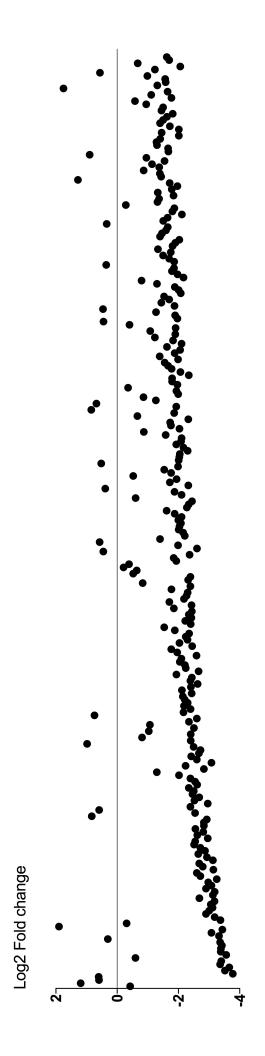
Human serum albumin alters specific genes that can play a role in survival and persistence in *Acinetobacter baumannii*.

Brettni Quinn^{1#}, Nyah Rodman^{1#}, Eugenio Jara², Jennifer S. Fernandez¹, Jasmine Martinez¹, German M. Traglia³, Sabrina Montaña⁴, Virginia Cantera⁸, Kori Place¹, Robert A. Bonomo^{5,6,7}, Andres Iriarte⁸, and María Soledad Ramírez¹* ¹Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA, ²Área Genética, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay, ³Laboratorio de Bacteriología Clínica, Departamento de Bioquímica Clínica, Hospital de Clínicas José de San Martín, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina, ⁴Instituto de Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Argentina. ⁵Medical Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA, ⁶Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA, CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA, 8 Laboratorio de Biología Computacional, Dpto. de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, UdelaR, Montevideo, Uruguay.

Additional Information

Supplementary information accompanies this paper Legends to Supplementary Figure and Tables


[#]These authors contributed equally to this work

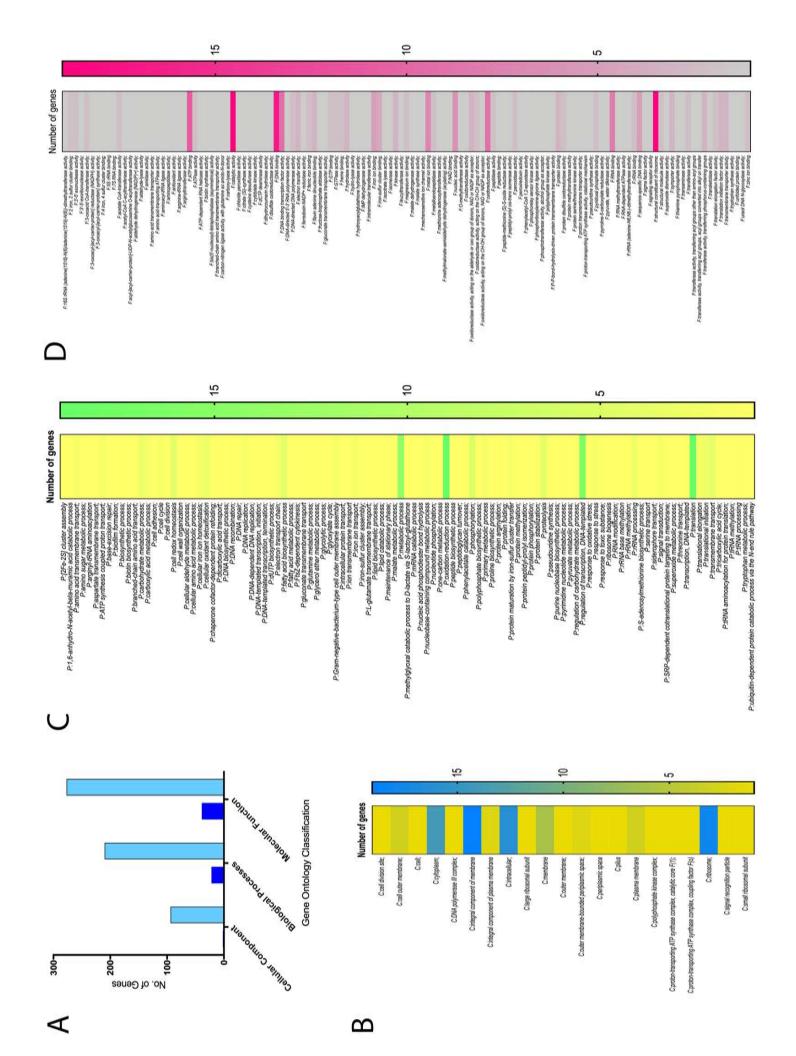

Figure S1. Plot of differential gene expression under HSA treatment. The log₂ fold change values of all statistically significantly (FDR adjusted *P*-value of <0.1) differentially expressed genes identified during transcriptomic analysis of *A. baumannii* strain A118 cells during growth with or without HSA.

Figure S2. Gene ontology analysis of differentially expressed genes under HSA treatment. The significantly differentially expressed genes identified during transcriptomic analysis were categorized by their associated gene ontology terms and were placed into one or more of the following categories: cellular component, biological processes and/or molecular function, in an effort to identify their role/function. (A) Within the three main gene ontology categories, up-regulated genes are depicted in dark blue and down regulated genes are depicted in light blue. Furthermore, the number of genes associated with each gene ontology term within the (B) cellular components, (C) biological processes and (D) molecular function categories are depicted as a heat map.

Table S1 Information about all statistically significantly (FDR < 0.1) differentially expressed genes including gene ID, name, function, log_2 fold change and FDR value. Genes highlighted in green are discussed in detail.

Table S2 Information about all differentially expressed genes including gene ID, annotation (when available), log_2 fold change and FDR value.

