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SUMMARY
Combination immune checkpoint blockade has demonstrated promising benefit in lung cancer, but predic-
tors of response to combination therapy are unknown. Using whole-exome sequencing to examine non-
small-cell lung cancer (NSCLC) treated with PD-1 plus CTLA-4 blockade, we found that high tumor mutation
burden (TMB) predicted improved objective response, durable benefit, and progression-free survival. TMB
was independent of PD-L1 expression and the strongest feature associated with efficacy in multivariable
analysis. The low response rate in TMB low NSCLCs demonstrates that combination immunotherapy does
not overcome the negative predictive impact of low TMB. This study demonstrates the association between
TMB and benefit to combination immunotherapy in NSCLC. TMB should be incorporated in future trials
examining PD-(L)1 with CTLA-4 blockade in NSCLC.
INTRODUCTION

T cell checkpoint inhibitors have improved the survival of patients

with a multitude of advanced malignancies. Antibodies targeting
Significance
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of PD-1 plus CTLA-4 blockade. Contrary to our initial hypothesi
with benefit. Combination immunotherapy may be particularly
come the negative predictive impact of lowmutation burden. Th
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programmed cell death receptor-1 (PD-1) or its ligand (PD-L1)

are now approved for treating multiple cancers, including non-

small-cell lung cancer (NSCLC) (Borghaei et al., 2015; Reck

et al., 2016). Responses to anti-PD-(L)1 monotherapies have the
ponse in patients with NSCLC treated with the combination
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Table 1. Baseline Clinical Characteristics

Patient Characteristics

(n = 75)

All Patients TMB Low TMB High

p ValueNo. (%) No. (%) No. (%)

Age (years), median

(range)

66 (42–87) 66 (43–85) 65 (42–87) 0.7739

Gender

Male 37 (49) 17 (45) 20 (54) 0.4916

Female 38 (51) 21 (55) 17 (46)

Histology

Non-squamous 59 (79) 31 (82) 28 (76) 0.5829

Squamous 16 (21) 7 (18) 9 (24)

Smoking status

Current/former 60 (80) 24 (63) 36 (97) 0.0003

Never 15 (20) 14 (37) 1 (3)

Stage

IIIB 9 (12) 6 (16) 3 (8) 0.4799

IV 66 (88) 32 (84) 34 (92)

Performance status

ECOG 0 30 (40) 16 (42) 14 (38) 0.8147

ECOG 1 45 (60) 22 (58) 23 (62)

PD-L1 expression

0% 25 (33) 13 (34) 12 (32) 0.8037a

R1% 45 (60) 21 (55) 24 (65)

Unknown 5 (7) 4 (11) 1 (3)

Best overall response

Complete/partial

response

24 (32) 5 (13) 19 (51) 0.0018

Stable disease 27 (36) 17 (45) 10 (27)

Progression/not

evaluable

24 (32) 16 (42) 8 (22)

Clinical benefit

Durable clinical

benefit (DCB)

37 (49) 13 (34) 24 (65) 0.0111

No durable benefit

(NDB)

38 (51) 25 (66) 13 (35)

p values in bold type represent significance <0.05. See also Figure S1 and

Tables S1 and S2.
aReflects comparison of PD-L1 0% versus R1%.
potential for remarkable durability, but occur in only a minority of

patients. This experience highlights two primary opportunities

for continued progress: identification of predictive biomarkers of

response and development of combinatorial treatment ap-

proaches that improve the frequency, depth, and duration of

response.

Toward identification of predictors of response to anti-PD-(L)1

monotherapy, tumor expression of PD-L1 has been a primary

focus. However, the sensitivity and specificity of PD-L1 expres-

sion is modest (Reck et al., 2016; Taube et al., 2014), which has

prompted the search for additional predictive tools. Our group

and others have identified an association between increased

nonsynonymous tumor mutation burden (TMB) and response

in patients with melanoma treated with CTLA-4 blockade

(Snyder et al., 2014; Van Allen et al., 2015), NSCLCs treated

with PD-1 blockade (Carbone et al., 2017; Rizvi et al., 2015; Rizvi
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et al., 2018), mismatch repair deficient tumors treated with PD-1

blockade (Le et al., 2017), and bladder cancers treated with PD-

L1 blockade (Rosenberg et al., 2016).

In parallel to these correlative efforts, multiple ongoing clinical

trials are attempting to improve response rates by combining im-

munotherapies. Pre-clinical (Wei et al., 2017) and clinical (Ham-

mers et al., 2017; Hellmann et al., 2017; Wolchok et al., 2017)

studies have identified non-redundant effects of CTLA-4 and

PD-1 signaling and synergistic anti-tumor responses (Curran

et al., 2010). To date, the genomic determinants of response to

combination immunotherapy have not been defined.

We sought to examine the molecular features correlated with

response in patients with NSCLC treated with combination

immunotherapy. In particular, we focused on whether TMB

would correlate with response, as it has in patients treated with

PD-1 monotherapy, or if combination therapy may broaden the

repertoire of effective anti-tumor immunity and thereby diminish

the importance of TMB.

RESULTS

Genomic and Clinical Characteristics of Study Cohort
Are Generalizable
We performed whole-exome sequencing (WES) on tumor tissue

and paired blood (Van Allen et al., 2014) collected from 75 pa-

tients with NSCLC treated with nivolumab plus ipilimumab as

part of the CheckMate-012 study (Hellmann et al., 2017)

(Table 1). The clinical features and efficacy outcomes in the

cohort of patients examined with WES were similar to the overall

set of patients enrolled in CheckMate-012 (Figure S1; Tables S1

and S2). Themean target coverage was 148X (interquartile range

[IQR] 116-182X) in tumors and 81X (IQR 70-98X) in normal; 94%

of target sequences were sequenced to at least 20X depth in tu-

mors (Table S3). Sequencing coverage was similar between re-

sponders and non-responders (Figure S2A). TMB was defined

as total number of nonsynonymous single nucleotide and indel

variants (Table S3). Except for expected differences by smoking

status, baseline clinical variables were similar between those

with TMB above versus below median (Table 1).

The median and distribution of TMB and transition/transver-

sion ratio in this study were similar to NSCLC tumors sequenced

as part of The Cancer Genome Atlas (TCGA) (Campbell et al.,

2016) (Figure S2B and Table S3).

Tumor Mutation Burden Is Significantly Associated with
Improved Efficacy of Combination Immunotherapy
TMBwas higher in patients with objective response (complete or

partial response) compared with those with no response (stable

or progressive disease) (median TMB 273 versus 114 mutations,

Mann-Whitney p = 0.0004, Figure 1A). Similar results were seen

when comparing patients with durable clinical benefit (DCB; par-

tial or stable response for >6 months) with those with no durable

benefit (NDB) (median TMB 210 versus 113, Mann-Whitney p =

0.0071). Objective response rate, DCB rate, and progression-

free survival (PFS) were all greater in patients with high TMB

(>median, 158 mutations) compared with low TMB (%median)

(overall response rate [ORR] 51% versus 13%, Fisher’s exact

p = 0.0005; DCB 65% versus 34%, Fisher’s exact p = 0.011;

PFS hazard ratio = 0.41, log rank p = 0.0024) (Figures 1B and
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Figure 1. TMB Correlates with Efficacy in Patients with NSCLC Treated with Nivolumab Plus Ipilimumab

(A) TMB in patients with complete response (CR)/partial response (PR) (n = 24, blue) versus stable disease (SD)/progressive disease (PD) (n = 51, red) (median 273

versus 114 mutations, Mann-Whitney p = 0.0004) and TMB in patients with DCB (green, n = 37) versus those with NDB (purple, n = 38) (median 210 versus 113

mutations, Mann-Whitney p = 0.0071). Medians, interquartile ranges, and minimum/maximum shown in boxplots.

(legend continued on next page)
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1C). There was a strong association between increased TMB

and increased rate of ORR or DCB (ORR area under the curve

[AUC] 0.75, p = 0.0006, DCB AUC 0.68, p = 0.0076) (Figure 1D).

To contextualize this dataset and facilitate generalizability, we

also characterized TMB in this cohort as a percentile rank of

NSCLCsprofiledbyTCGA.Serial increases inpercentile threshold

were associated with improved PFS (Figure 1E). Patients with tu-

mors in either the upper half or upper tertile of TMB had signifi-

cantly improved ORR and PFS (Figures S2C and S2D).

Computationally Predicted Neoantigen Burden
and Mutation Burden Are Closely Correlated
Consistent with previous reports (Rizvi et al., 2015) and potentially

indicative of the mechanistic importance of neoantigens gener-

ated from somatic nonsynonymous mutations (Schumacher and

Schreiber, 2015), TMB (defined as nonsynonymous variants)

was more strongly associated with ORR and PFS than mutation

burden inclusive of silent variants (Figure S2E). However, compu-

tationally predicted candidate neoantigen burden (Nathanson

et al., 2017) (Table S3) was not more predictive than TMB of

clinical benefit when using either a moderate or strong threshold

(500 nM or 50 nM) of neoantigen binding affinity to patient-spe-

cific class I HLA alleles (Figure S2F). Clonal predicted neoantigen

burdenwasmore predictive of improvedPFS comparedwith total

predicted neoantigen burden (> versus % median predicted

clonal neoantigens, log rank p = 0.04; > versus % median

total predicted neoantigens versus p = 0.07). TMB and computa-

tionally predicted neoantigen burden were highly correlated

(Spearman r 0.92, p < 0.0001; Figure S2G), consistent with this

characteristically proportional relationship (Rooney et al., 2015;

Van Allen et al., 2015). There were no clear associations between

specific HLA alleles and objective response (Figure S2H).

Individual Genes and Additional Molecular Features
Associated with Response or Resistance to
Combination Immunotherapy
We next explored other molecular features that may refine the

association of TMB with response to combination immuno-

therapy (Figure 2). Pre-clinical (Burr et al., 2017; Manguso

et al., 2017; Mezzadra et al., 2017; Patel et al., 2017; Skoulidis

et al., 2015) and clinical reports (Gao et al., 2016; George

et al., 2017; Zaretsky et al., 2016) have described associations

between individual altered genes and response or resistance

to immune checkpoint blockade (Table S4). Relatively few of

these genes were found in this dataset (Figure 2), but some

genes were exclusively associated with resistance in our series,

such as STK11 (zero responses in seven patients with STK11

mutations) and PTEN (0 of 4), consistent with previous reports,

although not reaching statistical significance likely owing to

small numbers (Table S4). IFNGR1 mutations (n = 3) were found
(B) Objective response and durable clinical benefit in patients with high TMB (>me

ratio 6.97 [95% confidence interval (CI) 2.19–19.0], Fisher’s exact p = 0.0005; DCB

Proportion of CR/PR or DCB, respectively, are colored on histograms with rate (

(C) PFS in patients with high TMB versus low TMB (median 17.1 versus 3.7 month

(D) Receiver operating characteristic (ROC) curves for correlation of TMB with ob

and DCB (green line) (AUC 0.68 [95% CI 0.56–0.8], p = 0.0076).

(E) PFS in cohorts of patients defined by quartiles of TMB percentile rank among

See also Figure S2 and Table S3.
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only in responders. To identify other potential genes of interest,

we identified significantly recurrent genes usingMutSigCV (Law-

rence et al., 2013) (Table S4). Of these genes, only TP53 muta-

tions were enriched in responders (odds ratio 2.9, Fisher’s exact

p = 0.048, Figures S3A and S3B). Notably, TP53mutations were

also associated with increased mutation burden in both the

cohort of combination immunotherapy NSCLCs and TCGA

NSCLCs (Figures S3C–S3F and Table S4).

Additionally, to explore the applicability of targeted next-gen-

eration sequencing as an estimate of exonic mutation burden

(Chalmers et al., 2017; Zehir et al., 2017), we found that limiting

variants to the 468 genes represented in our institutional MSK-

IMPACT panel (Zehir et al., 2017) or the 315 genes in the

FoundationOne panel (Frampton et al., 2013) maintained similar

predictive fidelity for efficacy (Figures S3G–S3H).

Tumor Mutation Burden Is Independent of PD-L1
and Remains Significantly Associated with Efficacy in
Multivariable Analysis
Lastly, we examined the impact of mutation burden on response

in the context of tumor PD-L1 expression, which was known in

70 of 75 patients (93%). There was no correlation between

PD-L1 expression and TMB (Spearman r �0.087, p = 0.48; Fig-

ure 3A). The distribution of TMB was similar in those with PD-L1

positive versus PD-L1 negative tumors (median 162 versus 135,

Mann-Whitney p = 0.89). In multivariable analysis incorporating

PD-L1 expression, histology, smoking status, performance sta-

tus, and tumor burden, TMB was independently associated

with ORR (p = 0.001, Figure 3B) and PFS (p = 0.002, Figures

3C and S4A). When considered in composite, patients with pos-

itive PD-L1 expression (defined as R1% expression) and high

TMB (defined as > median) had significantly improved rates of

ORR and PFS compared with those tumors with only one or

neither variable (ORR chi-square for trend p < 0.0001, Figure 3D;

PFS log rank for trend p = 0.0072, Figure S4B). Of particular note,

four of five responders whose tumors were PD-L1 negative had

high mutation burden (absolute mutation burden range 307–

1175, TCGA percentile rank 72-98th-tile), including one with a

pathologically confirmed complete response (Figure S4C).

DISCUSSION

In patients with advanced cancers treated with PD-1 blockade

monotherapy, multiple reports across multiple tumor types

(Carbone et al., 2017; Le et al., 2017; Rizvi et al., 2015; Rosen-

berg et al., 2016; Snyder et al., 2014; Van Allen et al., 2015)

have identified an association between increased TMB and

increased likelihood of disease control. However, prior to this

report, the significance of TMB for predicting response to com-

bination immunotherapy in NSCLC was not known. In fact, we
dian, 158 mutations) versus low TMB (%median) (ORR 51% versus 13%, odds

65% versus 34%, odds ratio 3.55 [95%CI 1.3–8.64], Fisher’s exact p = 0.011).

n/N) shown above each bar.

s, Mantel-Haenszel hazard ratio 0.41 [95% CI 0.23–0.73], log rank p = 0.0024).

jective response (CR/PR; blue line) (AUC 0.75 [95% CI 0.62–0.88], p = 0.0006)

NSCLC tumors profiled by TCGA (log rank for trend p = 0.01).



Figure 2. Summary of Clinical and Molecular Features Associated with Response or Non-response in Patients with NSCLC Treated with

Nivolumab Plus Ipilimumab

Individual patients are represented in each column, organized by those with objective response on the left (blue) and those with no objective response on the right

(red). Categories of histology (squamous or non-squamous) and smoking status (never or ever) are characterized. PD-L1 expression is stratified as 0%, 1%–49%,

orR50%. PFS is shown in months, with the color of each bar representing those who are censored (dark blue) or have progressed (light blue). The NSCLC TCGA

percentile rank for each case is described from 0% to 100% in light to dark purple. Nonsynonymous TMB andmutation burden quantified using genes including in

theMSK-IMPACT targeted next-generation sequencing panel are shown in histograms. The percent of transitions (light green) and transversions (dark green) are

shown. Candidate neoantigen burden is quantified in histograms, stratified by predicted patient-specific HLA binding affinity 0–50 nM (orange) or 50–500 nM (light

yellow). The occurrences of selected genes in each case are represented in the oncoprint, with the percent frequency in responders or non-responders shown.

See also Figures S2 and S3; Tables S3 and S4.
initially hypothesized that TMB in patients with NSCLCs would

not impact response to PD-1 plus CTLA-4 blockade therapy. In

an analogous scenario, the impact of PD-L1 expression is

abated in patients with melanoma treated with PD-1 plus

CTLA-4 blockade (Wolchok et al., 2017), and in a report of 17 pa-

tients with melanoma treated with combination immunotherapy,

TMB did not correlate with response (Goodman et al., 2017). In

contrast, we found that TMB is the strongest predictor of efficacy

identified in our dataset of patients with NSCLC. Similar results

were seen in a recent report of patients with small cell lung can-

cer treated with PD-1 plus CTLA-4 blockade (Hellmann et al.,

2018), suggesting the importance of TMB as biomarker for com-

bination immunotherapy across lung cancers.

Given the correlation between TMB and efficacy, it is tanta-

lizing to consider how TMB may be applied prospectively as a

biomarker. One criticism of determining TMB by WES, as we

have in this study, is that WES is currently challenging to perform
in an expeditious time frame and at adequate scale needed for

general use in patients with advanced NSCLC. Emerging inde-

pendent sets of data have demonstrated that targeted next-gen-

eration sequencing (NGS) panels, which are already being used

routinely in clinic, may provide a reasonable estimate of exonic

mutation burden (Chalmers et al., 2017; Rizvi et al., 2018; Zehir

et al., 2017). We found that estimated TMB using only genes

covered in US Food and Drug Administration-approved targeted

NGS panels MSK-IMPACT (Zehir et al., 2017) and Foundatio-

nOne (Frampton et al., 2013) were similarly predictive to the

TMB derived from WES. These currently available assays may

provide a practical platform for clinical practice now. Further-

more, although the technology is still being optimized, use of

cell-free DNA in plasma to estimate TMB has recently been

shown to be feasible and, when detectable, to correlate with

TMB estimated from tumor tissue (Fabrizio et al., 2017; Gandara

et al., 2017).
Cancer Cell 33, 843–852, May 14, 2018 847
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A Figure 3. Association between TMB and Efficacy in Multivariate

Context

(A) Correlation between TMB and PD-L1 expression (Spearman r �0.087

[95% CI �0.32 to 0.16], p = 0.48). Patients with CR/PR (n = 24) are colored in

blue circles; those with SD/PD (n = 51) are colored in gray squares.

(B) ROC curves for multivariate model correlation with objective response (CR/

PR), with model including TMB (continuous variable), PD-L1 (continuous),

histology (binary, squamous versus non-squamous), smoking status (binary,

ever versus never), performance status (Eastern Cooperative Oncology Group

[ECOG] 0 versus 1), and tumor burden (binary, > versus % median) (plain line,

AUC 0.869). Univariate correlation of TMB with objective response is shown

again for reference (dotted line).

(C) ROC curves for univariate correlation of TMB (continuous) with progres-

sion-free survival (dotted line) at 6 months (purple, AUC = 0.585) or 12 months

(yellow, AUC = 0.558). ROC curves for multivariate correlation of model

including TMB (continuous), PD-L1 (continuous), histology (squamous versus

non-squamous), smoking status (ever versus never), performance status

(ECOG 0 versus 1), and tumor burden (binary, > versus%median) also shown

(plain lines; at 6 months AUC = 0.764, at 12 months AUC = 0.831).

(D) Histogram of objective response (CR/PR) to nivolumab plus ipilimumab in

patients characterized by high mutation burden (>median TMB) and PD-L1

expression (R1%), high mutation burden or PD-L1 expression, or neither.

Response rates (n/N) are shown above each bar, with proportion of those with

PR/CR colored in blue. Chi-square for trend p < 0.0001.

See also Figure S4.
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The mechanism(s) underlying the association between TMB

and benefit with immunotherapy is not entirely clear. A leading hy-

pothesis suggests that neoantigens, tumor-specific non-self pep-

tides resulting from somatic nonsynonymous mutations, repre-

sent the mechanistic link. Several pre-clinical and clinical reports

have described neoantigen-specific T cell responses that direct

anti-tumor immunity (Gubin et al., 2014; Hadrup et al., 2009;

McGranahan et al., 2016; Tran et al., 2015; van Rooij et al.,

2013). Neoantigen-specific T cell responses appear to be few in

numbers for any given patient, such that increased TMB may

associate with increased benefit by increasing the chance for an

effective neoantigen to be generated and presented. The

decreased predictive strength of total, rather than nonsynony-

mous, TMBonefficacy found inour studysupports thishypothesis

by emphasizing the particular importance of nonsynonymous var-

iants. However, the capacity to computationally predict neoanti-

gens from exome sequences remains incomplete. In this study,

similar toothers, predicted neoantigenburdenwas largelypropor-

tional to mutation burden and did not appear to have distinct pre-

dictive power. In one study (Van Allen et al., 2015), shuffling of

HLAs such that neoantigen predictions were no longer based on

patient-specific HLA alleles had no impact on the association of

neoantigen burden and benefit. These data suggest that current

routine neoantigen prediction algorithms based on predicted

peptide-HLA binding affinity alone are inadequate. Future work

to incorporatemorenuancedunderstandingof neoantigenclonal-

ity (McGranahan et al., 2016), fitness (Luksza et al., 2017), and

interactions with T cell receptor binding (Glanville et al., 2017)

are critical, especially aspersonalized vaccine strategies targeting

tumor-specific predicted neoantigens are now under way in the

clinic (Ott et al., 2017; Sahin et al., 2017).

Although TMB was the strongest feature associated with effi-

cacy in this study, it remains an unrefined metric. Further refine-

ment in understanding the molecular determinants of response

to immunotherapy will likely come from identification of

key somatic variants that mediate response or resistance to



immunotherapy. Recent case reports of acquired resistance (An-

agnostou et al., 2017; Zaretsky et al., 2016) and pre-clinical

reports usingCRISPR/Cas9 screening (Burr et al., 2017;Manguso

et al., 2017; Patel et al., 2017) have begun to elucidate genes in

both tumors and T cells that are critical to response or resistance

to immunotherapy.However,mutations in eachof these individual

genes appear to be relatively uncommon at least in pre-treatment

tissue; selective pressure from immunotherapy at acquired resis-

tance may reveal a distinct genomic landscape. Among recurrent

genes inourcohort,TP53wasmodestlyassociatedwith increased

response but evenmore strongly associatedwith increased TMB.

The association betweenTP53alterations andTMBwasalso seen

in a recent report of TCGA lung adenocarcinomadata (Dong et al.,

2017), and is perhaps expected given the function of TP53 (Levine

and Oren, 2009) and its known association with smoking (Pfeifer

et al., 2002). STK11 was exclusively associated with resistance,

which aligns with previous reports describing the T cell excluded

phenotype associated with these variants (Skoulidis et al., 2015),

but did not reach statistical significance. Studies of larger size

will ultimately be critical to define the landscape and frequency

of ‘‘immunologic drivers’’ in NSCLC and other cancers.

In addition to refining the genomic features that associate with

response and resistance to immune checkpoint blockade, a com-

bination of assaysmaybehelpful to predict outcomeswith greater

sensitivity and specificity. Here, similar to patients with NSCLC

treated with PD-1 monotherapy, we found that efficacy was

enhanced in those characterized by both high TMB and PD-L1

positivity. Considering both variables together begins to explain

patients who may otherwise be considered curious exceptions

(e.g., PD-L1 negative responders who have high TMB) and further

improves predictive accuracy using the composite of TMB and

PD-L1. The incorporation of assays, such as peripheral T cell phe-

notyping, Tcell receptorsequencing,multiplexpathology imaging,

bulk and single-cell gene expression profiling, may provide addi-

tional biological insight and clinical predictive power in the future.

We did not identify distinct molecular features of response to

combination immunotherapy relative to what has been

described in patients with NSCLC treated with PD-1 blockade

monotherapy. It remains uncertain how PD-1 plus CTLA-4

blockade may improve response rates compared with PD-1

blockade monotherapy. Given the magnitude of benefit in pa-

tients with TMB high tumors, we speculate that response among

patients with TMB high tumors is further improvedwith combina-

tion therapy and/or there is a modest heightening of the slope

associating TMB and benefit relative to PD-1 blockade mono-

therapy. Important questions remain about the mechanisms of

underlying benefit of combination CTLA-4 plus PD-1 blockade

and how these therapies synergize in the context of high TMB.

In our report, the persistently low response rate in patients who

were TMB low/PD-L1 negative demonstrates that combination

therapy does not overcome the barriers to response in those pa-

tients who are least likely to respond to PD-1 blockade.

Other limitations of this study include its retrospective nature,

such that tissue was not available for all patients treated on this

clinical trial and there was insufficient tissue to perform addi-

tional expression analysis. Importantly, however, the clinical

characteristics and outcomes in the cohort analyzed here were

similar to the overall group of patients treated with nivolumab

plus ipilimumab on CheckMate-012.
In summary, we demonstrate that TMB strongly predicted

efficacy in patients with NSCLC treated with combination PD-1

plus CTLA-4 blockade. TMB is independent of other clinicopath-

ologic features, including PD-L1 expression. Based in part on

these data, an assessment of TMB has been incorporated in a

Phase III trial examining the benefit of PD-1 plus CTLA-4

blockade (CheckMate227).
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TCGA processed data (LUAD) Campbell et al., 2016 (PMID 27158780) https://portal.gdc.cancer.gov/legacy-

archive/files/b2e25bdf-f2b5-4a37-b330-

05251ea09f2c

TCGA processed data (LUSC) Campbell et al., 2016 (PMID 27158780) https://portal.gdc.cancer.gov/legacy-

archive/files/d7e90ea9-49b5-4efc-9f78-

bd5244cd6367

Software and Algorithms

Burrows-Wheeler Aligner (BWA) version

0.5.9-tpx

Li and Durbin, 2009 (PMID 19451168) http://maq.sourceforge.net/

Genome Analysis Toolkit (GATK) version

nightly-2015-07-31-g3c929b0

DePristo et al., 2011 (PMID 21778889) https://software.broadinstitute.org/gatk/

ContEst Cibulskis et al., 2011 (PMID 21803805) http://archive.broadinstitute.org/cancer/

cga/contest

OxoG3 Costello et al., 2013 (PMID 23303777) http://archive.broadinstitute.org/cancer/

cga/dtoxog

MuTect version v1.1.6 Cibulskis et al., 2013 (PMID 25143287) http://archive.broadinstitute.org/cancer/

cga/mutect

Indelocator http://archive.broadinstitute.org/cancer/

cga/indelocator

Varcode v0.5.15 https://github.com/hammerlab/varcode

PyEnsembl v1.0.3 https://github.com/hammerlab/pyensembl

OptiType Snyder et al., 2017 (PMID 28552987);

Szolek et al., 2014 (PMID 25143287)

https://github.com/FRED-2/Optitype

Topiary Nathanson et al., 2017 (PMID 27956380) https://github.com/hammerlab/topiary/

ABSOLUTE Carter et al., 2012 (PMID 22544022) http://archive.broadinstitute.org/cancer/

cga/absolute

NetMHCcons Karosiene et al., 2012 (PMID 22009319) http://www.cbs.dtu.dk/services/

NetMHCcons/

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

MutSigCV Lawrence et al., 2013 (PMID 23770567); http://software.broadinstitute.org/cancer/

software/genepattern/modules/docs/

MutSigCV

GraphPad Prism v.6 GraphPad Software https://www.graphpad.com/

R 3.3.2 R software https://www.r-project.org/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Matthew Hellmann

(hellmanm@mskcc.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Combination Immunotherapy Treated Patients
All patients had stage IV non-small cell lung cancer (NSCLC) and were treated on CheckMate 012 (NCT01454102 (Hellmann et al.,

2017)) (Table S1 and Table S2). All patients initiated therapy between February 2013 and March 2015 and were treated with a com-

bination of nivolumab and ipilimumab. All patients consented to an Institutional ReviewBoard-approved study protocol for treatment,

tissue collection, and biomarker analysis at institutions that participated in CheckMate 012 (Memorial Sloan Kettering Cancer Center,

H Lee Moffitt Cancer Center, Fox Chase Cancer Center, UCLA, Jonsson Comprehensive Cancer Center, Jonsson Comprehensive

Cancer Center, Yale Comprehensive Cancer Center, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Duke Univer-

sity Medical Center, UT Southwestern Medical Center, University of Washington, Juravinski Cancer Centre, McMaster University,

Princess Margaret Cancer Centre, University of Toronto, Ottawa Hospital Cancer Centre, University of Ottawa). PD-L1 expression

was assessed by immunohistochemistry using a previously validated rabbit anti-human anti-PD-L1 monoclonal antibody (clone

28-8; Epitomics, Berlingame, CA, USA). Quantification of tumor membranous PD-L1 expression was performed centrally on pre-

treatment tumor tissue submitted as part of the clinical trial using an analytically validated automated assay developed by Dako

(Carpinteria, CA, USA). A minimum of 100 evaluable tumor cells were required for determination of PD-L1 expression. PD-L1 scoring

was available in 70 of 75 patients; five had unknown expression.

Clinical Efficacy Analyses
Per protocol, tumor assessments were collected at week 10, week 17, week 23, and then every 12weeks until progression. Objective

response was assessed by investigator-assessed RECIST v1.1 (Eisenhauer et al., 2009). Partial and complete responses were

confirmed by repeat imaging occurring at least 4 weeks after the initial identification of response; unconfirmed partial responses

were considered stable disease. Patients with confirmed complete or partial response were considered responders; patients with

stable disease, progressive disease, or not evaluable were considered non-responders.

We also used a related outcomemetric, durable clinical benefit (DCB), which we have previously described (Rizvi et al., 2015; Rizvi

et al., 2018). DCB was defined as stable disease or partial response lasting longer than 6 months; all other patients were considered

to have no durable benefit (NDB).

Progression-free survival was assessed as previously described (Hellmann et al., 2017), with outcomes determined as of the

September 2016 database lock.

Tumor and Germline Samples
All tumor tissue used for sequencing was obtained prior to dosing with combination immunotherapy, with the exception of one non-

responder whose tissue was collected 122 days after beginning therapy (ID# 4). The presence of tumor tissue in the sequenced sam-

ples was confirmed by examination of a representative hematoxylin and eosin-stained slide by thoracic pathologist (N.R.) or central

pathology vendor through Mosaic Labs. Germline DNA was obtained from peripheral blood mononuclear cells from all patients.

METHOD DETAILS

Whole Exome Capture and Sequencing
Whole exome capture libraries were constructed using the Agilent Sure-Select HumanAll Exon v2.0 (44Mb), v4.0 (51Mb), or Illumina’s

Rapid Capture Exome (38Mb) baited target kit. Enriched exome libraries were sequenced on a HiSeq 2000, 2500, or 4000 platform

(Illumina, San Diego, California) to generate paired-end reads (2x76bp) to a goal of 150X mean target coverage (n=70 sequenced at

the Broad Institute, Cambridge, MA; n=5 sequenced at Memorial Sloan Kettering Cancer Center Genomic Core, New York, NY).
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Exome Alignment and Assembly
For each case, a BAM file was produced by aligning tumor and normal sequences to the hg19 human genome build using the Bur-

rows-Wheeler Aligner (BWA) version 0.5.9-tpx (Li and Durbin, 2009). Further indel realignment, base-quality score recalibration, and

duplicate-read removal were performed using the Genome Analysis Toolkit (GATK) version nightly-2015-07-31-g3c929b0 (DePristo

et al., 2011).

Sequencing Quality Control
Quality control metrics were computed using the Broad Institute Picard software. Fingerprint genotypes were used to verify match of

tumor and normal samples. Potential contamination was estimated using ContEst (Cibulskis et al., 2011). Artifacts produced by

oxidation during DNA sequencing were removed using the OxoG3 filter (Costello et al., 2013). Samples with mean target coverage

<60X in tumor or <30X in normal were excluded (Table S3).

Variant Calling
MuTect version v1.1.6 (Cibulskis et al., 2013) was used to generate single nucleotide variant (SNV) calls using default parameters.

Indelocator (http://archive.broadinstitute.org/cancer/cga/indelocator) was used to generate indel calls. Mutations with variant allelic

fraction < 0.05 in tumor were excluded (Taylor-Weiner et al., 2016). Site based artifact filtering was applied to mutations with variant

alleles that were present in an independent panel of normal exomes derived from blood samples of non-cancer patients. Variants

were annotated by Varcode (v. 0.5.15, https://github.com/hammerlab/varcode) and PyEnsembl (v. 1.0.3, https://github.com/

hammerlab/pyensembl) using Ensembl Release 75.

Mutation Burden Quantification
Tumor mutation burden (TMB) was defined as the number of nonsynonymous alterations (SNVs or indels) for each patient (Table S3).

Mutation Burden Percentile Rank Compared to NSCLC Tumors Sequenced by TCGA
To compare the overall spectrum of TMB and determine the percentile rank of TMB of patients sequenced in this study relative to the

TMB seen in larger series of NSCLCs, MAF files of called variants were retrieved from tumors analyzed as part of the lung adenocar-

cinoma and lung squamous cell carcinoma by The Cancer Genome Atlas (TCGA) projects (Campbell et al., 2016). Mutations with

VAF < 0.05 were excluded. For TCGA participants with multiple samples, a single sample was chosen. To reflect a typical histologic

distribution of NSCLC, we used all LUAD participants present in the MAF files (n=569) and selected a subset of available LUSC par-

ticipants (n=141 (29%) of 491 participants) to create a set of 710 samples comprised of 80% adenocarcinoma and 20% squamous

cell carcinoma (Table S3). The TMB of samples in this study were then compared to the TMB of the NSCLC TCGA cohort to assign

each sample a percentile rank.

HLA Analysis
Four-digit class I HLA alleles were inferred using OptiType (https://github.com/FRED-2/Optitype) (Snyder et al., 2017; Szolek

et al., 2014).

In Silico Neoantigen Prediction Pipeline
Using Topiary (https://github.com/hammerlab/topiary/) (Nathanson et al., 2017), the mutated DNA sequences were virtually

translated into corresponding mutated peptide sequences. Topiary was used to run NetMHCcons (v. 1.1) (Karosiene et al., 2012)

in order to predict MHC class I binding affinity for all 8 to 11mer peptide sequences containing the mutated amino acid. For variants

longer than a single residue, all 8-11mers downstream of the variant were considered. Candidate neoantigens were those peptides

with binding affinity IC50 of %500nM to one (or more) of the patient-specific HLA alleles (Table S3); strong binding candidate neo-

antigens were considered those with binding affinity IC50 of %50nM.

Predicted Neoantigen Clonality
To determine the cancer cell fraction (CCF) of each mutation, we integrated the variant allele frequency with the local copy number

with purity and ploidy estimates. Each alteration, the variant allele frequency (VAF) depends on the local copy number of the tumor

(CPNmut), the purity (p), the local copy number of the normal sample (CPNnorm) and also the cancer cell fraction (CCF), defined as

the proportion of cancer cells harboring the mutations. The expected VAF, given the CCF, can be calculated as follows: CAF (CCF) =

p*CCF / CPNnorm (1-p) + p*CPNmut.

For a given mutation with ‘a’ alternative reads, and a depth of ‘N’, the probability of a given CCF can be estimated using a binomial

distribution P(CCF) = binom(aIN, VAF(CCF)). CCF values can then be calculated over a uniform grid of 100 CCF values (0.01, 1) and

subsequently normalized to obtain a posterior distribution. To avoid overestimating the number of clonal alterations, we classified

mutations as clonal if there was >0.5 probability that the cancer cell fraction was >0.95 (Landau et al., 2013). Clonality could be

resolved in all but two patients. We restricted clonality estimation to single nucleotide variants, with copy number as assessed by

ABSOLUTE (Carter et al., 2012).
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Recurrently Altered Genes
MutSigCV (version 1.4,(Lawrence et al., 2013)) was used to identify recurrently altered genes in both the IpiNivo cohort as well as the

NSCLC TCGA cohort (Table S4). Genes with q values <0.1 were considered to be significantly recurrently mutated.

QUANTIFICATION AND STATISTICAL ANALYSES

Differences in TMB between two groups were examined using the non-parametric Mann-Whitney test. Fisher’s exact test was used

to compare proportions between two groups, or chi-square test for three groups. For progression-free survival analysis, the log-rank

test was used to compare Kaplan-Meier survival curves and the Mantel-Haenszel method was used to determine hazard ratios be-

tween groups. Correlations were examined by the Spearman correlationmethod. Receiver operator characteristic (ROC) curves plot-

ting sensitivity and 1-specificity of continuous variables were assessed by generating the area under the curve; p-values were also

reported. An analysis of enrichment in frequency of altered genes of a priori significance (Table S4) were examined using Odds ratio

and Fisher’s exact test. The frequency of recurrently altered genes identified by MutSigCV were compared in responder vs non-

responder groups as well as high TMB vs low TMB groups using odds ratio and Fisher’s exact text. All reported p-values are two

sided. Correlations betweenmutation burden and PD-L1 expression were determined using the Spearman correlation formula.Multi-

variable logistic and Cox regression were conducted to assess the impact of TMB on ORR and PFS, respectively, while adjusting for

other covariates described. Statistical analyses were performed using GraphPad Prism v.6 and R 3.3.2.

DATA AND SOFTWARE AVAILABILITY

Our dataset, for the 43 patients with consent to share these sequencing data, is deposited in the European Variation Archive. The

accession number for the sequencing data is PRJEB24995, https://www.ebi.ac.uk/eva/?eva-study=PRJEB24995.
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Table S1, related to Table 1: Clinical characteristics of all patients in CheckMate-012 by 
whether or not profiled by whole exome sequencing. 

 Overall Cohort 
(n=197) 

WES cohort 
(n=75) 

Non-WES cohort 
(n=122) 

 

Patient Characteristics No. (%) No. (%) No. (%) p value* 
Median age, years (range) 63 (37-91) 66 (42-87) 63 (37-91) 0.5864 
 
Gender 
   Male 
   Female 

 
 

101 
96 

 
 
(51) 
(49) 

 
 

37 
38 

 
 
(49) 
(51) 

 
 

64 
58 

 
 
(52) 
(48) 

 
0.7692 

 
Histology 
   Non-squamous 
   Squamous 

 
 

153 
44 

 
 
(78) 
(22) 

 
 

59 
16 

 
 
(79) 
(21) 

 
 

94 
28 

 
 
(77) 
(23) 

 
0.8612 

 
Smoking Status^ 
   Current/Former 
   Never 

 
 

148 
48 

 
 
(76) 
(24) 

 
 

60 
15 

 
 
(80) 
(20) 

 
 

88 
33 

 
 
(73) 
(27) 

 
0.3060 

 
Performance Status 
   ECOG 0 
   ECOG 1 

 
 

71 
126 

 
 
(36) 
(64) 

 
 

30 
45 

 
 
(40) 
(60) 

 
 

41 
81 

 
 
(34) 
(66) 

 
0.4450 

 
PD-L1 expression 
   0% 
   ≥ 1% 
   Unknown 

 
 

56 
108 
33 

 
 
(28) 
(55) 
(17) 

 
 

25 
45 
5 

 
 
(33) 
(60) 
(7) 

 
 

33 
64 
25 

 
 
(27) 
(52) 
(21) 

 
0.8699# 

 
Best Overall Response 
   Complete/Partial Response 
   Stable Disease 
   Progression/Not evaluable 

 
 

63 
63 
71 

 
 
(32) 
(32) 
(36) 

 
 

24 
27 
24 

 
 
(32) 
(36) 
(32) 

 
 

39 
36 
47 

 
 
(32) 
(29) 
(39) 

 
0.5597 

 
Clinical Benefit 
   Durable Clinical Benefit (DCB) 
   No durable benefit (NDB) 

 
 

87 
110 

 
 
(44) 
(56) 

 
 

37 
38 

 
 
(49) 
(51) 

 
 

50 
72 

 
 
(41) 
(59) 

 
0.3013 

*Comparison of WES cohort vs Non-WES cohort using Fisher’s exact test, except age (t test) and BOR (Chi-square 
test)  
^Smoking status was not reported for one patient in the Non-WES cohort 
#Reflects comparison of PD-L1 0% vs ≥ 1% 
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Figure S1, related to Table 1: Progression-free survival (PFS, top) and objective response rate (ORR, 
bottom) of the WES cohort (n = 75) vs other patients treated (non-WES, n = 122) with nivolumab plus 
ipilimumab as part of CheckMate-012.  PFS was similar among the WES cohort and non-WES cohort (log-
rank p = 0.30) (top panel). The proportion of responders  was similar in the WES cohort vs non-WES cohort 
(Fisher’s exact p > 0.99) (bottom panel). Percentages and rate (n/N) of responders in each group are reported 
above each bar and colored in blue.
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Figure S2, related to Figure 1 and Figure 2: (A) Mean target coverage (MTC) of tumor and 
matched normal by response category. MTC among responders (CR/PR) was similar to 
non-responders (SD/PD) for both tumor (136.3X vs 142.9X, p = 0.688) and normal (76.64X 
vs 82.34X, p = 0.388).  Median and interquartile range are shown by the black bars. (B) The 
range of nonsynonymous mutation burden among NSCLCs profiled by WES in this study and 
NSCLCs profiled by TCGA project are shown in the left panel. Mutation burden was 
similar in this cohort (median 158 mutations [interquartile range (IQR) 51-307]) compared to 
the TCGA cohort (median 191 mutations [IQR 95-332], p = 0.09). The right panel shows the 
distribution of transition/transversion ratio (Ti/Tv) in each group. The median transition/
transversion (Ti/Tv) ratio among this cohort (0.71 [IQR 0.44-1.06]) was comparable to the 
TCGA cohort (0.64 [IQR 0.45-0.99], p = 0.42). Black bars represent the median and 
interquartile range. (C) Objective response (CR/PR, blue) of the upper half or upper tertile of 
TMB among NSCLCs profiled by TCGA. The median TMB in NSCLC was 191 mutations 
and upper tertile was 266 mutations. Objective response was significantly greater among 
patients above the median (55% vs 16%, Odds ratio = 6.42 [95% CI 2.15-17.56], Fisher’s exact 
p = 0.0008) and upper tertile (62% vs 21%, Odds ratio = 6.35 [95% CI 2.24-17.56], Fisher’s 
exact p = 0.0009) compared to below, respectively. Percentages and rates (n/N) are shown 
above each bar. (D) PFS for patients with TMB above vs below the median and upper tertile 

was significantly improved (stratified by 50th percentile, median PFS 22.1 mo vs 3.8 mo,
Mantel-Haenszel HR 0.44, log-rank p = 0.0047; stratified by 66th percentile, median PFS
23.0 mo vs 4.1 mo, Mantel-Haenszel HR 0.42, log-rank p = 0.0028). (E) Impact of 
nonsynonymous TMB versus total TMB (inclusive of silent variants) on outcomes. The Odds 
ratio for response above versus below the respective median TMBs was higher and more 
significant when using nonsynonymous variants relative to all variants (nonsynonymous TMB 
Odds ratio 6.97 [95% CI 2.19-19.02], Fisher’s exact p = 0.0005; total TMB Odds ratio 3.76 
[95% CI 1.33-9.76], Fisher’s exact p = 0.014). The hazard ratio for PFS above versus below 
the respective median TMBs was higher and more significant when using nonsynonymous 
TMB relative to total TMB (nonsynonymous TMB Mantel-Haenszel HR 0.41, Log-rank p = 
0.0024; total TMB Mantel-Haenszel HR 0.48, Log-rank p = 0.013). (F) ROC curves of 
objective response rate (CR/PR) using TMB (green line) (AUC = 0.75 [95% CI 0.62-0.88], p = 
0.006), neoantigen MHC binding affinity <50 nM (blue line) (AUC = 0.70 [95% CI 
0.57-0.83], p = 0.0051), and neoantigen MHC binding affinity <500 nM (purple line) (AUC = 
0.69 [95% CI 0.55-0.82], p = 0.0093). (G) Scatter plot depicting correlation of tumor 
mutation burden and neoantigen burden (spearman rho = 0.92 [95% CI 0.88-0.95], p < 
0.0001). Each dot represents an individual patient. Both variables are shown as log10(X+1) 
transformations, with +1 added to incorporate one patient with zero predicted neoantigens. (H) 
Association with HLA alleles and efficacy. The histogram depicts the number of patients with 
each HLA allele, grouped as HLA-A, B, and C, quantified by the left axis. The dot above each 
bar reflects the objective response among patients with each HLA allele, corresponding to the 
right axis. No clear pattern of association between HLA allele and response rate is evident.    
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Figure S3, related to Figure 2: Analysis of recurrently altered genes identified by MutSigCV in 
ipi/nivo and NSCLC TCGA cohorts. (A) Plot showing log odd ratios (x axis) vs. log p values (y 
axis) for a comparison of frequency of recurrently altered genes in responders vs. non-responders 
(p value using Fisher’s exact test).  (B) Plot showing frequency of occurrence in responders (x 
axis) vs. non-responders (y axis). Only genes that had been found as recurrently mutated at 
statistically significant levels based on MutSigCV analysis are included in the analysis. Genes 
with p<0.05 are colored in red. (C,D) Same as (A,B) but comparing high TMB vs. low TMB 
samples (> vs ≤median of ipi/nivo cohort). (E,F) Same as (C,D), but using recurrently altered 
genes identified in the NSCLC TCGA cohort and comparing high TMB vs. low TMB samples (> 
vs ≤median of NSCLC TCGA cohort). (G) TMB quantified by WES correlates with the estimate 
of TMB using in silico filtering of genes represented in the MSK-IMPACT or FoundationOne 
panels (MSK-IMPACT Spearman rho 0.91 [95% CI 0.85-0.94], p < 0.0001; FM1 Spearman rho 
0.93 [95% CI 0.88-0.95], p < 0.0001). Each dot represents an individual patient. (H) ROC curves 
depicting the correlation of objective response with TMB by WES (AUC = 0.75 [95% CI 0.62- 
0.88], p = 0.0006) and TMB estimated using genes represented in the MSK-IMPACT panel (AUC 
= 0.76 [95% CI 0.62-0.89], p = 0.0003) or FoundationOne Panel (AUC = 0.72 [95% CI 
0.59-0.85], p = 0.002). 
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Figure S4, related to Figure 3: (A) Tables for multivariate analysis of TMB on ORR and PFS 
using mutation burden, PD-L1 expression, histology, smoking status, performance status, and 
tumor burden (sum unidirectional size of target lesions). In a univariate analysis using mutation 
burden (as a binary or continuous variable), both objective response and progression-free 
survival significantly associate with TMB. In a multivariate analysis, significant associations 
remained with respect to TMB for both ORR and PFS. (B) Progression-free survival of patients 
with TMB and PD-L1 expression as a composite variable (log-rank for trend p = 0.0057).  TMB 
high is defined as > median and PD-L1 positive is defined as ≥ 1% tumor expression. (C) Case 
of patient whose tumor is PD-L1 negative (0% tumor expression) and TMB high (840 
nonsynonymous mutations, 95th percentile of TCGA NSCLCs) who achieved a complete 
pathologic response to nivolumab plus ipilimumab. Top panel shows lesion prior to and 
following initiation of therapy. The bottom panel shows representative histology at time of 
resection of remaining residual disease. The tumor bed (40x; H&E stain) is characterized by 
fibroelastotic scar (*) with adjacent aggregates of chronic inflammatory cells at the periphery 
(^). The aggregates of inflammatory cells are composed predominantly of lymphocytes (inset; 
400x).    


	CCELL2648_proof_v33i5.pdf
	Genomic Features of Response to Combination Immunotherapy in Patients with Advanced Non-Small-Cell Lung Cancer
	Introduction
	Results
	Genomic and Clinical Characteristics of Study Cohort Are Generalizable
	Tumor Mutation Burden Is Significantly Associated with Improved Efficacy of Combination Immunotherapy
	Computationally Predicted Neoantigen Burden and Mutation Burden Are Closely Correlated
	Individual Genes and Additional Molecular Features Associated with Response or Resistance to Combination Immunotherapy
	Tumor Mutation Burden Is Independent of PD-L1 and Remains Significantly Associated with Efficacy in Multivariable Analysis

	Discussion
	Supplemental Information
	Acknowledgments
	References
	STAR★Methods
	Key Resources Table
	Contact for Reagent and Resource Sharing
	Experimental Model and Subject Details
	Combination Immunotherapy Treated Patients
	Clinical Efficacy Analyses
	Tumor and Germline Samples

	Method Details
	Whole Exome Capture and Sequencing
	Exome Alignment and Assembly
	Sequencing Quality Control
	Variant Calling
	Mutation Burden Quantification
	Mutation Burden Percentile Rank Compared to NSCLC Tumors Sequenced by TCGA
	HLA Analysis
	In Silico Neoantigen Prediction Pipeline
	Predicted Neoantigen Clonality
	Recurrently Altered Genes

	Quantification and Statistical Analyses
	Data and Software Availability






