Supporting Information for: Metabolism and bioactivation of flurochloridone, a novel selective herbicide, in vivo and in vitro

Jingmin Shi,^{†,‡,⊥} Cen Xie,^{‡,⊥} Hongbing Liu,[§] Kristopher W. Krausz,[‡] Carole A. Bewley,[§] Suhui Zhang,[†] Liming Tang,^{†,*} Zhijun Zhou,¹ and Frank J. Gonzalez^{‡,*}

 [†]Pharmacology and Toxicology, Department/Center for Drug Safety Evaluation, Shanghai Institute for Food and Drug Control, Shanghai 201203, PR China
 [‡]Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
 [§]Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States
 ^ISchool of Public Health, Fudan University, Shanghai 200032, PR China
 [⊥]Co-first author

*Correspondence authors: Emails: <u>gonzalef@mail.nih.gov</u> (F.J.G.) and <u>tangliming@smda.gov.cn</u> (L.T.)

Pages: 15 Tables: 5 Figures: 6

SUPPLEMENTAL EXPERIMENTAL SECTION

In vivo Metabolism. Male 6- to 8-week-old C57BL/6 mice were selected for metabolite profiling. FLC dissolved in corn oil was administered by oral gavage at a dose of 5 or 50 mg/kg BW. Control mice were treated with corn oil alone. Each group consist of 4 mice. Mice were fasted overnight and refed 2 h after dosing. Urine and feces samples were collected for 24 h using metabolic cages (Metabowls, TechPlast Sales Inc. New York, USA). Blood samples were collected by retro-orbital bleeding at 4 and 24 h, respectively. After centrifugation for 10 min at 14 000×g, serum was obtained for metabolites analysis. Gallbladder samples were collected after euthanized. After centrifugation for 10 min at 14 000×g, bile samples were collected. For toxicity study, mice were fed on control diet or 0.5% FLC-containing diet for 10 days. Serum and liver samples were collected for toxicity evaluation.

Purification and Characterization of the GSH Conjugate of Flurochloridone. A scaled-up mouse liver microsomal incubation (10 mL) with 5 mg/mL FLC was performed under similar experimental conditions as described above. After a 4-h incubation, the reaction was terminated by adding equal volume of ice-cold acetonitrile and then centrifuged at 14 000×g for 10 min. The resulting supernatants were separated by preparative HPLC (flow rate of 12 mL/min, eluting with a 60 min gradient from 0–50% acetonitrile in H₂O). The fraction containing the GSH conjugate was collected, halved and evaporated to dryness under reduced pressure to yield a yellow solid product (11.0 mg, 90.8% purity). The NMR spectra were recorded at 298 K on a 500 MHz NMR spectrometer equipped with a triple resonance cryoprobe and z gradient (Bruker Biospin, Switzerland). Chemical shifts (δ) were reported in parts per million (ppm) relative to the solvent. Preparative HPLC was performed on an Agilent 1100 and a Waters SymmetryPrep C18 column (19 × 300 mm, S-7 µm, 12 nm). All solvents used were of HPLC grade (Sigma Aldrich).

In vivo **Sample Preparation.** Urine samples were prepared by mixing 25 μ L urine with 175 μ L 50% aqueous acetonitrile. Serum samples were prepared by mixing 20 μ L serum with 180 μ L 50% aqueous acetonitrile. Bile samples were prepared by mixing 2 μ L bile with 198 μ L 50% aqueous acetonitrile. Feces homogenates in a 20-fold volume of 50% aqueous acetonitrile were prepared. After centrifugation at 14 000× g for 20 min, a 5 μ L aliquot of the supernatants was injected into a Waters UPLC-ESI-QTOFMS system (Waters Corporation, Milford, MA). injected into a UPLC-ESI-QTOFMS.

UHPLC-ESI-QTOFMS and UHPLC-ESI-TQMS Analysis. Metabolite profiling and identification were performed on an Acquity UHPLC/Premier Q-TOF MS (Waters Corp.) with an electrospray ionization source. Separation was achieved on an Acquity C18 BEH UPLC column (50 mm \times 2.1 mm i.d., 1.7 mm; Waters Corp.). The mobile phase consisted of water containing 0.1% formic acid (A) and acetonitrile containing 0.1% formic acid (B). The following gradient condition was used: using 2% B in 0.5 min, increasing B up to 20% over the next 3.5

min, then increasing B up to 95% for another 4 min, then increasing B up to 99% for another 1 min, bringing back to 2% at 0.1 min and holding at 2% until the end. The flow rate of the mobile phase was set 0.4 mL·min⁻¹. Column temperature was maintained at 40°C throughout the run. Data were collected in both positive ion mode, which was operated in full-scan mode at 50–850 m/z. Nitrogen was used as both cone gas (50 L·h⁻¹) and desolvation gas (600 L·h⁻¹). Source temperature and desolvation temperature were set at 150°C and 400°C, respectively. The capillary voltage and cone voltage were 3000 and 58 V, respectively. The structures of metabolites were elucidated by tandem MS fragmentography with collision energies ranging from 15 to 40 eV. To determine the GSH adduct produced by recombinant enzymes and liver extracts and FLC in mice serum, bile, urine, and feces, an Acquity UPLC system coupled with a XEVO triple-quadrupole tandem mass spectrometer (Waters Corporation) was used. Multiple reaction monitoring (MRM) was employed, and the MRM transition 583—454 was used for GSH adduct and 312—292 was for FLC.

SUPPLEMENTAL TABLES

Table S1. UHPLC-ESI-QTOFMS data for flurochloridone metabolites detected in mice at 5 mg/kg

No.	Metabolic pathway	Rt (min)	Measured [M+H] ⁺	Formula	Error (ppm)	Matrices
M0	Parent	6.62	312.017	C12H10Cl2F2NO	-0.8	UFS
M1	Reductive dechlorination	6.31	278.057	C12H11CIE2NO	3.2	U F
M2	Oxidative dechlorination of 3-Cl	5.67	294 051	C12H11CIF2NO2	-0.1	UF
M3	Oxidative dechlorination of 6-Cl	5 78	294 052	$\frac{C_{12}H_{11}CIF_{3}NO_{2}}{C_{12}H_{11}CIF_{3}NO_{2}}$	4.6	UBF
M4	Oxidative dechlorination of 6-Cl to carboxylic acid	5.84	308.029	C ₁₂ H ₉ ClF ₃ NO ₃	-5.2	U, B
M5-1	Hydroxylation	6.06	328.011	$C_{12}H_{10}Cl_2F_3NO_2$	-1.4	U, F
M5-2	Hydroxylation	6.24	328.011	C ₁₂ H ₁₀ Cl ₂ F ₃ NO ₂	-2.4	F
M6	Substitution of chlorine with cysteine	5.35	397.060	C ₁₅ H ₁₆ ClF ₃ N ₂ O ₃ S	-0.6	U, F, B
M7-1	Substitution of chlorine with cysteine and hydroxylation	4.64	413.055	C ₁₅ H ₁₆ ClF ₃ N ₂ O ₄ S	-0.8	U
M7-2	Substitution of chlorine with cysteine and hydroxylation	4.80	413.056	$C_{15}H_{16}ClF_{3}N_{2}O_{4}S$	1.6	U
M7-3	Substitution of chlorine with cysteine and hydroxylation	4.97	413.057	$C_{15}H_{16}ClF_3N_2O_4S$	4.0	U
M7-4	Substitution of chlorine with cysteine and hydroxylation	5.04	413.056	$C_{15}H_{16}ClF_3N_2O_4S$	2.8	U
M8	Substitution of chlorine with N-acetylcysteine	5.94	439.071	$C_{17}H_{18}ClF_3N_2O_4S$	0.3	U, B, F, S
M9	Substitution of chlorine with glycerylcysteine	5.30	454.083	$C_{17}H_{19}ClF_3N_3O_4S$	4.2	U, F
M10-1	Substitution of chlorine with <i>N</i> -acetylcysteine and hydroxylation	4.05	455.066	$C_{17}H_{18}ClF_{3}N_{2}O_{5}S$	0.7	U
M10-2	Substitution of chlorine with <i>N</i> -acetylcysteine and hydroxylation	5.43	455.066	$C_{17}H_{18}ClF_{3}N_{2}O_{5}S$	0.2	U
M10-3	Substitution of chlorine with <i>N</i> -acetylcysteine and hydroxylation	5.54	455.063	$C_{17}H_{18}ClF_{3}N_{2}O_{5}S$	-4.9	U
M10-4	Substitution of chlorine with <i>N</i> -acetylcysteine and hydroxylation	5.59	455.065	$C_{17}H_{18}ClF_3N_2O_5S$	-2.0	U
M11-3	Oxidative dechlorination of 6-Cl and glucuronidation	5.32	470.084	$C_{18}H_{19}ClF_3NO_8$	1.2	U, B
M12	<i>N</i> -acetylcysteine conjugation	5.40	473.032	$C_{17}H_{17}Cl_2F_3N_2O_4S$	0.2	В
M13	Substitution of chlorine with glutathione	5.34	583.128	$C_{22}H_{26}ClF_3N_4O_7S$	6.2	В
M14-1	Substitution of chlorine with glutathione and hydroxylation	4.80	599.119	$C_{22}H_{26}ClF_{3}N_{4}O_{8}S$	0.2	В
M14-2	Substitution of chlorine with glutathione and hydroxylation	4.85	599.121	$C_{22}H_{26}ClF_3N_4O_8S$	3.3	В
M14-3	Substitution of chlorine with glutathione and hydroxylation	4.94	599.122	$C_{22}H_{26}ClF_3N_4O_8S$	4.7	В
M14-4	Substitution of chlorine with glutathione and hydroxylation	5.03	599.120	$C_{22}H_{26}ClF_3N_4O_8S$	1.2	В

	241	1 (2	10	244
M0 (Flurochloridone)	MI	M2	M3	M4
-HF 256 276	ÇI	276 🔫 -	256 🔫 -	HOOC
CI		ÇI 🔪	OH	-2H 226
v (`∽.)ci	\square	< \ __ OH	j v (, ≥~ , Çi	262 [*] N 0
240	_N∕≂o		240	2
212 212	Ĩ	() the o	212 ⁻	HE
N AU	-HF 258			145
1172	- 230	1 1 A	1 1 A	↓ CF ₃
145 -HF 292	✓ CF ₃	145	145	
CF3		CF3	CF3	
292 010 276 040 256 037	258.056	276 047 274 044 145 023	274 041 256 054 240 043	288.024, 262.026, 226.042,
292.010, 270.040, 250.057,		270.047, 274.044, 145.025	229.067.145.029	145.026
240.060, 212.071, 198.053,			228.007, 145.028	
172.033, 145.031				
M5-1, M5-2	M6	M7-1 ~ M7-4	M8	M9
-H ₂ O	-2H	-2H 007	-2H 202	437
274 - 292 -			421 380 397	*
	0	0		∭ X N⊔ 351
256	HO HO	HO NH2	HO	HOOC N N
228	1334	1 St.	3517↓ ÿ Ö	
HONNO	CI 308	CI 324	U1308	
H ₂ O	t → → 0 t 276 · 256	359 - 395	240 V 276 256	$\gamma \neq 0$
	240 ¥ -N. 212	N HO	240	<u> </u>
145 308		HU CF3		
~ 'CF ₃	145 🛁		145 - 207 050 202 0(1	
308.010, 292.035, 274.030,	380.028, 351.051, 334.023,	396.023, 395.054, 367.046,	421.055, 397.059, 393.061,	437.0557, 362.0155,
256 060 228 054 172 037	308.010.276.034.256.032	359.066.324.009	380.033, 351.056, 334.023,	351.0525.308.0099
145.029	240.061.212.060.145.026		308.015.276.036.256.035.	
145.028	240.001, 212.000, 145.020		240.056 145.026	
		X(11.2	240.050, 145.020	2412
$M10-1 \sim M10-4$	M11-1, M11-2	M11-3	M12	M13
437 396 413	276 - 294	294 O+Glu	-2H	508 454 +2H
0 H +2H		i ci	⁴⁵⁵ 414 473	437
HONN	Or Glu	\rightarrow	Hrs. +2H	````````````СООН
		$\langle \rangle_{0}$	HO	
Class	N ~ 0	N° O	385 V U HE	351
1,324	L .		Cl 342 S Cl 368 348	CI 308 S 362
₩ 272	HF 274	_HF ► 274		
		CF3	_ <u>_</u> N	_ <u>n</u>
OH CE	0.3			
145			/ >-CF3	CF3
	294 052 276 039 274 040	294 050 274 043		565 115 508 088 454 079
437.061, 413.046, 396.031,	2)4.032, 270.039, 274.040	274.030, 274.045	455.041, 431.015, 413.990,	303.113, 308.088, 454.077,
324.005, 272.033			385.005, 367.985, 347.979,	437.052, 362.020, 351.050,
1			341.975	334.025, 308.010
$M14-1 \sim M14-4$	M15			
	542 400			
416 470	471 +2H			
524 000	I < [™] †1. >			
	∖ 0 /// соон			
HOOC N NH2	HOOC			
324 Ö	385 3			
CI - P				
FAE TO 581	50			
040 - 001 N	\n(
HO CE	-05			
((
581 104 545 127 524 088	542 053 488 046 471 016			
470.005 416.002 224.000	295.016.241.074			
4/0.085, 416.085, 324.003	363.010, 341.974]		

Table S2. MS/MS fragments and proposed structures of flurochloridone metabolites

Matrices	Time	Unit	Dose (mg/kg)	
	interval (h)		5	50
Serum	4	μΜ	0.941 ± 0.220	8.02 ± 2.81
	24		0.053 ± 0.025	0.285 ± 0.076
Urine	0 - 24	% of the dose	0.122 ± 0.080	0.134 ± 0.033
Feces	0 - 24	% of the dose	1.21 ± 0.120	1.40 ± 0.198

Table S3. Serum flurochloridone concentrations and urinary and feces excretion

No.	Metabolic pathway	Rt (min)	Measured [M+H] ⁺	Formula	Error (ppm)
M0	Parent	6.63	312.017	$C_{12}H_{10}C_{12}F_{3}NO$	0.1
M3	Oxidative dechlorination of 6-Cl	5.78	294.050	$C_{12}H_{11}ClF_3NO_2$	-4.6
M4	Oxidative dechlorination of 6-Cl to carboxylic acid	5.84	308.032	C ₁₂ H ₉ ClF ₃ NO ₃	5.8
M5-1	Hydroxylation	6.05	328.011	$C_{12}H_{10}Cl_2F_3NO_2$	-1.7
M5-2	Hydroxylation	6.25	328.014	$C_{12}H_{10}Cl_2F_3NO_2$	5.0
M13	Subtitution of chlorine with glutathione	5.32	583.127	$C_{22}H_{26}ClF_{3}N_{4}O_{7}S$	5.2
M14-1	Subtitution of chlorine with glutathione and hydroxylation	4.80	599.120	$C_{22}H_{26}ClF_{3}N_{4}O_{8}S$	1.3
M14-4	Subtitution of chlorine with glutathione and hydroxylation	5.03	599.116	$C_{22}H_{26}ClF_{3}N_{4}O_{8}S$	-5.0

Table S4. UI	PLC-ESI-0	QTOFMS	data for	flurochloridon	e metabolites	detected in	n microsomes
--------------	-----------	--------	----------	----------------	---------------	-------------	--------------

No.	$\delta_{ m H}$ (mult. J in Hz)	δ _C
2		174.2
3	3.82 (d, 8.4)	49.5/50.5
4	2.73 (m)/2.78 (m)	41.7/42.0
5	4.10 (t, 9.0)	51.0/50.9
	3.85 (dd, 10.7, 4.3)	
6	3.92 (m)	45.9/45.8
	3.89 (m)	
1'		140.9
2'	8.14 (s)	118.2
3'		132.5, 132.2, 132.0, 131.7
4'	7.51 (d, 8.0)	122.6
5'	7.61 (dd, 8.0, 8.0)	131.0
6'	7.83 (d, 8.5)	124.6
-CF ₃		162.2, 161.9, 161.7, 161.4
1"		171.6
2"	4.05 (t, 6.4)	53.4
3"	2.26 (m)	27.1/27.0
	2.19 (m)	
4"	2.61 (t, 6.9)	32.4
5"		174.3
7''	4.73 (dd, 9.0, 5.8)	54.1/54.6
8"		172.9
10"	3.97 (m, 2H)	41.8
11"	× · · /	172.6
12"	3.37 (dd, 13.9, 5.7)	34.6/34.4
	2.98 (dd, 13.9, 8.4)	
	/3.26 (dd, 13.9, 7.5)	
	/3.16 (dd, 13.9, 5.7)	

Table S5. ¹H (500 MHz) and ¹³C (125 MHz) NMR data for flurochloridone GSH conjugate in CD₃OD

SUPPLEMENTAL FIGURES

Figure S1. Metabolic profiles of flurochloridone in urine (A), bile (B), and feces (C) collected at 0 to 24 h postdose, and serum samples (D) collected at 4 hour postdose. Mice received a single oral administration of 5 mg·kg⁻¹ flurochloridone.

Figure S2. UHPLC-UV metabolic profiles of flurochloridone in urine (A), bile (B), and feces (C) collected at 0 to 24 h postdose. Mice received a single oral administration of 50 mg \cdot kg⁻¹ flurochloridone. Upper trace, sample before dose. Lower trace, dosed sample.

Figure S3. Extracted ion chromatograms of flurochloridone and its metabolites in HLM incubations: buffer (A), with NADPH and GSH (B), and with GSH but without NADPH (C).

 Construction
 Construction<

0 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20

Figure S4. (A) ¹H NMR spectrum. (B) ¹³C NMR spectrum. (C) DEPT spectrum. (D) HSQC spectrum. (E) COSY spectrum. (F) Structure and key ¹H–¹H COSY (–) and HMBC (\rightarrow) correlations of flurochloridone GSH conjugate.

Figure S5. Enzyme kinetics of GSH conjugation by MLM (A) and MLC (B) fitted by Michaelis-Menten kinetic model. Eadie-Hofstee plots are shown as insets. Data were obtained from three replicates.

Figure S6. Toxic response in mice fed on the diet containing 0.5% FLC or control diet for 10 days. (A) Liver ALT. (B) Liver aqueous peroxide. (C) Liver triglycerides. Data are presented as mean \pm SD; n = 4/group. *P < 0.05, and **P < 0.01 versus vehicle group, by two-tailed Student's t-test.