
 
 

Supplementary Note 1. Extracting more but extracting truth 
 

RNA-seq data contain only a tiny fraction of TCR/Ig reads covering CDR3. This fraction varies from sample to 

sample depending on the degree of immune cell infiltration, ranging from 10-5 to 10-7 for TCRs and from 10-4 to 

10-7 for Igs. Samples having no target reads are also common. Additionally, due to the limited length of 

sequencing (typically paired-end 50-100 bp), successful detection of target V(D)J junctions implies alignment 

with very short fragments of germline V and J genes (12-15 bp). The main challenge in the analysis of such 

short sequences is the high probability of false-positive alignments. Thus, the primary objective of a robust 

CDR3 extraction procedure is to extract as many true CDR3 sequences as possible with nearly zero amount of 

CDR3-like false-positives. 

To meet these challenges, we have developed and implemented a set of new algorithms (Supplementary Fig. 

1):  

(i) Sensitive and highly selective aligner. Since there is no prior knowledge of true TCR/Ig sequences in real 

data and because some sources of false-positive sequences are not random (Online Methods), the 

implementation of a fully automated procedure for optimization of the alignment algorithm is substantially 

complicated. Manual analysis of the structure of false- and true-positive alignments on real and artificial 

datasets has helped us to establish a semi-automated pipeline for the optimization of our built-in MiXCR 

aligner. This has resulted in high-efficiency extraction of target V(D)J rearrangements from bulk RNA-seq data 

with a zero detected false-positive rate. Optimized aligner efficiently filters out even the fragments of mRNA 

sequences that are homologous to antibody or TCR hypervariable regions, which comprise the most prominent 

source of reproducible false-positives in RNA-seq data analysis (Online Methods). We further enhanced our 

aligner by targeting ambiguous cases, which recurrently arise in short reads that have either V or J segment 

alignment but for which the fast alignment algorithm has failed to detect a J or V gene segment, respectively. In 

such cases MiXCR switches to a more sensitive algorithm—a modified version of the Smith-

Waterman/Needleman-Wunsch algorithm— in order to reconstruct the full V(D)J junction if possible. In this 

way, we achieve high alignment sensitivity even on short reads, maintaining high overall performance 

(Supplementary Table 1). 

(ii) Partial alignments assembler. For short-read data, there is little to no chance that a long CDR3 will be 

fully covered by a single read. To extract such sequences, we introduced an additional analysis step that 

assembles contigs from several initial alignments, originating from different paired- or single-end reads. The 

partial assembler merges left-half reads (LR), defined as reads which cover only the left boundary of CDR3 

(the conserved Cys in the V gene) while not covering the right boundary (the conserved Phe/Trp in the J gene), 

with right-half reads (RR), which do not cover the left CDR3 boundary and cover part of the J gene. To protect 

the algorithm from artificial diversity generation, LR and RR are merged if and only if the following criteria are 

satisfied: 



 
 

1. Minimal length of the overlap region is 12 nt. 

2. The overlap covers at least 7 non-germline-derived letters (N region). Boundaries of N regions are 

determined after the realignment of fused contigs against V, D and J gene sequences, and P-segments 

are also aligned. 

3. Sequences are 100% identical inside the overlap. 

These default thresholds showed the best extraction efficiency while keeping negligible rate of observed false-

positive overlaps (as verified with in silico generated data, Online Methods, doi.org/10.5281/zenodo.804326). 

All parameters can be adjusted by the user. 

(iii) CDR3 extension. To safely utilize even those reads that partially cover CDR3 and were not fully 

reconstructed using previous step, we added an optional CDR3 extension step for TCRs (but not Igs, due to 

possible presence of hypermutations). This step fills in the edges of the CDR3 based on known information on 

the relevant germline gene segments. A substantial fraction of extracted TCR reads fully cover the N-D-N 

region and are assigned with definite V and J genes (often supported by companion paired-end reads), but at 

the same time do not cover the CDR3 sequence end-to-end, missing several germline nucleotides. Since 

TCRs do not undergo hypermutations and their germline sequences are quite well-conserved, it is reasonable 

to artificially extend the CDR3 for such junctions with existing data from reference germline genes. This allows 

us to make use of these sequences for clonotype assembly and further comparative analysis. Using in silico 

generated data, we estimated a false extension rate of ~10^-5 for this procedure (Online Methods). 

Importantly, the resulting RNA-seq analysis pipeline employs the same MiXCR modules, the same error-

correction algorithms, and has the same output format as for targeted TCR or Ig profiling. This allows unified 

processing and comparison of immune repertoires obtained from different types of raw sequencing data. 

To verify the efficiency and specificity of TCR CDR3 repertoires extraction from RNA-seq data, we performed 

both deep targeted profiling of TCR alpha (TRA) and beta (TRB) chains repertoires (TCR-seq) as described 

previously1 and 100+100 paired-end RNA-seq analysis for the same split RNA samples, which were obtained 

from surgically resected melanoma specimens from two patients, SPX6730 (ileocecal lymph node metastasis) 

and SPX8151 (small intestine resection). 

We further used the deep TRA and TRB CDR3 repertoires extracted from TCR-seq data using the standard 

MiXCR analysis pipeline2 (Online Methods) as control data. Analysis of RNA-seq data was performed with 

MiXCR or TRUST, a recently published software tool for extracting TCR repertoires from RNA-seq3, 4. 

For MiXCR, we compared the RNA-seq CDR3 sequences with the TCR-seq control to directly assess the 

equivalence of the identified CDR3 nucleotide sequences. Since TRUST does not group clonal CDR3 

sequences, we used unique CDR3s from the TRUST output for comparison. Furthermore, the majority of 

CDR3s reported by TRUST are truncated in a nondeterministic way, such that strict equality gives almost no 



 
 

matches between the TRUST results and the control data. Since it was still possible that TRUST-reported 

CDR3s may represent immunologically useful information, we allowed subsequence matching between the 

control data and TRUST-reported CDR3s (Online Methods). 

We assessed the dependence of the number of confirmed RNA-seq clonotypes on their abundance estimated 

from TCR-seq data (Fig. 1a and Supplementary Fig. 2). MiXCR was able to extract all relatively abundant 

TRB CDR3 clonotypes (frequency in repertoire > 0.15%) from the SPX6730 sample RNA-seq, even with the 

short paired-end reads (50+50-bp, trimmed in silico from the 100+100-bp paired-end data). In contrast, TRUST 

failed to extract a considerable proportion of high-frequency clonotypes. As expected, performance of RNA-seq 

analysis degraded at shorter read lengths. Our data also indicate that paired-end RNA-seq >100-bp would be 

beneficial for immune repertoires profiling. 

Next, we divided extracted clonotypes into several categories: clonotypes that are also present in the TCR-seq 

control (verified CDR3s, considered true positives), clonotypes that are absent in the TCR-seq control but have 

canonical amino acid sequences (potentially true low-frequency clonotypes, Online Methods), and clonotypes 

that are absent in the TCR-seq control and have non-canonical amino acid sequences (probable false 

positives). Fig. 1b shows the dependence of the number of found CDR3 clonotypes on the read length in 

paired-end analysis for these various categories. Most MiXCR-reported clonotypes were confirmed by the 

control data; ~20% of all clonotypes were unique to RNA-seq samples and had canonical amino acid 

sequences, and there was only a tiny fraction of unconfirmed clonotypes with non-canonical CDR3 sequences, 

which was less than the fraction of non-canonical CDR3s observed in control TCR-seq data. It should be noted 

that we did not apply a filter for CDR3 canonical sequences in the MiXCR pipeline. On the other hand, nearly 

none of CDR3s reported by TRUST could be confirmed by the TCR-seq control; ~20% of CDR3s were partially 

confirmed on the basis of subsequence matches, with truncations of up to 6 nucleotides allowed, and >50% of 

unconfirmed CDR3s did not match canonical pattern. Only ~16% of the CDR3s reported by TRUST had both V 

and J genes annotated, while in the case of MiXCR, all clones had both V and J segments assigned. 

Software testing with in silico-generated data confirmed the high extraction efficiency of MiXCR, with zero 

false-positive clones observed. In contrast, TRUST efficiency was an order of magnitude lower, and the 

software generated a substantial number of false clonotypes, including those of non-TCR origin (Online 

Methods, Supplementary Fig. 3). 

The frequencies of clonotypes in the TCR repertoires extracted by MiXCR from the SPX6730 sample 

correlated between the TCR-seq and RNA-seq data (Fig. 1c). This demonstrates that RNA-seq-based TCR 

profiling can be relatively quantitative for the abundant clonotypes that occupy >0.1% of the overall T-cell 

repertoire for those samples that harbor a substantial number of T-cells. It should be noted that the SPX6730 

sample was an ileocecal lymph node metastasis that was enriched with T-cells. The second sample, SPX8151, 

was a small intestine resection that contained lower proportion of T-cells and correspondingly yielded a lower 

number of TCR CDR3 reads (Fig. 1d), resulting in poor quantification of observed clonotypes (Supplementary 



 
 

Fig. 2). Roughly, the number of TRB CDR3-containing sequencing reads extractable from an RNA-seq dataset 

was proportional to TRBC coverage, and was estimated as approximately 46 TRB CDR3 reads per 1,000 

TRBC reads for 50+50-bp, and 128 TRB CDR3 reads per 1,000 TRBC reads for 100+100-bp paired-end 

sequencing (Online Methods, Supplementary Table 2). 

We also compared MiXCR performance with the recently reported V’DJer software5, which was designed for 

the extraction of Ig repertoires from RNA-seq data. MiXCR successfully extracted repertoires for all immune 

receptor types from both melanoma samples (Fig. 1d), while for these large RNA-Seq datasets V’DJer failed to 

extract IGH and IGK repertoires within four days using 8 threads on a Xeon E5-2683 CPU with 50 GB of RAM. 

Additionally, we used several representative samples analyzed in refs. 3, 4 from TCGA and SRA databases in 

order to compare MiXCR performance for TCR and Ig repertoires relative to the TRUST and V’DJer packages, 

respectively. In all comparisons, MiXCR demonstrated superior sensitivity (Fig. 1e). Both alternative software 

packages require substantially more hands-on time and implementation of third-party alignment tools with 

particular versions of еру human genome and particular analysis settings, which are not clearly defined in the 

documentation and require laborious optimization. Additionally, the output from both tools lacks useful 

biological information; some of this information may be recovered by additional post-processing, but other 

important information is irretrievably lost during analysis (Supplementary Table 1). 

In single T-cell transcriptome analysis, MiXCR outperformed TraCeR6 in efficiency of TRA and TRB chains 

detection (Supplementary Table 3). 
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Supplementary Note 2. Intratumoral Ig repertoire derived from RNA-seq 
  

We employed MiXCR to extract immune repertoires from the TCGA 48+48-bp paired-end RNA-seq data for 

458 patients with cutaneous melanoma (SKCM). In terms of functional CDR3 clonotypes/CDR3-covering reads 

per sample, MiXCR yielded an average of 52/69 for TRA, 54/86 for TRB, 2.4/3 for TCR gamma (TRG), 

0.15/0.2 for TCR delta (TRD), 395/3924 for IGH, 620/7595 for IGK, and 414/4939 for IGL (see 

doi:10.6084/m9.figshare.4620739 for clonesets). Notably, the extracted Ig repertoires were an order of 

magnitude larger than for the TCRs, indicating the presence of intratumoral Ig-producing plasma cells.  

Furthermore, we noted that high intratumoral IGH expression levels as well as high levels of IGH clonality 

(calculated according to ref. 1) were associated with longer survival (Fig. 2a,b, Supplementary Fig. 4a), and 

the two parameters had strong cumulative value for patient stratification (Fig. 2c).  

In many patients, a single dominant intratumoral Ig clonotype occupied 30–80% of all Ig CDR3 sequences in 

both heavy and light chains repertoires. Hypermutating IGH CDR3 variants could be observed even in primary 

tumor samples (Supplementary Table 4, Supplementary Fig. 4b), which could reflect the presence of 

intratumoral germinal centers2, 3, or the co-infiltration of extra-tumorally hypermutated B cells encoding 

homologous Igs. 

Higher TRB expression levels, reflecting greater tumor infiltration by T-cells, were also associated with longer 

survival (Supplementary Fig. 4a). TCR CDR3 repertoire clonality was not significantly associated with 

survival, but this could be attributable to insufficient information on TCR repertoires extracted from tumor RNA-

seq data. 

Analysis of isotype composition revealed that the IgG1 isotype was dominant among intratumorally-produced 

Igs (Supplementary Fig. 4c). A high proportion of IgG1 among IGH was associated with longer survival, while 

a high IgA/IGH proportion was associated with a negative prognosis (Fig. 2d). Proportions of IgD and IgE also 

tend to correlate negatively with survival, while proportions of IgG2, IgG3, IgG4 and IgM of IGH had no clear 

association with prognosis (Supplementary Fig. 4d).  

To validate the observed effects, we analyzed 1,000 subsets of the original SKCM cohort by randomly 

sampling 50% of the total number of samples. For each iteration, we evaluated log-rank test χ2 statistics for 

groups split by the given metric’s median. This analysis demonstrated that the positive correlations of IGH 

clonality, high IGH expression, and high IgG1/IGH ratio with survival remains significant even in these smaller 

subsets of the SKCM cohort (Supplementary Fig. 4e).  

It should be noted that there was a significant difference in the number of TCR and Ig CDR3 reads extracted 

from the samples from regional lymph nodes versus other tissue sites (Supplementary Fig. 4f). However, the 

association of high IGH clonality, high IGH expression, and high IgG1/IGH ratio with survival remained 

significant for the separately analyzed samples with or without lymph node tissue (Supplementary Fig. 4g). 



 
 

To exclude the influence of the disease stage, we separately analyzed melanoma stage III samples, which are 

the most abundant stage in the TCGA data. Again, all effects remained significant (Supplementary Fig. 4h). 

The proportional hazard model suggested comparable regression coefficients for all three covariates 

(Supplementary Fig. 4i). Collectively, these results indicate that intratumorally produced Igs represent a 

critical component of efficient anti-tumor response. 

 
 
 

References: 

1. Tumeh, P.C. et al. Nature 515, 568-571 (2014). 

2. Gottlin, E.B. et al. Journal of thoracic oncology : official publication of the International Association for the 
Study of Lung Cancer 6, 1687-1690 (2011). 

3. Willis, S.N. et al. J Immunol 182, 3310-3317 (2009). 

 
 



 
 

Supplementary Note 3. Functional characterization of TCR repertoires based on RNA-seq of sorted T-
cells 
 

RNA-seq data from tissues that contain relatively low T-cell counts, as is the case with many tumor samples, 

allow to extract information only for the most abundant TCR clonotypes. However, melanoma samples with 

high T-cell infiltration allowed us to extract relatively rich TCR repertoires, comparable to the shallow targeted 

TCR profiling (Fig. 1c). Therefore, we predicted that for the RNA-seq data obtained from pure T-cell samples, 

such as sorted T-cells, efficient extraction and comparative analysis of TCR repertoires should be possible.   

To test the feasibility of such an approach, we performed 50+50-bp paired-end RNA-seq analysis for the 

sorted effector (Teff) and regulatory (Treg) CD4 T-cells from the spleen and central nervous system (CNS) of six 

individual Foxp3yfpcre mice1 with induced experimental autoimmune encephalomyelitis (EAE). The near-100% 

abundance of T-cells in these samples allowed MiXCR to extract high-quality TCR repertoires comprising at 

average 1330/3295 TRA and 1489/3933 TRB unique functional CDR3 clonotypes/CDR3 sequencing reads per 

sample (Supplementary Table 5, see doi:10.6084/m9.figshare.4620739 for clonesets).  

We determined an efficiency of about 90–100 TRB CDR3 reads per million unique reads. For small samples of 

500 sorted T-cells covered by 3x10^7 reads, we could identify about 350–450 distinct clonotypes, indicating 

almost complete repertoire extraction (taking clonality into consideration), similar to the single cell RNA-seq. 

For large samples, the total number of reads remains the limiting factor. 50 million reads yield approximately 

5,000 TRB CDR3 reads, which means up to 5,000 TRB clonotypes in theory, although in reality the number is 

usually lower due to the natural clonality of the repertoire. Roughly speaking, 50 million unique 50+50-bp 

paired-end RNA-seq reads could reveal the TRB CDR3 repertoire for approximately 5,000 T-cells randomly 

chosen from a large T-cell sample. 

Extracted repertoires were suitable for the routine post-analysis using the VDJtools software2. First, we 

compared the diversity of repertoires, a challenging task in TCR profiling that preferably requires unique 

molecular barcoding for normalization of multiple samples3, 4. However, in paired-end RNA-seq, each 

sequencing read usually covers a unique starting RNA molecule, characterized with the unique starting 

nucleotide positions. PCR and optical duplicates are relatively rare and were excluded from the raw data. This 

allowed us to normalize samples for the accurate comparison of diversity metrics by extracting 500 random 

unique CDR3-containing reads, representing unique fragments of template RNA molecules from each sample. 

The diversity correlated well between the TRA and TRB repertoires (R>0.95, Fig. 2e), was similar between the 

effector and regulatory CD4 T-cell subsets, and was significantly lower in the CNS compared to spleen 

samples (Fig. 2f), reflecting the narrowed TCR repertoire in the CNS. 

Next, we analyzed CDR3 characteristics for the full extracted repertoires, weighted for clonotypes frequency. 

Treg cells were characterized by shorter TRB CDR3 lengths (Fig. 2g). The functional characteristics of the 

amino acids comprising the middle portion of CDR3 differed between Treg and Teff cells TRB repertoires (Fig. 



 
 

2h). The higher interaction ―strength‖5 of Treg CDR3s is in keeping with the previously observed higher TCR 

affinity of Tregs for self-peptide:MHC complexes, which may enable thymic Treg precursors to compete more 

efficiently for the limited amount of antigens found on thymic antigen-presenting cells6-8. Analysis of amino acid 

TRB CDR3 repertoire overlaps revealed separate clustering of Teff and Treg cells, indicating functional similarity 

of subset repertoires across mice (Fig. 2i). Thus, we conclude that detailed and highly informative insights into 

the structure of TCR repertoires can be obtained by using RNA-seq data from sorted T-cell subsets. 
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Supplementary Table 1. Comparison of the key software characteristics. 

 

 TRUST V’DJer MiXCR 

Analysis of T-cell receptors ✔ ✘ ✔ 

Analysis of B-cell receptors ✘ ✔ ✔ 

Paired-end analysis ✔ ✔ ✔ 

Single-end analysis ✔ ✘ ✔ 

Species Human Human Human, Mouse, Rat 

Analysis of TCR-seq and/or IG-seq1) ✘ ✘ ✔ 

Assemble CDR3 clonotypes2) ✘ ✘ ✔ 

Reports full CDR3 sequence ✘  3) ✔ ✔ 

Reports clonal abundances2) ✘ ✘ ✔ 

Builds full-length sequences4) ✘ ✔ ✘ 

Annotates V/J genes ✘  /✔  5) ✘ ✔ 

Annotates D gene ✘ ✘ ✔ 

Annotates C gene / antibody isotype ✘ ✘ ✔ 

Annotates V/D/J gene positions6)  ✘ ✘ ✔ 

Failed on some samples Yes7)/No Yes8) No 

Median % of V/J annotated CDR3’s 16% N/A 100% 

Median % of canonical CDR3’s9) 18% 100% 95% 

RAM requirement ~2Gb10)  ~30+ Gb11) ~2 Gb 

Average time of analysis of 108 reads, h 20h 28h (9 hours per chain)12) 4h 

Average sample analysis cost, USD12) 0.46$ 1.51$ (0.5$ per chain) 0.09$ 

Total analysis cost (all 140 samples, including 
truncated), USD13) 

64$ 106$ (35$ per chain) 12$ 

Operating system Cross-platform Linux Cross-platform 

Depends on external software TopHat 14) STAR 14) No 

Source-code available ✘ ✔ ✔ 

 



 
 

1) MiXCR allows for homogeneous analysis of TCR-seq, IG-seq, and RNA-seq datasets producing output in 
the same format, making possible further comparative analysis of outputs from both sources of information. 
Neither TRUST nor V’DJer support analysis of TCR-seq and IG-Seq data. 

2) Assembled clonotypes and information about their abundances is the standard representation of TCR/Ig 
repertoire by MiXCR. Clonotype abundances are highly important for further data interpretation. 

3) CDR3s reported by TRUST are truncated in nondeterministic way. 

4) From the beginning of Framework 1 (FR1) till the end of Framework 4 (FR4) 

5) In majority of cases TRUST has annotated either V or J gene but not both simultaneously 

6) Positions of boundaries of V/D/J genes. This information allows to calculate number of 5’/3’ truncated 
nucleotides of V/D/J genes and number of inserted N nucleotides. Such information is crucial for statistical 
inference of clonotype assembly probability and estimation of statistical significance of co-occurrence of same 
clonotype in several datasets. 

7) On some samples (e.g. analysis of TRA chain for paired-end SPX6730 with >80bp length) TRUST 
reported zero number of CDR3s which is seemed to be a bug. 

8) On some samples V’DJer failed to finish execution within 4 days running in 8 computer threads on Intel(R) 
Xeon(R) CPU E5-2683 v3 @ 2.00GHz and occupying more than 50 Gb of RAM. 

9) For TCR analysis canonical amino acid CDR3 is considered as matching regex 
^C[^_]*(?:[FW]|[FW]G.G)$. Since V’DJer provides no amino acid translation, for Ig analysis canonical 
nucleotide CDR3 is considered as matching  ^TG[TC].*(?:TT[TC]|TGG)$  pattern, not matching 
(?:...)*(?:TAA|TAG|TGA)(?:...)* pattern and with the sequence length multiple of 3. 

10) TopHat aligner is required to align raw sequencing reads before TRUST can assemble V-J contigs. 
TRUST itself consumes less than 1Gb RAM, while TopHat consumed more memory in all cases. Thus amount 
of RAM consumed by TopHat was used as an overall memory consumption value. 

11) STAR aligner is required to align raw sequencing reads before V’DJer can assemble V-J contigs. STAR 
aligner consumes at least 30 Gb of RAM (depending on the reference human genome used). RAM 
requirement for V’DJer itself highly varies from sample to sample (e.g. analysis of SPX6730 required 50Gb of 
RAM). 

12) To analyze all IGH, IGK and IGL chains, one has to run V’DJer three times (independently for each chain). 

13) Bulk analysis of a large set of data samples requires substantial computation power. To analyze all 140 
samples by three software tools in our benchmark we rented computer instances at Amazon Web Services 
(EC2). To minimize total analysis cost we used only spot EC2 instances during weekends, when price is the 
lowest. Instances with minimal required amount of RAM were used for each software. In case of V’DJer and 
STAR which require a huge amount of RAM we used r3.2xlarge instances ($0.083/hour). For running TopHat, 
TRUST and MiXCR c3.xlarge instances were used ($0.035/hour). We believe that this estimation reflects the 
real costs of organization hosting required computational power (spent on hardware, electricity, administration, 
etc). 

14) Both TRUST and V’DJer require reads aligned to human genome in BAM format as input. TRUST 
requires raw reads to be aligned with TopHat aligner, while V’DJer requires STAR aligner. We found that when 
using TopHat alignments as input for V’DJer its performance degrades. When using STAR alignments as input 
for TRUST, it produces almost no results.  



 
 

Supplementary Table 2. Estimating the number of extractable TRB CDR3 reads. 
 

 Sequencing length TRB CDR3-containing reads per 1,000 TRBC sequencing reads, CI 95% 

50 bp 20.2 ± 0.3 

75 bp 50.0 ± 1.0 

100 bp 81.4 ± 3.8 

50+50 bp 46.2 ± 0.6 

75+75 bp 80.7 ± 21.1 

100+100 bp 128.2 ± 6.4 

  



 
 

                                                

  Sequencing length, bp 100+100 bp 100 bp 50+50 bp 50 bp 

Software tool MiXCR TraCeR MiXCR TraCeR MiXCR TraCeR MiXCR TraCeR 

Functional TRA 231(85%) 223(82%) 227(83%) 220(81%) 226(83%) 215(79%) 215(79%) 206(76%) 

Functional TRB 252(93%) 247(91%) 250(92%) 245(90%) 249(91%) 242(89%) 239(88%) 235(86%) 

Functional pairs 221(81%) 209(77%) 215(79%) 207(76%) 214(79%) 198(73%) 196(72%) 186(68%) 

 

 
Supplementary Table 3. TRA and TRB CDR3 extraction from 272 single cells RNA-seq data. Single-cell 

transcriptome analysis is a rapidly developing methodology for characterization of cellular phenotypes and 

heterogeneity1-3. As MiXCR showed high efficiency for conventional bulk RNA-seq data, we tested its 

performance for previously published single-cell RNA-seq data from 272 CD4+ T-cells, and compared the 

efficiency of MiXCR versus the TraCeR software that was originally used for analysis4. MiXCR showed higher 

efficiency for both functional chains, detecting at least one TRA and TRB chain in 85% and 93% of individual 

cells, respectively, and detecting productive pairs in 81% of cells (versus 77% for TraCeR). MiXCR also 

outperformed TraCeR with 50-bp single- and paired-end and 100-bp single-end reads that were in silico-

generated from original 100-bp paired-end data. 
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Supplementary Table 5. TCR repertoires extraction form sorted mice T cell RNA-seq.  
  

Sample ID 
Approximate 

number of 
sorted T cells 

RNA amount 
used for 

RNA-seq, ng 

Total number 
of unique 

paired-end 
sequencing 

reads 

Number of 
reads 

containing 
functional (in 
frame) TCR 
alpha CDR3 

Number of 
reads 

containing 
functional   
TCR beta 

CDR3 

Number of 
functional  
TCR alpha 

CDR3 reads 
per million 

reads 

Number of 
functional  
TCR beta 

CDR3 reads 
per million 

reads 

Number of 
extracted 
functional  
TCR alpha 
clonotypes 

Number of 
extracted 
functional  
TCR beta 
clonotypes 

CNS_Teff_1 8900 2 35587184 2543 2666 71 75 720 703 

CNS_Teff_2 4100 all (1.3) 33431485 2789 3164 83 95 864 728 

CNS_Teff_3 24000 2 32804755 2547 2589 78 79 700 611 

CNS_Teff_4 6900 2 34756703 2826 3016 81 87 997 936 

CNS_Teff_5 4000 all (1.0) 30220582 2396 2750 79 91 695 658 

CNS_Teff_6 4000 all (1.0) 27260264 2464 2710 90 99 639 591 

CNS_Treg_1 2000 all (1.0) 30444580 1767 1895 58 62 642 617 

CNS_Treg_2 1300 all (0.9) 46112231 4476 4376 97 95 666 582 

CNS_Treg_3 2400 all (1.3) 27457454 1793 1801 65 66 793 736 

CNS_Treg_4 1900 all (0.8) 33091302 2418 2803 73 85 819 787 

CNS_Treg_5 500 all (0.3) 35420782 2839 2942 80 83 462 408 

CNS_Treg_6 500 all (0.3) 30011308 2622 2730 87 91 395 367 

SP_Teff_1 100000 10 51204555 3439 4117 67 80 1571 1707 

SP_Teff_2 100000 10 50886232 3605 4445 71 87 1970 2250 

SP_Teff_3 100000 all (3.1) 52677819 3659 4648 69 88 1506 1684 

SP_Teff_4 100000 10 57358961 3789 5147 66 90 1781 2006 

SP_Teff_5 100000 10 48550774 2916 4127 60 85 1762 2088 

SP_Teff_6 100000 10 57360066 5175 7092 90 124 2603 3352 

SP_Treg_1 100000 10 49361408 3187 3549 65 72 1582 1726 

SP_Treg_2 100000 10 55310370 4360 5600 79 101 2397 2977 

SP_Treg_3 100000 10 54781194 4966 6156 91 112 2038 2390 

SP_Treg_4 100000 10 51283048 4194 5749 82 112 1972 2398 

SP_Treg_5 100000 10 53589946 4694 5596 88 104 2066 2565 

SP_Treg_6 100000 10 51560460 3639 4736 71 92 2289 2881 

 

 



 
 

 
 

 
 

Supplementary Figure 1 

Pipeline overview. 

(1) MiXCR accepts raw paired- or single-end sequencing data as input. RNA-seq data contain only a tiny fraction of target Ig/TCR 
reads (one per 10

5
-10

7
 reads). (2) Alignment of raw sequencing reads to genomic sequences of V, D, J and C genes. Non-aligned 

reads are filtered out. (3) Reads containing only fragments of CDR3 are assembled into contigs with full or near-full coverage of 
CDR3. Assembly is performed only for reads with large overlap involving a substantial part of the hypervariable N region. (4) TCR 
sequences that contain defined V and J genes but do not fully cover the ends of the CDR3 are extended using germline sequence. 
This procedure is not performed for Igs because of possible hypermutations in the extended sequence. (5-6) The resulting 
sequences are clustered into clonotypes based on their CDR3 sequence. This step includes correction of artificial diversity from 
PCR and sequencing errors. (7) The primary output is a list of clonotypes with comprehensive information on their abundance, 
V/D/J genes composition, antibody isotype, CDR3 sequence topology, etc. 



 
 

 

Supplementary Figure 2 

Sensitivity and specificity of TCR and Ig repertoire extraction from tumor RNA-seq data, SPX6730-2, SPX8151-1 and SPX8151-2  
tumor samples. 

a. Dependence of total number of TCR beta CDR3 clonotypes, number of TCR-seq-confirmed clonotypes (green), number of 

canonical unconfirmed clonotypes (blue) and number of non-canonical unconfirmed clonotypes (red) on the paired-end sequencing 
reads length. In the case of TRUST green band states for definitely confirmed while orange for partially confirmed (allowing 6 
nucleotides to be truncated) clonotypes. b. Dependence of the share of TCR-seq-confirmed TRA and TRB clonotypes extracted 

from RNA-seq data on the clonotype abundance (estimated by TCR-seq). The x-axis corresponds to clonotype frequency A in 
TCR-seq data. The y-axis corresponds to the fraction of identified clonotypes in the total number of control clonotypes with the 
frequency greater than A. c. Correlation of TCR clonotypes frequency in MiXCR-extracted repertoires from TCR-seq and RNA-seq 

data. 



 
 

 
 

 

Supplementary Figure 3 

MiXCR and TRUST performance comparison on in silico generated data. 

a. Comparison on paired-end data. b. Single-end data. Dark green color corresponds to fully matched CDR3s (without any 

mismatches or indels), lighter shades of green denotes CDR3s matched with mismatches or indels (up to 3 mutations); red color 
denotes false-positive CDR3s (missing in the original set of synthetic clones). 



 
 

 

 
 

Supplementary Figure 4 

Validation of IGH clonality, expression and isotype ratio effects for TCGA SKCM samples. 

a,d. Kaplan–Meier plots depicting the survival probability over time for high (>=cutoff) and low (<cutoff) metrics groups for IGG, IGK, 

IGL (for samples with >500 CDR3 reads of corresponding gene loci) and TRA, TRB (for samples with >50 CDR3 reads) repertoire 
clonality and TRB expressions (a) and isotype coverage ratios (d). Cutoff values were determined in terms of median values. p 
values of log-rank test for survival difference between low and high metrics groups are shown. n, number of patients. b. Exemplary 

lineage trees of hypermutating IGH CDR3 variants, sample SKCM193 (primary tumor). Adjacent nodes differ by exactly one 
nucleotide mismatch. The nodes are colored according to antibody isotype: IgG1 (yellow) or undetermined (white). Size of nodes is 
proportional to the clonotypes frequencies.  c. Plot depicts the proportions of Ig isotypes among IGH.  e. Analysis of 1,000 subsets 

of the original SKCM cohort, each representing a randomly chosen 50% of samples. For each iteration, we evaluated log-rank test 
χ

2
 statistics for groups split by a given metric’s median. Box plots report the distribution of the log-rank test score for the sampled 

subsets. p value is for the median log-rank test score over 1,000 simulations. f. TRB and IGH CDR3 reads extraction efficiency 
from lymph-node containing and non-lymph node samples.  g,h. Kaplan–Meier survival plots for high (>=cutoff) and low (<cutoff) 

metrics groups for TRB expression, TRB clonality (for samples with >50 TRB CDR3 reads), IGH expression, IGH clonality (for 
samples with >500 IGH CDR3 reads), and IgG1/IGH proportion for lymph node-containing and non-lymph node-containing samples 
(f), and melanoma Stage III samples only (g). i. Inverse hazard ratios of the major covariates (IGH expression, IGH clonality and 

IgG1/IGH proportion) for all 458 samples. The hazard ratios are calculated by the proportional hazards regression model. Hazard 
ratios were inverted to reflect a favorable prognostic function of the covariates in the chart. 
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