Type of cells	Author	Content	Ref
Endothelial cells	Shayan G	Examination of the functional characterization of a reproducible <i>in vitro</i> model composed of murine BMEC co- cultured with rat primary astrocytes in the presence of biochemical inducing agents	1
	Patabendige A	<i>in vitro</i> BBB model using primary cultured BECs which is relatively simple to prepare, robust, and reliably gives high TEER	2
	Hatherell K	Different cell permutations were investigated to find the most effective model in terms of tight junction resistance of the human cerebral microvascular endothelial cells	3
	Watanabe T	assess the paracellular barrier properties of the immortalized mouse brain endothelial cell lines bEND.3, bEND.5 cells, and mouse brain endothelial cell 4 (MBEC4), and those of the primary mouse brain endothelial cells pMBECs	4
	Cucullo L	A humanized Dynamic <i>In vitro</i> Blood—Brain Barrier model (hDIV-BBB) based on a novel human brain vascular endothelial cell line (HCMEC/D3), which closely mimics the BBB <i>in vivo</i> .	5
Embryonic Stem Cells	Uzzaman M	Assess the proapoptotic effects of transgenic trail delivered by ESC- derived astrocytes on malignant gliomas in vivo	6
	Germano IM	Evaluation the proapoptotic effects of embryonic stem cell (ESC)-mediated <i>mda-7/IL-24</i> delivery to malignant glioma cell lines	7
Neural Stem Cells	Walker P.A	The barriers and opportunities of progenitor cell therapies for TBI	8
	Wallenquist U	Grafted neural progenitors migrate and form neurons after experimental TBI	9
	Barkho B.Z	Response of adult neural stem cells to stroke injury and their potential role in therapeutic applications	10
	Skardelly M	Long-term benefit of human fetal neuronal progenitor cell transplantation in a clinically adapted model after TBI	11
	Sun D	Sustained survival and maturation of adult neural stem/progenitor cells after transplantation into the injured brain	12
	Donega, M	Systemic injection of neural stem progenitor cells in mice with chronic EAE	13
	Hosseini S.M	Combination cell therapy with MSCs and NSCs for brain stroke in rats	14
	Rolfe A	Implications for Repair and Regeneration of Injured Brain in Experimental TBI Models using stem cell therapy	15
	Dobrowolski	Stem cells in TBI	16
	Rolfe A	Implications for Repair and Regeneration of Injured Brain in Experimental TBI Models using stem cell therapy	15
	Lippmann ES	Optimization of NPC differentiation to induce <i>in vivo</i> like BBB phenotype in rat BMECs	17
Induced Pluripotent cells	Kobayashi Y	Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity	18
	Dobrowolski	Stem cells in traumatic brain injury	16

			19
	Dunkerson J	Combining enriched environment and induced pluripotent stem cell therapy results in improved cognitive and motor function following traumatic brain injury	
	Rolfe A	A Implications for Repair and Regeneration of Injured Brain in Experimental TBI Models using stem cell therapy	15
	Destefano J	Evaluation of the role of shear stress in modulating the morphology, motility, proliferation, apoptosis, and protein and gene expression, of confluent monolayers of human brain microvascular endothelial cells derived from iPSCs	20
Mesanchymal Stem cells	Studeny M	Evaluation of MSCs to deliver IFN-B to tumor, reducing toxicity	21
	Xu G	The effect of using genetically modified MSCs to treat malignant gliomas in rats	22
	Laura S	Explore the engineering potential, fate, and therapeutic efficacy of human MSCs in a highly malignant and invasive model of glioblastoma	23
	Chio S	Evaluation of the characteristics and therapeutic potentioal of human MSCs and prodrug gene therapy against diffuse pontine gliomas	24
	Tajiri N	Intravenous transplants of human adipose-derived stem cell protect the brain from TBI-induced neurodegeneration and motor and cognitive impairments	25
	Mahmood A	Long-lasting benefits after treatment of TBI in rats with combination therapy of marrow stromal cells and simvastatin	26
	Li L	Transplantation of marrow stromal cells restores cerebral blood flow and reduces cerebral atrophy in rats with traumatic brain injury TBI: in vivo MRI study	27
	Anbari F	Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after TBI	28

Supplementary Table 1- Recent studies on various types of cells in *in vitro* BBB models

- 1 Shayan, G., Choi, Y. S., Shusta, E. V., Shuler, M. L. & Lee, K. H. Murine in vitro model of the blood–brain barrier for evaluating drug transport. *European Journal of Pharmaceutical Sciences* **42**, 148-155 (2011).
- 2 Patabendige, A., Skinner, R. A., Morgan, L. & Abbott, N. J. A detailed method for preparation of a functional and flexible blood–brain barrier model using porcine brain endothelial cells. *Brain research* **1521**, 16-30 (2013).
- 3 Hatherell, K., Couraud, P.-O., Romero, I. A., Weksler, B. & Pilkington, G. J. Development of a three-dimensional, all-human in vitro model of the blood–brain barrier using mono-, co-, and tri-cultivation Transwell models. *Journal of neuroscience methods* **199**, 223-229 (2011).
- Watanabe, T. *et al.* Paracellular barrier and tight junction protein expression in the immortalized brain endothelial cell lines bEND. 3, bEND. 5 and mouse brain endothelial cell
 Biological and Pharmaceutical Bulletin 36, 492-495 (2013).
- 5 Cucullo, L. *et al.* Immortalized human brain endothelial cells and flow-based vascular modeling: a marriage of convenience for rational neurovascular studies. *Journal of Cerebral Blood Flow & Metabolism* **28**, 312-328 (2008).
- 6 Uzzaman, M., Keller, G. & Germano, I. M. In vivo gene delivery by embryonic-stem-cell– derived astrocytes for malignant gliomas. *Neuro-oncology* **11**, 102-108 (2009).
- 7 Germano, I. M., Emdad, L., Qadeer, Z. A., Binello, E. & Uzzaman, M. Embryonic stem cell (ESC)-mediated transgene delivery induces growth suppression, apoptosis and radiosensitization, and overcomes temozolomide resistance in malignant gliomas. *Cancer gene therapy* **17**, 664 (2010).
- 8 Walker, P. A., Shah, S. K., Harting, M. T. & Cox, C. S. Progenitor cell therapies for traumatic brain injury: barriers and opportunities in translation. *Disease models & mechanisms* **2**, 23-38 (2009).
- 9 Wallenquist, U. *et al.* Grafted neural progenitors migrate and form neurons after experimental traumatic brain injury. *Restorative neurology and neuroscience* **27**, 323-334 (2009).
- 10 Z Barkho, B. & Zhao, X. Adult neural stem cells: response to stroke injury and potential for therapeutic applications. *Current stem cell research & therapy* **6**, 327-338 (2011).
- 11 Skardelly, M. *et al.* Long-term benefit of human fetal neuronal progenitor cell transplantation in a clinically adapted model after traumatic brain injury. *Journal of neurotrauma* **28**, 401-414 (2011).
- 12 Sun, D. *et al.* Sustained survival and maturation of adult neural stem/progenitor cells after transplantation into the injured brain. *Journal of neurotrauma* **28**, 961-972 (2011).
- 13 Donegà, M., Giusto, E., Cossetti, C., Schaeffer, J. & Pluchino, S. Systemic injection of neural stem/progenitor cells in mice with chronic EAE. *Journal of visualized experiments: JoVE* (2014).
- 14 Hosseini, S. M. *et al.* Combination cell therapy with mesenchymal stem cells and neural stem cells for brain stroke in rats. *International journal of stem cells* **8**, 99 (2015).
- 15 Rolfe, A. & Sun, D. Stem cell therapy in brain trauma: implications for repair and regeneration of injured brain in experimental TBI models. (2015).
- 16 Dobrowolski, S. & Lepski, G. Stem cells in traumatic brain injury. *American Journal of Neuroscience* **4**, 13 (2013).
- 17 Lippmann, E. S., Weidenfeller, C., Svendsen, C. N. & Shusta, E. V. Blood–brain barrier modeling with co-cultured neural progenitor cell-derived astrocytes and neurons. *Journal of neurochemistry* **119**, 507-520 (2011).
- 18 Kobayashi, Y. *et al.* Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity. *PloS one* **7**, e52787 (2012).

- 19 Dunkerson, J. *et al.* Combining enriched environment and induced pluripotent stem cell therapy results in improved cognitive and motor function following traumatic brain injury. *Restorative neurology and neuroscience* **32**, 675-687 (2014).
- 20 DeStefano, J. G., Xu, Z. S., Williams, A. J., Yimam, N. & Searson, P. C. Effect of shear stress on iPSC-derived human brain microvascular endothelial cells (dhBMECs). *Fluids and Barriers of the CNS* **14**, 20 (2017).
- 21 Studeny, M. *et al.* Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. *Journal of the National Cancer Institute* **96**, 1593-1603 (2004).
- 22 Xu, G. *et al.* Adenoviral-mediated interleukin-18 expression in mesenchymal stem cells effectively suppresses the growth of glioma in rats. *Cell biology international* **33**, 466-474 (2009).
- 23 Sasportas, L. S. *et al.* Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. *Proceedings of the national academy of sciences* **106**, 4822-4827 (2009).
- 24 Choi, S. A. *et al.* Human adipose tissue-derived mesenchymal stem cells: characteristics and therapeutic potential as cellular vehicles for prodrug gene therapy against brainstem gliomas. *European Journal of Cancer* **48**, 129-137 (2012).
- 25 Tajiri, N. *et al.* Intravenous transplants of human adipose-derived stem cell protect the brain from traumatic brain injury-induced neurodegeneration and motor and cognitive impairments: cell graft biodistribution and soluble factors in young and aged rats. *Journal of Neuroscience* **34**, 313-326 (2014).
- 26 Mahmood, A. *et al.* Long-lasting benefits after treatment of traumatic brain injury (TBI) in rats with combination therapy of marrow stromal cells (MSCs) and simvastatin. *Journal of neurotrauma* **25**, 1441-1447 (2008).
- 27 Li, L. *et al.* Transplantation of marrow stromal cells restores cerebral blood flow and reduces cerebral atrophy in rats with traumatic brain injury: in vivo MRI study. *Journal of neurotrauma* **28**, 535-545 (2011).
- Anbari, F. *et al.* Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury. *Neural regeneration research* **9**, 919 (2014).