (Top) In SH-SY5Y neuronal cells, the transient expression of 
WT and Canton G6PD lasted up to 72 hours after transfection. (Bottom) Overexpressed Canton 
variant was degraded faster than WT G6PD following cycloheximide (50 µg mL-1) treatment. d, 
e, f, g The lysates with the Canton variant showed lower G6PD enzymatic activity (n=3, ****p < 
0.0001). The cells expressing the Canton variant showed lower GSH levels (n=4, **p=0.0098), 
higher ROS levels (n=6, *p=0.04), and lower cell viability (n=4, **p=0.0014), when they were 
cultured under stress induced by serum starvation. h Knockdown of G6PD by siRNA decreased 
cell viability in SH-SY5Y cells (n=4, *p=0.033). G6PD level was confirmed by Western blot. Error 
bars represent mean ± SEM. Statistical differences were calculated by two-tailed unpaired 
Student’s t-test. Molecular weight marker is provided on the left of the blots. NT: no treatment; 
MW: molecular weight; WT: wild-type; Ctr: control; Lpf: lipofectamine; ovxp: overexpression. 
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Supplementary Figure 2. Some residual disorder is found in G6P- and catalytic NADP+-binding 
sites of Canton G6PD as compared with WT G6PD. a Structural NADP+-binding site is well-
conserved in the structures of WT G6PD and Canton G6PD, shown in green and orange, 
respectively. Side chains of residues involved in binding to NADP+ are illustrated by sticks. b, c 
Orientation of side chains of essential residues around G6P- and catalytic NADP+-binding sites. 
Key residues, K171 and P172, involved in positioning of G6P and NADP+ in their binding pockets, 
were circled. d Catalytic activity of K171A and P172G mutant enzymes (n=4, ****p<0.0001, two-
tailed unpaired Student’s t-test). e Thermal inactivation curves of WT G6PD, Canton G6PD and 
mutant enzymes of R459-interacting residues, D181 and N185. T1/2 values were summarized in 
Fig. 1D and Fig. 2C. WT: wild-type. 
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Supplementary Figure 3. AG1 (activator of G6PD) induces biochemical changes of the Canton 
variant. a Schematic high-throughput screening assay for G6PD activators. AG1 among 9 selected 
compounds reproducibly generated consistent results between assays. The structure of the active 
form of AG1 [connected via a disulfide bridge] and its mass spectrum [calculated for C24H30N4S2 
438.1912, found 439.1970] are provided on the right of the scheme. [The nuclear magnetic 
resonance spectroscopic analysis is provided in Supplementary Note 1.] b Activation of WT G6PD 
by AG1 (n=5, **p=0.0022, two-tailed unpaired Student’s t-test). c AG1 selectively promoted 
dimerization of G6PD among other NAD- or NADP+-dependent dehydrogenases (n=2) and 
enhanced only G6PD activity (n=3, **p=0.001, two-tailed unpaired Student’s t-test). Each enzyme 
activity was normalized to the Veh-treated enzyme activity. d Viability of SH-SY5Y cells was 
enhanced by AG1 treatment, when cells were under stress by serum starvation. siRNA-directed 
knockdown of G6PD reduced cell viability, which was unaffected by AG1 treatment (n=4, 
**p<0.01, ****p<0.0001, ns: not statistically significant, two-way ANOVA). e, f Representative 
Western blots showing improved protein stability by AG1 in lymphocytes carrying the Canton 
variant and in SH-SY5Y neuroblastoma cells overexpressing the Canton variant, when de novo 
protein biosynthesis was inhibited by cycloheximide (50 µg ml-1) (n=3). g, h, i AG1 slightly 
increased G6PD enzymatic activity in lysates of SH-SY5Y cells overexpressing WT G6PD and 
Canton variant (n=3, ****p<0.0001, *p=0.0419, one-way ANOVA) and GSH levels in culture (n=3, 
*p<0.05, one-way ANOVA) and mildly reduced ROS levels (n=6, *p=0.0122, one-way ANOVA), 
when the cell stress was induced by serum starvation.  j AG1 mildly (albeit not statistically 
significant) improved cell viability under the same condition (n=4, **p=0.0021, one-way 
ANOVA). Measurements were normalized to the parameters in WT G6PDovxp Veh-treated 
condition. 100 µM of AG1 was used for in vitro assays, and 1 µM of AG1 was used for cell-based 
assays. 5% DMSO (stock concentration) was used as vehicle (Veh). Cells were subjected to serum 
starvation (50-75%) for 48 hours. Error bars represent mean ± SEM. Molecular weight marker is 
provided on the left of the blots. Ctr: control; ovxp: overexpression; MW: molecular weight; WT: 
wild-type; Veh: vehicle; Intens.: intensity. 
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Supplementary Figure 4. AG1 affects the mutations of R459-interacting residues, D181A and 
N185A. a, b AG1 increased activity and promoted dimerization of these mutant enzymes (activity 
assay: n=3 for WT G6PD; n=4 for D181A and N185A, ****p<0.0001, *p=0.0108, **p=0.0063, one-
way ANOVA; Western blot assay: n=3). The activity was normalized to WT G6PD activity. c 
AG1 mildly prevented mutant enzymes from proteolytic degradation by chymotrypsin (n=4 for 
D181A; n=3 for N185A, ****p<0.0001, *p=0.0255, one-way ANOVA). The protein level was 
normalized to the level of the enzyme under non-treated (NT) condition. 100 µM of AG1 was used 
for in vitro assays. 5% DMSO (stock concentration) was used as vehicle (Veh). Error bars 
represent mean ± SEM. Molecular weight marker is provided on the left of the blots. Chymo: 
chymotrypsin; MW: molecular weight; WT: wild-type; Veh: vehicle. 
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Supplementary Figure 5.  Fibroblasts carrying Mediterranean mutation (S188F) are also affected 
by AG1 treatment. a Representative Western blots showing improved protein stability by AG1 (1 
µM) in fibroblast cells derived from a subject carrier of Mediterranean variant, when de novo 
protein biosynthesis was inhibited by cycloheximide (50 µg ml-1) (n=4). b AG1 increased G6PD 
activity in cell lysates (n=3, ****p<0.0001, *p=0.012, one-way ANOVA). c AG1 increased cell 
viability of fibroblast cells carrying the Mediterranean variant, whereas there was no change in 
viability when Mediterranean G6PD was knocked down by siRNA (n=2, *p<0.05, two-way 
ANOVA). Western blot image showed G6PD protein levels after siRNA-mediated G6PD 
knockdown. 100 µM of AG1 was used for in vitro assays, and 1 µM of AG1 was used for cell-
based assays. 5% DMSO (stock concentration) was used as vehicle (Veh). Cells were subjected to 
serum starvation for 48 hours. Error bars represent mean ± SEM. Molecular weight marker is 
provided on the left of the blots. WT: wild-type; Nor: normal fibroblast; Med: Mediterranean 
fibroblast; scr: scrambled siRNA; Veh: vehicle; ns: not statistically significant. 
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Supplementary Figure 6. AG1 attenuates ROS-induced pericardial edema in a G6PD-dependent 
manner. a AG1 is not toxic to zebrafish embryos at concentrations <10 µM. Pericardial edema 
induced by chloroquine treatment was partially attenuated by AG1 treatment. Embryos were 
treated at 24 hpf with indicated concentrations of AG1 for 24 hours. Severity of pericardial edema 
is indicated by color schemes provided on the right of the graph. b Ventral views of whole-mount 
o-dianisidine staining of WT embryos at 48 hpf. Representative staining is shown on the left for 
embryo scoring; distribution of staining shown on the right. Raw counts used for chi-square 
analysis and calculated p value are included in table below. Scale bar: 300 µm. c, d Genetic loss 
of tbx16 function led to mesodermal defects in embryos obtained by incrossing tbx16 mutant 
heterozygotes. Pre-treatment at 24 hpf with 1 µM AG1 for 24 hours did not prevent pericardial 
edema that developed at 48 hpf in tbx16 mutants (c) nor was edema rescued at 72 hpf (d), when 
treated with AG1 at 48 hpf. Phenotypic ratio is indicated at the upper right corner of each image. 
Embryo orientation is lateral view, anterior left. Scale bar: 500 µm. e Embryos injected with 
sgRNA (Guide Alone) against exon 10 of g6pd and sgRNA+Cas9 protein (Guide+Cas9, G6PD 
KO (knockout)) were pooled at indicated times and analyzed for the G6PD protein level by 
Western blot.  f Ventral views of whole-mount o-dianisidine staining of embryos injected with 
sgRNA (Guide Alone) and sgRNA+Cas9 protein (Guide+Cas9, G6PD KO) at 48 hpf. Scale bar: 
300 µm. Representative staining is shown on the left for embryo scoring; distribution of staining 
shown on the right. Raw counts used for Fisher exact test and calculated exact probability are 
included in table below. Molecular weight marker is provided on the left of the blots. CQ: 
chloroquine; WT: wild-type; KO: knockout; hpf: hours post fertilization; Veh: vehicle. 
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Supplementary Figure 7. AG1 reduces hemolysis of human erythrocytes. a (Top)Western blot 
data showing band 3 clustering under stress condition induced by diamide (1 mM) treatment.  Each 
lane represents one individual sample. (Bottom) Corresponding quantification data are provided 
below (please see Fig. 5e for Western blot data showing band 3 clustering with chloroquine 
treatment).  b, c Time-course of hemoglobin release and protein leakage from 5% erythrocyte 
suspension while they were stored at refrigerated temperature for 28 days (see Fig. 5f, g. n=13 
independent blood samples, *p<0.05, **p<0.01, ****p<0.0001, two-way ANOVA). Molecular 
weight marker is provided on the left of the blots. CQ: chloroquine; Veh: vehicle; cBand3: 
clustered band 3; MW: molecular weight.  
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Supplementary Figure 8. Original source data of the blot images used in Fig. 1e, Fig. 2d, Fig. 3d, 
Fig. 3f, Fig. 3m and Fig. 5e.  
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Supplementary Figure 9. Original source data of the blot images used in Supplementary Fig. 1a, 
Supplementary Fig. 1b, Supplementary Fig. 1c and Supplementary Fig. 1h.  
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Supplementary Figure 10. Original source data of the blot images used in Supplementary Fig. 
3c, Supplementary Fig. 3e, Supplementary Fig. 3f, Supplementary Fig. 4b and Supplementary Fig. 
4c. 
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Supplementary Figure 11. Original source data of the blot images used in Supplementary Fig. 
5a, Supplementary Fig. 5c, Supplementary Fig. 6e and Supplementary Fig. 7a. 
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Supplementary Table 1.  
 
Primer sets for mutagenesis and cloning for in vitro assays and cell-based assays. 
 

Canton (R459L) 
CGCCAGGCCTCAAGGAGCTCGTCGC 
GCGACGAGCTCCTTGAGGCCTGGCG 

A- (V68M, N126D) 

AACGGGCATAGCCCATGATGAAGGTGTTTTCGG 
CCGAAAACACCTTCATCATGGGCTATGCCCGTT 
CCAGGTGGAGGGCATCCATGTGGCTGTTGAG 
CTCAACAGCCACATGGATGCCCTCCACCTGG 

Mediterranean (S188F) 
CTCACGGAACAGGGAGAAGATGTGGTTGGACAG 
CTGTCCAACCACATCTTCTCCCTGTTCCGTGAG 

Kaiping (R463H) 
GTGGGGTGAAAATATGCCAGGCCTCACGG 
CCGTGAGGCCTGGCATATTTTCACCCCAC 

D181A 
GTTGGACAGCCGGGCAGAGCTCTGCAG 
CTGCAGAGCTCTGCCCGGCTGTCCAAC 

N185A 
GGGAGGAGATGTGGGCGGACAGCCGGTCAG 
CTGACCGGCTGTCCGCCCACATCTCCTCCC 

K171A 
GTCCCTCCCGAAGGGGGCCTCCACGATGATGCG 
CGCATCATCGTGGAGGCCCCCTTCGGGAGGGAC 

P172G 
GGTCCCTCCCGAAGCCCTTCTCCACGATGA 
TCATCGTGGAGAAGGGCTTCGGGAGGGACC 
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Supplementary Note 1 
 
Characterization of AG1: 

1H NMR (500 MHz, DMSO-d6) δ 10.80 (s, 2H), 7.51 (d, J = 7.9 Hz, 2H), 7.33 (d, J = 8.1 Hz, 
2H), 7.14 (s, 2H), 7.05 (t, J = 7.6 Hz, 2H), 6.96 (t, J = 7.5 Hz, 2H), 3.13 – 2.56 (m, 18H).  
  
13C NMR (126 MHz, DMSO) δ 136.24, 127.23, 122.58, 120.82, 118.28, 118.12, 112.38, 111.32, 
49.63, 48.01, 38.36, 25.47.  
 
HRMS (m/z): calculated for C24H30N4S2, 438.1912; found, 439.1970 (M+H+). 
 


