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Supplementary Methods

NCA Model

Before describing the mathematical foundation of the NetREX method, we provide a brief overview
of the traditional (static) network component analysis (NCA) method and its various implementa-
tions. Next we introduce the formula for the objective function in our NetREX method. Impor-
tantly, the objective function is non-convex and non-smooth because of the use of the `0 norm in
our formulation. Rather than relaxing the problem by replacing the non-convex `0 norm with the
convex `1 norm, we have directly solved the more challenging problem with the `0 norm by adapting
the recently proposed Proximal Alternative Linearized Maximization (PALM) algorithm [1] to our
original formulation.
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Supplementary Figure 1: The NCA model. (A) Graph representation of NCA. E(i, :) is the expres-
sion of gene i over L experiments and A(i, :) is the activity of TF i over the same L experiments.
S(i, j) is the control strength from TF j to gene i. (B) The algebraic formulation of NCA. E, S
and A in (B) correspond to E, S and A in (A).

The main principle of NCA is to explain the expression of each gene as a linear combination
of the activities of its regulating TFs, weighted by the strength of control they exert over that
gene. The topology of the bipartite GRN is provided as a part of the input in NCA. Formally, let
E ∈ RN×L be the matrix of expression data of N genes in L experiments. NCA is a special case of
a more general problem which is to express E as

E = SA+ Γ, (1)

where S ∈ RN×M is the weighted adjacency matrix of the bipartite GRN G(TF ,TG ,S) such that
the edges of G in the edge set S connect transcription factors in the M -element set TF to target
genes from the N -element set TG . Specifically, for target gene i and transcription factor j, weight
S(i, j) defines the control strength that transcription factor j exerts on gene i. The ith row of
A ∈ RM×L, A(i, :), represents the (hidden) TF activities of i over the set of experiments, and
Γ ∈ RN×M represents the noise (Supplementary Fig. 1).

Many mathematical techniques, such as principle component analysis (PCA), independent com-
ponent analysis (ICA), non-negative matrix factorization (NMF) [2] and sparse coding (SP) [3], can
be used to determine the decomposition of E specified in (1) (for NMF, E needs to be normalized
to a non-negative matrix). However, PCA and NMF [4] are unable to find a decomposition of E
when M > L (i.e. the number of TFs is larger than the number of experiments). Moreover, PCA
and ICA hinge on assumptions of orthogonality and independence between the signals, which may
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not hold for TF activities (rows of A). In addition, none of these techniques can utilize the prior
knowledge of the GRN G. In contrast, NCA [5, 6, 7, 8, 9, 10] can deal with the situation when
M > L, makes no assumptions on TF activities, and is able to take full advantage of the prior
knowledge of the GRN G. Specifically, NCA aims to uncover the matrix A describing the hidden
regulatory activities of TFs and the matrix S describing control strengths of each TF on target
genes by assuming that the structure S0 (unweighted adjacency matrix) of the underlying GRN
G0 = (TF ,TG ,S0) is known. That is, only the entries of S that correspond to edges in S0 can
be non-zero (formally Support(S) = Support(S0), where Support(S) denotes the support of S, i.e.
the positions of its non-zero entries.). Thus NCA recovers the TF activities A and their control
strengths S, with only the expression data E and the structure S0 of G0 as inputs, by solving the
following optimization problem.

min
S,A

1

2
‖E − SA‖2F

s.t. Support(S) = Support(S0),

‖S‖∞ ≤ a, ‖A‖∞ ≤ b,

(2)

where ‖S‖∞ = maxi,j |S(i, j)|. The first constraint in the above formulation restricts the structure
of the regulatory network G, represented by matrix S, to be exactly the same as that of the input
regulatory network G0. The rest of the constraints aim to ensure that the elements of A and S
remain within the domain of biologically sensible values.

The first method [5] to solve (2) can only provide a unique solution if the following conditions
are met: (i) the matrix S should have full-column rank; (ii) each column of S should have at
least M − 1 zeros; (iii) the matrix A should have full row-rank. Under these conditions, S and
A are estimated using an iterative two-step least-squares algorithm [5]. Tran et al. [6] expanded
NCA by allowing the specification of the zero pattern of A as well as S. Galbraith et al. [7]
modified the NCA method by revising the third criterion for NCA which cannot be tested before
solving the problem. Chang et al. [8] treated NCA as an unconstrained optimization problem
and employed singular value decomposition (SVD) to find a closed form solution for S without
time-consuming iterations. Jacklin et al. [9] also proposed a non-iterative algorithm for NCA,
resorting to convex optimization methods. All these methods are vulnerable to the presence of a
small number of outliers in expression data. To deal with these outliers, Noor et al. [10] proposed
ROBust Network Component Analysis (ROBNCA) where an additional sparse matrix was used for
explicitly modeling the outliers.

The Formulation of NetREX

Aside from the numerous variants of NCA, the assumption that the GRN must be known in advance
is a significant drawback to this method. NetREX relaxes this restriction under the assumption that
a prior regulatory network that is not too far from the underlying true regulatory network is given.
Therefore, it is possible to recover the underlying regulatory network by limited changes to the prior
network. Note that this is a very reasonable assumption for many practical applications, as the
prior network could come from a related organism, a related tissue, or even from the same organism
but without sufficient data. Additionally, to guide network reconstruction, we assume that genes
with highly correlated expression are likely to be regulated by the same TFs. The correlations
between genes can be encoded in the gene correlation network GE , which is constructed based
on gene expression data E. Thus, we remove the constraint that the structure of the network is
fixed (Support(S) = Support(S0)), but introduce a penalty term that limits the number of added
and removed edges with respect to the prior network, along with terms encouraging consistent

3



treatment of co-expressed genes and network sparsity. The new optimization problem is defined as
follows:

min
S,A

1

2
‖E − SA‖2F + λ

(
‖S0‖0 − ‖S � S0‖0 +

∥∥S � S̄0

∥∥
0

)
+ κtr(STLS) + η ‖S‖0 + ξ ‖S‖2F + µ ‖A‖2F

s.t. ‖S‖∞ ≤ a, ‖A‖∞ ≤ b.
(3)

where λ, κ, η, ξ, and µ are the parameters controlling the strength of the corresponding terms. We
devote the rest of this subsection to explaining the roles of the added terms.

The term controlled by λ restricts the number of edge changes. Here S̄0 is the adjacency
matrix of the complement graph of G0 and therefore S̄0 + S0 = 1N×M . ‖X‖0 is the `0 norm
that computes the number of non-zero entries in X. � is the Hadamard product. We note that
‖S0‖0 − ‖S � S0‖0 denotes the exact number of regulations removed from G0 and

∥∥S � S̄0

∥∥
0

is the
number of regulations added to the prior network G0. λ controls the change in topology of the
regulatory network. A larger λ indicates that only a small number of edges can be added and
removed, thereby controlling how far our predicted network G is from the prior network G0.

The term controlled by κ (the graph embedding term [11]) encourages S(i, k) and S(j, k) to have
similar control strength if genes i and j are correlated. Here we provide derivations demonstrating
that

1

2

∑
i,j

∑
k

W (i, j) (S(i, k)− S(j, k))2

=
1

2

∑
i,j

W (i, j) ‖S(i, :)− S(j, :)‖22

=
1

2

∑
i,j

W (i, j)S(i, :)S(i, :)T +
∑
i,j

W (i, j)S(j, :)S(j, :)T − 2
∑
i,j

W (i, j)S(i, :)S(j, :)T


=

1

2

∑
i

D(i, i)S(i, :)S(i, :)T +
∑
j

D(j, j)S(j, :)S(j, :)T − 2
∑
i,j

W (i, j)S(i, :)S(j, :)T


=

1

2

(
2tr(STDS)− 2tr(STWS)

)
= tr(STLS),

(4)

where tr() is the trace of a matrix, and W and L are the adjacency matrix and the Laplacian
matrix of the correlation network GE , respectively.

The term controlled by parameter η in (3) encourages sparsity of the final network (recall that
the `0 norm computes the number of non-zero elements). However, we note that there may exist
correlations between TF activities (rows of A), implying relationships between TFs that enforcing
sparsity might weaken. This means that, for a gene, only one TF can be selected from a group
of TFs whose activities are highly correlated, even though all TFs in the group regulate the gene.
Therefore, we have an additional term (controlled by parameter ξ) that uses the Frobenius norm to
encourage all regulating TFs to have non-zero values in S. For the reader familiar with the elastic
net model, we point out that η ‖S‖0 + ξ ‖S‖2F is analogous to the `1 elastic net [12], and we can
refer to it as the `0 elastic net.

Finally, the term controlled by the variable µ enforces smoothness of activities in A by not
allowing many of its elements to reach the limit {−b, b}.
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After some linear algebra, we obtain our final formulation as follows:

min
S,A

1

2
‖E − SA‖2F + (η − λ) ‖S � S0‖0 + (η + λ)

∥∥S � S̄0

∥∥
0

+ κtr(STLS) + ξ ‖S‖2F + µ ‖A‖2F

s.t. ‖S‖∞ ≤ a, ‖A‖∞ ≤ b.
(5)

We require η − λ ≥ 0, otherwise the above formulation would preserve all regulations in G0.

Optimization Behind the NetREX Algorithm

Our algorithm to solve (5) relies on the recently proposed proximal alternative linearized max-
imization (PALM) [1] algorithm. The PALM method can solve a general optimization problem
formulated as

min : H(S,A) = F (S,A) + Φ(S) + Ψ(A) over S ∈ Υ, A ∈ Ω, (6)

where F (S,A) has to be smooth but Φ(S) and Ψ(A) do not need to have the convexity and
smoothness properties. Υ and Ω are constraint sets for S and A, respectively. The PALM algorithm
alternatively applies a technique known as the proximal forward-backward scheme to both S and A.
Specifically, at iteration k, the proximal forward-backward mappings of Φ(S) and Ψ(A) on S ∈ Υ
and A ∈ Ω for given Sk and Ak are the solutions for the following sub-problems, respectively,

Sk+1 ∈ arg min
S∈Υ

{〈
S − Sk, ∇SF (Sk, Ak)

〉
+
ck

2

∥∥∥S − Sk∥∥∥2

F
+ Φ (S)

}
; (7a)

Ak+1 ∈ arg min
A∈Ω

{〈
A−Ak, ∇AF (Sk+1, Ak)

〉
+
dk

2

∥∥∥A−Ak∥∥∥2

F
+ Ψ (A)

}
, (7b)

where
〈
X,Y

〉
= tr(XTY ), ck and dk are positive real numbers and ∇SF (Sk, Ak) is the derivative

of F (S,Ak) with respect to S at point Sk for fixed Ak and ∇AF (Sk+1, Ak) is the derivative of
F (Sk+1, A) with respect to A at point Ak for fixed Sk+1. It has been proven that the sequence{

(Sk, Ak)
}
k∈N generated by PALM converges to a critical point when it is bounded [1].

Casting our optimization problem (5) into the PALM algorithm framework introduced in (6),

we have F (S,A) :=
1

2
‖E − SA‖2F +κtr(STLS), Ψ(A) := µ ‖A‖2F and Φ(S) := (η + λ)

∥∥S̄0 � S
∥∥

0
+

(η − λ) ‖S0 � S‖0 + ξ ‖S‖2F . The constraint sets Υ and Ω are, respectively, Υ = {S | ‖S‖∞ ≤ a}
and Ω = {A | ‖A‖∞ ≤ b}. We note that F (S,A), Ψ(A), and Φ(S) satisfy the requirements of the
PALM algorithm. Namely, F (S,A) is smooth, Ψ(A) is convex and smooth but, as allowed in the
PALM approach, Φ(S) is non-convex and non-smooth. Hence, we can apply the PALM algorithm
to our problem as long as we can efficiently solve the proximal forward-backward mappings for our
specific Φ(S) and Ψ(A). Proving that we can actually do this is mathematically the most challenging
component in the development of the method. Due to the technicality of the derivations we leave
most of them to the supplement and in what follows we only point to the most critical components
of the argument.

It is easy to confirm that the NetREX problem (5) can be solved by alternatively applying the
following proximal forward-backward mappings (8a) and (8b), which are derived from (7a) and (7b)
by casting our specific F (S,A), Φ(S), Ψ(A), Υ and Ω and some linear algebra:

Sk+1 ∈ arg min
‖S‖∞≤a

{
Φ (S) +

ck

2

∥∥∥S − Uk∥∥∥2

F

}
; (8a)

Ak+1 ∈ arg min
‖A‖∞≤b

{
Ψ (A) +

dk

2

∥∥∥A− V k
∥∥∥2

F

}
, (8b)
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where

Uk = Sk − 1

ck
∇SF (Sk, Ak) and V k = Ak − 1

dk
∇AF (Sk+1, Ak). (9)

The derivatives ∇SF (Sk, Ak) and ∇AF (Sk+1, Ak) can be computed by

∇SF (Sk, Ak) = (SkAk − E)(Ak)T + 2κLSk and ∇AF (Sk+1, Ak) = (Sk+1)T (Sk+1Ak − E), (10)

which are Lipschitz continuous with L(Ak) =
∥∥Ak(Ak)T∥∥

F
+2κ ‖L‖F and L(Sk+1) =

∥∥(Sk+1)TSk+1
∥∥
F

as Lipschitz constants, respectively. As suggested by [1], we set ck = max
{
v, L(Ak)

}
, v > 0 and

dk =
{
v, L(Sk+1)

}
, v > 0 to make sure the formulas in (9) are well defined.

The closed form solution of the proximal forward-backward mapping (8a) can be obtained based
on Proposition 1, the Proximal Mapping of the `0 Elastic Net Under ‖‖∞ Constraint Proposition,
and its corollary (Corollary 1). The proposition and corollary, along with their proofs, can be
found in the following. We emphasize that Proposition 1 provides the closed form solution for the
proximal mapping of the `0 elastic net under ‖‖∞ constraint and thus it has broader applications
to diverse feature selection approaches [13, 14].

Proposition 1 (Proximal Mapping of the `0 Elastic Net Under the ‖‖∞ Constraint). For
a given Y ∈ Rm×n, the proximal mapping of the `0 elastic net under the ‖‖∞ norm constraint is

arg min
‖X‖∞≤C

{
‖Y −X‖2F + b ‖X‖2F + c2 ‖X‖0

}
= T c√

b+1

(
P‖·‖∞≤C

(
Y

b+ 1

))
, (11)

where the projection operator P‖·‖∞≤C(·) is defined as

P‖·‖∞≤C(Y ) := arg min
{
‖Y −X‖2F : ‖X‖∞ ≤ C

}
= sign(Y )�max {|Y |, C} , (12)

such that the ||, sign() and max{} operations are taken component-wise, and the hard-thresholding
operator Tc(·) is defined as

Tc(Y ) := arg min
X

{
‖Y −X‖2F + c2 ‖X‖0

}
, (13)

where Y ∈ Rm×n is any given matrix and Tc : Rm×n → Rm×n is a component-wise mapping that
can be explicitly written

(Tc(Y )) (i, j) =


Y (i, j), if |Y (i, j)| > c;
{0, c} , if |Y (i, j)| = c;

0, o.w..
(14)

Proof.

arg min
‖X‖∞≤C

{
‖Y −X‖2F + b ‖X‖2F + c2 ‖X‖0

}
= arg min

‖X‖∞≤C

{
(b+ 1)

∥∥∥∥ Y

b+ 1
−X

∥∥∥∥2

F

+ c2 ‖X‖0

}

= arg min
‖X‖∞≤C

{∥∥∥∥ Y

b+ 1
−X

∥∥∥∥2

F

+ (
c√
b+ 1

)2 ‖X‖0

}

=T c√
b+1

(
P‖·‖∞≤C

(
Y

b+ 1

))
.

(15)

The derivation of the last equality is based on Lemma 1.
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Lemma 1. Let U ∈ Rm×n, then

arg min
{
‖U −X‖2F + c2 ‖X‖0 : ‖X‖∞ ≤ C

}
= Tc

(
P‖·‖∞≤C(U)

)
. (16)

Proof. For a given U ∈ Rm×n, let us introduce the following notations

‖X‖2+ =
∑

(i,j)∈I+
X(i, j)2 and ‖X‖2− =

∑
(i,j)∈I−

X(i, j)2, (17)

where
I+ = {(i, j) ∈ {1, ...,m} × {1, ..., n} : |U(i, j)| ≤ C} (18)

and
I− = {(i, j) ∈ {1, ...,m} × {1, ..., n} : |U(i, j)| > C} (19)

The following observations hold

(i) ‖X‖2F = ‖X‖2+ + ‖X‖2−

(ii) ‖X − U‖2+ + ‖X − C‖2− =
∥∥∥X − P‖·‖∞≤C(U)

∥∥∥2

F

(iii) ‖X − C‖2− = 0⇔ X(i, j) = C ∀(i, j) ∈ I−
(20)

where the second observation follows from observation (i) and the fact that
(
P‖·‖∞≤C(U)

)
(i, j) =

U(i, j) for (i, j) ∈ I+ and
(
P‖·‖∞≤C(U)

)
(i, j) = C for (i, j) ∈ I−.

Based on the above facts, we have that X̄ ∈ prox
‖·‖∞≤C
‖·‖0

(U, c) if and only if

X̄ ∈ arg min
{
‖U −X‖2F + c2 ‖X‖0 : ‖X‖∞ ≤ C

}
(21a)

= arg min
{
‖U −X‖2+ + ‖U −X‖2− + c2 ‖X‖0 : ‖X‖∞ ≤ C

}
(21b)

= arg min
{
‖U −X‖2+ + c2 ‖X‖0 : X(i, j) = C ∀(i, j) ∈ I−, ‖X‖∞ ≤ C

}
, (21c)

where the last equality follows from the fact that the solution of (21c) is also the solution of (21b),
while the converse follows by a simple contradiction argument. Furthermore, one finds that the
constraint ‖X‖∞ ≤ C may be removed without affecting the optimal solution of the problem.
Therefore, applying observations (ii) and (iii), we obtain

X̄ ∈ arg min
{
‖U −X‖2+ + c2 ‖X‖0 : ‖X − C‖2− = 0

}
= arg min

{
‖U −X‖2+ + ‖X − C‖2− + c2 ‖X‖0

}
= arg min

{∥∥∥X − P‖·‖∞≤C(U)
∥∥∥2

F
+ c2 ‖X‖0

}
= Tc

(
P‖·‖∞≤C (U)

)
,

(22)

where the last equality is the definition of Tc in Eq. (15).

Corollary 1. For a given U ∈ Rm×n, the proximal mapping of Φ(S) = α
∥∥S̄0 � S

∥∥
0
+β ‖S0 � S‖0+

γ ‖S‖2F on ‖S‖∞ ≤ C is

prox‖·‖∞≤C(U,α, β, γ) ∈ arg min
‖S‖∞≤C

{
α
∥∥S̄0 � S

∥∥
0

+ β ‖S0 � S‖0 + γ ‖S‖2F + ‖U − S‖2F
}

= T√ β
γ+1

(
P‖·‖∞≤C

(
U

γ + 1

))
+ T√ α

γ+1

(
P‖·‖∞≤C

(
Ū

γ + 1

))
,

(23)

where U = S0 � U and Ū = S̄0 � U .
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Proof. We know that U can be decomposed into U = 1�U = (S+S̄0)�U = S�U+S̄0�U = U+Ū.
Similarly, S = S�S+S̄0�S = S+S̄. Applying these decompositions in Eq. (23), we can decompose
the proximal mapping into two parts.

arg min
‖S‖∞≤C

{
α
∥∥S̄0 � S

∥∥
0

+ β ‖S0 � S‖0 + γ ‖S‖2F + ‖U − S‖2F
}

= arg min
‖S‖∞≤C

{
β ‖S‖0 + γ ‖S‖2F + ‖U− S‖2F

}
+ arg min

‖S̄‖∞≤C

{
α
∥∥S̄∥∥

0
+ γ

∥∥S̄∥∥2

F
+
∥∥Ū− S̄

∥∥2

F

}
.

(24)
Based on the Proximal Mapping of the `0 Elastic Net Proposition 1, we know

arg min
‖S‖∞≤a

{
β ‖S‖0 + γ ‖S‖2F + ‖U− S‖2F

}
= T√ β

γ+1

(
P‖·‖∞≤C

(
U

γ + 1

))
. (25)

Similarly,

arg min
‖S̄‖∞≤a

{
α
∥∥S̄∥∥

0
+ γ

∥∥S̄∥∥2

F
+
∥∥Ū− S̄

∥∥2

F

}
= T√ α

γ+1

(
P‖·‖∞≤C

(
Ū

γ + 1

))
. (26)

Combining Eq. (25) and Eq. (26) proves the proposition.

arg min
‖S‖∞≤C

{
α
∥∥S̄0 � S

∥∥
0

+ β ‖S0 � S‖0 + γ ‖S‖2F + ‖U − S‖2F
}

= T√ β
γ+1

(
P‖·‖∞≤C

(
U

γ + 1

))
+ T√ α

γ+1

(
P‖·‖∞≤C

(
Ū

γ + 1

))
.

(27)

With the help of Proposition 1 and Corollary 1, (8a) can be efficiently computed by

Sk+1 ∈ prox‖·‖∞≤a

(
Uk,

2(η + λ)

ck
,
2(η − λ)

ck
,
2ξ

ck

)
, (28a)

And (8b) can be computed by

Ak+1 = P‖·‖∞≤b

(
1

1 + 2µ
dk

V k

)
. (28b)

The definitions of prox‖·‖∞≤a(·) and P‖·‖∞≤b(·) can be found in Corollary 1 and Proposition 1,
respectively. The derivations of (28a) and (28b) can be found in the following.

The derivation for (28a) using Corollary 1 is shown below.

Sk+1 ∈ arg min
‖S‖∞≤a

{
Φ (S) +

ck

2

∥∥∥S − Uk∥∥∥2

F

}
= arg min

‖S‖∞≤a

{
2(η + λ)

ck
∥∥S̄0 � S

∥∥
0

+
2(η − λ)

ck
‖S0 � S‖0 +

2ξ

ck
‖S‖2F +

∥∥∥S − Uk∥∥∥2

F

}
= prox‖·‖∞≤a

(
Uk,

2(η + λ)

ck
,
2(η − λ)

ck
,
2ξ

ck

)
.

(29)
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The derivation for (28b) is shown below.

Ak+1 = arg min
‖A‖∞≤b

{
Ψ (A) +

dk

2

∥∥∥A− V k
∥∥∥2

F

}
= arg min

‖A‖∞≤b

{
2µ

dk
‖A‖2F +

∥∥∥A− V k
∥∥∥2

F

}
= P‖·‖∞≤b

(
1

1 + 2µ
dk

V k

)
.

(30)

We now have all the ingredients for our NetREX algorithm. Hence, we describe the NetREX
algorithm in Algorithm 1. We note that the constraints for both S and A (‖S‖∞ ≤ a and ‖A‖∞ ≤ b)
make sure that the sequence

{
(Sk, Ak)

}
k∈N is bounded. Thus we state that the sequence produced

by the NetREX algorithm converges to a critical point of the optimization problem (5), which is
described in Proposition 2.

Algorithm 1: The NetREX algorithm.

Input : S0, E, L, η, λ, κ, ξ, v > 0 and K;
Output: S and A.

1 begin
2 (S0, A0) =Initialization(S0). // Algorithm 2.
3 for k = 0, 1, 2, ...,K do
4 ck = max

{
v, L(Ak)

}
.

5 Uk = Sk − 1

ck
(
SkAk(Ak)T + 2κLSk − E(Ak)T

)
. // put (10) into (9).

6 Sk+1 ∈ prox‖·‖∞≤a

(
Uk, 2η

ck
, 2(η−λ)

ck
, 2ξ
ck

)
. //as shown in (28a).

7 dk =
{
v, L(Sk+1)

}
.

8 V k = Ak − 1

dk
(
(Sk+1)T (Sk+1)Ak − (Sk+1)TE

)
. // put (10) into (9).

9 Ak+1 = P‖·‖∞≤b

(
1

1 + 2µ
dk

V k

)
. //as shown in (28b).

10 end
11 S = SK and A = AK

12 end

To ensure that the starting point is consistent with the prior network, (S0, A0) must be inferred
from our prior network G0. We thereby compute (S0, A0) by solving the following problem, which
is obtained from dropping the constraints and disregarding the non-smooth regularization term
(η − λ) ‖S � S0‖0 + (η + λ)

∥∥S � S̄0

∥∥ of S in the original NetREX formulation.

min
S,A

: J(S,A) =
1

2
‖E − SA‖2F + κtr(STLS) + ξ ‖S‖2F + µ ‖A‖2F (31)

The problem (31) can be solved by the standard Gauss-Seidel scheme [15] that alternatively solves
the multi-variable optimization problem with respect to one variable while fixing the rest of the
variables. Specifically, we can fix S = S0

k and solve (31) with respect to the closed form of A shown
in Line 4 of Algorithm 2. Then, we fix A = A0

k and solve (31) with respect to S, whose solution
is the solution of the Sylvester equation SA0

k(A
0
k)
T + 2(κL + ξI)S = E(A0

k)
T (derived by setting

9



∇H(S,A0
k) = 0). The Sylvester equation is solved by the standard Bartels-Stewart algorithm. We

alternatively run lines 4 and 5 K times. In the end, we project the solutions A0
K and S0

K onto
the feasible space of Eq. (5) by the projection operator (12) shown in lines 7 and 8. Algorithm 2
elaborates the details of obtaining (S0, A0).

Algorithm 2: The initialization for NetREX

Function: Initialization(S0);
Input : S0;
Output : S0 and A0.

1 begin
2 S0

0 = S0.
3 for k = 0, 1, 2, ...,K do

4 A0
k =

(
(S0
k)TS0

k + µI
)−1

(S0
k)TE.

5 S0
k+1 :=

{
Ŝ|ŜA0

k(A
0
k)
T + 2(κL+ ξI)Ŝ = E(A0

k)
T
}

.

6 end
7 A0 = P‖·‖∞≤b(A

0
K).

8 S0 = P‖·‖∞≤a
(
S0
K

)
.

9 end

Proposition 2 (Convergnece Proposition). Let
{

(Sk, Ak)
}
k∈N be a sequence generated by the

NetREX algorithm. Then,
(i) The sequence

{
(Sk, Ak)

}
k∈N has finite length, that is

∞∑
k=1

∥∥∥Sk+1 − Sk
∥∥∥
F

+
∥∥∥Ak+1 −Ak

∥∥∥
F
<∞. (32)

(ii) The sequence
{

(Sk, Ak)
}
k∈N converges to a critical point (S∗, A∗) of the NetREX problem.

Proof. We apply Theorem 3.1 in [1] to guarantee that the sequence generated by NetREX is globally
convergent to the critical points of (5).

An Alternative Formulation

There is an alternative formulation for (5):

min
S,A

1

2
‖E − SA‖2F + κtr(STLS) + ξ ‖S‖2F + µ ‖A‖2F

s.t. ‖S � S0‖0 ≤ U ,
∥∥S � S̄0

∥∥
0
≤ V,

‖S‖∞ ≤ a, ‖A‖∞ ≤ b.

(33)

The newly added constraints ‖S � S0‖0 ≤ U and
∥∥S � S̄0

∥∥
0
≤ V restrict the number of edges

kept in the prior and added in the prior, respectively. The problem can be solved by using PALM
(similar to the algorithm in Section 4 [1]). The details of the derivations are left to the audience.
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The NetREX NP and NetREX `1 Algorithms

The NetREX NP algorithm is the same as Algorithm 1 with λ = 0. The formulation of NetREX NP
is

min
S,A

1

2
‖E − SA‖2F + η ‖S‖0 + κtr(STLS) + ξ ‖S‖2F + µ ‖A‖2F

s.t. ‖S‖∞ ≤ a, ‖A‖∞ ≤ b.
(34)

This is similar to sparse coding [3] if we remove the graph embedding term.
The NetREX `1 formulation is as follows

min
S,A

1

2
‖E − SA‖2F + (η − λ) ‖S � S0‖1 + (η + λ)

∥∥S � S̄0

∥∥
1

+ κtr(STLS) + ξ ‖S‖2F + µ ‖A‖2F

s.t. ‖S‖∞ ≤ a, ‖A‖∞ ≤ b.
(35)

To do a fair comparison we also solve using the PALM algorithm, which is analogous to Algorithm 1.
The only difference is that in line 6 of Algorithm 1 we use the proximal mapping of the `1 elastic
net given in [16] instead of a proximal mapping for the `0 elastic net.

Ranking Interactions and Bootstrapping

We rank every interaction S(i, j) based on its impact on the modeling, computed by

B(i, j) = 1−

∥∥∥E(i, :)−
∑

k 6=j S(i, k)A(k, :)
∥∥∥2

F

‖E(i, :)− S(i, :)A‖2F
, (36)

where B(i, j) is the confidence score. Then all interactions S(i, j) ∀i, j can be ranked based on
the corresponding confidence score B(i, j). To further improve the inference against over-fitting
and sampling errors, we use a bootstrapping strategy. We re-sample the expression data E with
replacement and run NetREX on the new dataset. This procedure is repeated 5 times, and the
resulting lists of interactions (B matrices) are rank combined to a final ranked list Λ as in [17].

Model Selection of NetREX

When we have a “gold standard” of partial GRNs, the parameters of NetREX can be selected based
on the known “gold standard”.

If we reconstruct a GRN in a new context, where we do not have any prior knowledge, it is hard
to select one set of optimal parameters for NetREX. To avoid that, we can apply a grain-grid search
on the parameter space. Once we pick a set of parameters in the grain-grid, we then generate l
sets of fine-grid parameters around it and use all those parameters to get several ranking matrices
Λi, i = 1, ..., l. Again we use the ranking scheme [17] to do a consensus and get the final results
from the Λs.

The PriorBoost Score

The assessment of the prior networks is based on two intuitions. First, the quality of the network
can be estimated by the consistency between the structure of the network and the expression data.
Such consistency can be computed by the following equation:

q (G) := min
S∈G,A

‖E − SA‖2F , (37)
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where G is the network we want to verify. S ∈ G means that the non-zero pattern of S is conserved
in the structure induced by G. Actually, (37) is the original formulation of NCA and q(G) is the
optimal objective function value after solving. Lower q(G) implies better quality of the network G.

The first intuition is supported by the E.coli golden standard GRN (Supplementary Fig.2). As
shown in Supplementary Fig.2, for random networks with a fixed number of total edges, the more
experimentally verified edges that exist the lower the NCA fitting error achieved.
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Supplementary Figure 2: NCA fitting error (37) vs. the number of experimentally verified regula-
tory edges. (A) Boxplots of NCA fitting error for random networks with 3000 edges, within which
the number of “gold standard” edges varies from 0 to 2000. (B) Boxplots of NCA fitting error for
random networks with 5000 edges, within which the number of ”gold standard” edges various from
0 to 2000. (C) Boxplots of NCA fitting error for random networks with 10000 edges, within which
the number of “gold standard” edges varies from 0 to 2000. (D) Boxplots of NCA fitting error for
random networks with 20000 edges, within which the number of “gold standard” edges varies from
0 to 2000.

The second intuition we rely on is that, if a prior network is consistent with the given expression
data, the network predicted by a prior-based method should be better than the network inferred
by an expression-based method. The prior-based method we used here was NetREX, and the
expression-based method we used was Genie3, which was the winner of the DREAM4 and DREAM5
challenges [18, 17].

Suppose we have a prior network G0 and expression data E. G∗ is the network predicted by
NetREX via utilizing G0 and Ḡ is the network predicted by Genie3 using E. G∗c and Ḡc are
networks obtained by keeping the top c edges in G∗ and Ḡ based on the edge weights, respectively.
Then, the PriorBoost score of the prior network G0 can be estimated by

Q (G0) :=
1

|C|
∑
c∈C

q
(
Ḡc
)
− q (G∗c) , (38)

where C is a set of different cutoffs. Positive Q (G0) indicates that the network predicted by
NetREX using G0 is more consistent with the expression data E than the network predicted by
Genie3, and negative Q (G0) indicates the opposite.
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Supplementary Note 1. Results on Simulated Data

To validate our approach, we applied NetREX to the simulated data generated based on (1), the
linear model. We first randomly generated the “gold standard” adjacency matrix S of the regulatory
network G(TF ,TG ,S) and TF activities A. Then, the simulated expression data was generated as

E(i, j) =
∑
p

S(i, p)A(p, j) + Γ(i, j), (39)

where
∑

p S(i, p)A(p, j) is the noiseless data arising from the known A and S matrices and the

noise Γ(i, j) ∼ N(0, σ2) obeys a normal distribution with 0 mean and σ2 variance. We assigned the
prior network G0 the same number of edges as the “gold standard” network G, but only θ percent
of the edges in G0 are true edges. We can tune the difficulty of the network rewiring task by using
different σ and θ. We set S(i, p) ∈ {0, 1}, A(p, j) ∈ [−1, 1], and σ ∈ [0, 1]. We further convert σ to
signal to noise ratio (SNR) as shown in Supplementary Fig. 3.
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Supplementary Figure 3: (A) Comparison between F-measures of the networks predicted by Ne-
tREX and prior networks. The x-axis denotes percentage of true edges in the prior network and the
black dashed line denotes F-measures of the prior networks. The circles are the average F-measures
of the networks predicted by NetREX under different σ and θ over 50 random inputs. (B) Compar-
ison between F-measures of the networks predicted by NetREX and NetREX NP (Supplementary
Method 5.). The color in each dashed block indicates the − log p-value for corresponding (σ, θ),
where the p-values are obtained from a one-sided paired t-test between F-measures of the com-
pared algorithms. The warmer the color is, the larger the F-measures of the networks predicted by
NetREX over those of NetREX NP. The red dashed line circles the (σ, θ) pairs where NetREX NP
achieves a larger F-measure at significance level 0.01. (C) Comparison between F-measures of the
networks predicted by NetREX and NetREX `1 (Supplementary Method 5.). The color coding is
the same as in panel (B).

We evaluated the performance of the compared algorithms in terms of F-measure (Supplemen-
tary Note 5), which quantifies the overlap between the structures of the predicted network and the
“gold standard” network. F-measure ranges from 0 to 1, where 1 indicates that the underlying G is
fully recovered and 0 means the opposite. To avoid the effect of parameter selection, for each algo-
rithm, under certain noise level (σ, θ), we first found its optimal parameters in terms of F-measure
on one simulated dataset through grid search. Then we ran the algorithm on another 50 randomly
generated simulated datasets under the same (σ, θ) using its optimal parameters. We can then
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further test whether one method is statistically better than another method under a specific noise
level by computing the p-value from a one-side paired t-test between all 50 paired F-measures. The
detailed parameter settings are listed in Supplementary Note 6.

The comparisons between NetREX and these other methods are shown in Supplementary Fig. 3.
Supplementary Fig. 3A shows the comparison between networks predicted by NetREX and the
prior networks, in which we found that when the expression data is less noisy (σ is small) and
the prior network is closer to the “gold standard” (θ is large), the network predicted by NetREX
has a tendency to achieve higher F-measures than the prior networks. Additionally, we note that
NetREX exhibits, by a larger margin, higher F-measures than the the prior networks after θ ≥ 0.3.
However, for θ < 0.3 the networks predicted by NetREX are only marginally better than the prior
network, which implies that if we use random networks that do not have as much overlap with the
“gold standard” as the prior networks, we cannot obtain promising results.

The effectiveness of the graph embedding term in (5) has been proved in [11], and the effec-
tiveness of the `0 elastic net can be inferred from the results in [12]. In the following, we prove the
function of the perturbation term controlled by λ and the superiority of using the `0 norm rather
than the `1 norm via simulation data.

We compared NetREX with its two natural variants on the simulation data. The first variant is
NetREX NP (NetREX with No edge Perturbation term) that has the same formulation as NetREX
but with λ = 0. The difference between NetREX and NetREX NP is that NetREX penalizes the
number of edges added and removed from the prior network but NetREX NP does not. Here we
should mention that NetREX NP and sparse coding have similar formulations (Appendix 9). The
other related algorithm in our comparison is NetREX `1, which estimates the `0 norm in NetREX
using the `1 norm. We note that substituting the `1 norm for the `0 norm makes the sub-problems
convex and thus easier to solve. The implementation of these two algorithms is introduced in
Appendix 9.

The comparison between NetREX and NetREX NP is displayed in Supplementary Fig. 3B. We
note that NetREX significantly outperforms NetREX NP after θ > 0.1. In Supplementary Fig. 3C,
we observe that NetREX `1 performs better in certain cases where the noise in the expression data
is large (σ is large) because the `1 norm is robust to noise. However, for most noise levels, NetREX
achieved significantly higher F-measures compared to NetREX `1, demonstrating that the `0 norm
is superior to the `1 norm for selecting sparse contributing components.

We conducted a “ONE-AT-A-TIME” [19] sensitivity analysis for all parameters as follows. For
fixed (σ, θ), we first use grid search to find the optimal parameters as introduced in Supplementary
Material Section E.2. Then, we tune one parameter from low to high while keeping all the rest of the
parameters fixed at their optimum. Therefore, we can obtain the precision, recall, and F-measure
according to the parameter we tune. Specifically, we set σ = 0.2 and θ = 0.8 and for all parameters
(including λ, η, κ, µ and ξ) we set them to the set {0.01, 0.1, 1, 10, 100, 1, 000, 10, 000}.

The box-plots of precision, recall, and F-measure while tuning one of the parameters are shown
in Supplementary Fig. 4. We notice that setting η, µ and ξ extremely large leads to the trivial
solutions A = 0 and S = 0. In this case, all three measures become 0. Setting κ extremely large
makes S equal to the correlation network GE and the corresponding measures are the ones for GE .
All parameters need to be carefully selected since they all are important for achieving promising
results.

Supplementary Note 2. Results on Simulated Data with Non-random Errors

We generated the simulated data as follows. First, we randomly generated a GRN between M
TFs and N genes (black edges in Supplementary Fig. 5 a). Then, we added a module of n genes
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Supplementary Figure 4: Sensitivity of each parameter on F-measure, Precision and Recall.

and randomly selected m TFs to regulate the genes in the module. The regulatory interactions
between these m TFs and genes in the module from a fully connected bipartite graph (green edges
in Supplementary Fig. 5 a). Using so constructed true GRN, we generated expression data for N+n
genes using the linear model introduced in Supplementary Discussion equation (39) including the
addition of expression noise.

To simulate the scenario where the prior is consistent with the true network in most cases except
one truly differential module of genes, we randomly removed a subset of “true” edges connecting
TFs to the genes in the module and randomly reattached them to wrong genes (red edges in
Supplementary Fig. 5 a). Then we run NetREX using the so perturbed network as the prior and
measured Recovery Accuracy [20] of the true edges leading to the module. We tested how the
results depend on two factors: (i) the percentage of the rewired true edges (varied from 40% to
100%) and (ii) added expression noise (Supplementary Fig. 5 b). NetREX performed very well
even in the case when all true edges leading to the module have been removed from the prior. The
reason for this high performance can be attributed to the fact that TFs that regulate the module
also regulate some genes outside the module allowing NetREX estimate their activities. Then the
true edges between TFs and the modules could be recovered by utilizing these, since activities have
the capacity to explain the expression of the genes in the module.

Supplementary Note 3. Results on E.coli Data

We used the “gold standard” E.coli GRN from DREAM5, which has 2066 interactions between 141
TFs and 4511 genes. We randomly constructed 10 simulated unweighted prior networks that have
2066 interactions but with different percentages of true edges within those 2066 interactions. We
evaluated the performance of all prior-based methods, including MERLIN P [21], Inferelator [22]
and NetREX, by checking their ability to recover the “gold standard” E.coli GRN given prior
networks with different percentages of true edges. The performance was quantified by AUROC and
AUPR scores as shown in Supplementary Table 1 and Supplementary Table 2. Unlike the F-measure
used in Section 9, which assesses the overlap between the structures of predicted networks and “gold
standard” networks, AUROC and AUPR scores are two metrics that evaluate the ranking of the
edges in the predicted networks. The selection of parameters for different methods is discussed in
Supplementary Note 6. As shown in Supplementary Table 1, Supplementary Table 2, and Fig. 2 in
the main text, NetREX significantly outperformed the competing algorithms and always achieved
better AUROC and AUPR scores when the PriorBoost score was positive.

Another interesting observation is that the graph embedding term might slightly improve the
AUROC and AUPR scores depending on the quality of the embedding co-expressed networks.
Actually, if we have other reliable sources that contain information about the similarity of gene
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Supplementary Figure 5: Test NetREX performance under the malicious error model where the
prior is consistent with the true network except one truly differential module of genes. (a) Con-
struction of the test data. Rewire x% edges means that (1-x)% of true edges leading to the module
(green edges) are kept (conserved) and the rest is connected to the wrong genes outside the mod-
ule (red edges). (b) The performance of NetREX on recovery true edges in terms of Recovery
Accuracy [20] under various percentage of rewired edges various level of added expression noise.

pairs, we can also embed them to make similar gene pairs co-regulated by similar TFs.
We further generated noisy unweighted prior networks in which we fixed the number of true

edges (1033 for this experiment), but varied the ratio of true to false edges over a range of values
(0:1, 1:0, 1:2, 1:5, 1:10). 0:1 means the prior network contains no “gold standard” edges but all
wrong edges (0 “gold standard” edges and 1033 false edges). 1:0 means the prior network contains
no false edges but all “gold standard” edges. Supplementary Table 3 and Supplementary Table 4
show the comparison in terms of AUROC and AUPR of all approaches on this data. Clearly,
NetREX significantly outperforms Inferelator and MERLIN P.

We extract novel TF-gene interactions with strong evidence in E.coli from RegulonDB 9.2
(version 09-08-2016) [23]. Other than the 2,066 existing interactions in DREAM5, we find 230
extra interactions not used in DREAM5. We use these 230 novel interactions to further validate
the performance of the competing algorithms. From Supplementary Table 5 and Supplementary
Table 6, which correspond to Fig.2b and Fig.2f in main text, we find that NetREX outperforms all
competing algorithms at identifying these novel interactions.

Following the ideas proposed in [24], we modified two metrics, PPI score and GO score, to
help evaluate the quality of the predicted networks when we do not have any “gold standard”
information. The idea behind using PPI and GO scores is that gene pairs co-regulated by most
of the same TFs should be functionally similar. Those gene pairs are more likely to have protein
interactions and share similar GO terms comparing to random ones. PPI scores and GO scores are
the statistical significance (− log(p-value)) obtained from a hypergeometric test.

To test this idea, we generated randomly simulated E.coli GRNs with different noise levels
controlled by the percentage of true edges and the ratio of true to false edges. The PPI and GO
scores were then computed for the simulated networks. We obverse that both the PPI and GO
scores are consistent with the quality of the simulated networks. Namely, the less noisy the network,
the larger the PPI and GO scores we observed. Based on this result, we were confident about the
use of both scores for the adult fly networks in the following sections, where we do not have “gold
standard” networks for validation.
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Supplementary Table 1: The average and variance of AUROC scores of all competing prior-based
algorithms. The best scores for prior networks with different percentage of true edges are in bold.

Prior MERLIN P Inferelator NetREX(κ = 0) NetREX(κ = 1)

True edges % AUROC Var. AUROC Var. AUROC Var. AUROC Var. AUROC Var.

10% 0.5437 4.7E-11 0.5975 3.3E-6 0.5561 5.6E-5 0.5668 1.9E-5 0.5668 2.1E-5

20% 0.5944 2.6E-10 0.5947 4.8E-6 0.6132 4.5E-5 0.6367 2.0E-5 0.6380 2.5E-5

30% 0.6450 1.2E-10 0.5969 6.2E-6 0.6545 4.6E-5 0.7020 5.1E-6 0.7009 5.0E-6

40% 0.6958 7.1E-11 0.5975 2.0E-6 0.6874 5.2E-5 0.7579 1.8E-5 0.7580 1.6E-5

50% 0.7466 2.4E-10 0.5960 1.8E-6 0.7194 6.1E-5 0.8069 9.5E-6 0.8069 7.9E-6

60% 0.7971 9.6E-11 0.5945 2.0E-6 0.7472 2.3E-5 0.8513 7.8E-6 0.8515 4.9E-6

70% 0.8479 2.9E-10 0.5944 4.3E-6 0.7704 2.3E-5 0.8914 1.4E-5 0.8915 1.3E-5

80% 0.8984 8.7E-11 0.5963 6.6E-6 0.7942 8.4E-6 0.9311 3.6E-6 0.9306 4.8E-6

90% 0.9492 7.8E-11 0.5949 4.1E-6 0.8144 6.5E-6 0.9653 4.2E-6 0.9653 3.1E-6

Supplementary Table 2: The average and variance of AUPR scores of all competing prior-based
algorithms. The best scores for prior networks with different percentage of true edges are in bold.

Prior MERLIN P Inferelator NetREX(κ = 0) NetREX(κ = 1)

True edges % AUPR Var. AUPR Var. AUPR Var. AUPR Var. AUPR Var.

10% 0.0258 2.1E-8 0.0780 1.4E-7 0.0380 1.2E-4 0.0426 6.6E-5 0.0432 8.0E-5

20% 0.0577 5.2E-7 0.0775 1.6E-7 0.0962 1.6E-4 0.1292 1.9E-4 0.1292 1.6E-4

30% 0.1091 1.3E-6 0.0777 4.78E-7 0.1626 3.6E-4 0.2285 1.3E-4 0.2285 1.4E-4

40% 0.1785 4.5E-7 0.0783 5.6E-7 0.2293 3.3E-4 0.3305 3.8E-4 0.3318 3.4E-4

50% 0.2682 3.2E-6 0.0776 1.8E-7 0.2910 1.5E-4 0.4347 8.4E-5 0.4357 7.0E-5

60% 0.3751 4.1E-6 0.0769 3.8E-7 0.3573 1.7E-4 0.5393 7.0E-5 0.5383 6.7E-5

70% 0.5046 8.4E-6 0.0774 2.9E-7 0.4078 1.0E-4 0.6314 2.2E-4 0.6326 2.4E-4

80% 0.6493 4.7E-6 0.0770 6.1E-7 0.4689 2.6E-5 0.7271 7.6E-5 0.7277 9.4E-5

90% 0.8154 4.8E-6 0.0775 4.0E-7 0.5189 4.6E-5 0.8230 5.5E-5 0.8224 3.4E-5
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Supplementary Table 3: The comparison of AUROC score for different ratios of true to false edges
in the prior networks.

Prior Inferelator NetREX MERLIN P

True to false ratio AUROC Var. AUROC Var. AUROC Var. AUROC Var.

0:1 0.4966 3.1E-33 0.4948 7.7E-5 0.4977 5.8E-7 0.5955 1.3E-6

1:0 0.75 0 0.7603 2.1E-5 0.8158 8.8E-6 0.5941 4.7E-6

1:2 0.7431 6.0E-11 0.7030 6.1E-5 0.7591 6.0E-6 0.5961 5.9E-6

1:5 0.7328 1.1E-9 0.6627 4.6E-5 0.7531 1.4E-5 0.5971 5.6E-7

1:10 0.7156 1.1E-8 0.6295 6.2E-5 0.7379 2.5E-5 0.5956 1.2E-6

Supplementary Table 4: The comparison of AUPR score for different ratios of true to false edges
in the prior networks.

Prior Inferelator NetREX MERLIN P

True to false ratio AUPR Var. AUPR Var. AUPR Var. AUPR Var.

0:1 0.0132 0 0.0131 4.7E-8 0.0133 1.9E-8 0.0787 6.9E-8

1:0 0.5201 0 0.4477 1.3E-4 0.5610 9.7E-5 0.0773 1.5E-6

1:2 0.1839 6.0E-7 0.2640 3.3E-4 0.3203 1.1E-4 0.0784 9.3E-8

1:5 0.0981 3.4E-7 0.1846 7.7E-5 0.2241 5.5E-5 0.0773 9.0E-7

1:10 0.0579 1.7E-7 0.1222 2.5E-4 0.1544 2.0E-4 0.0779 9.0E-9

18



Supplementary Table 5: The comparison of the methods based on the ability to identify novel
interactions that were not used in the DREAM5 challenge as a function of quality of the prior
network where the prior quality is measured as the percentage of true edges.

true edge Inferelator NetREX MERLIN P

percentage # TP # FP # Unique # TP # FP # Unique # TP # FP # Unique

10% 5 ± 2.82 15,094 ± 203.5 9 4 ± 2.97 3,710 ±80.4 8 24 ± 2.89 49,033 ±166.6 28

20% 9 ± 3.13 14,606 ± 337.4 14 5 ± 2.26 3,422 ± 80.7 21 23 ± 1.53 48,762 ± 325.8 27

30% 8 ± 2.02 14,480 ± 277.5 19 7 ± 1.90 3,078 ± 51.1 22 25 ± 0.58 49,066 ± 302.1 26

40% 10 ± 1.32 14,326 ± 270.0 18 10 ± 3.51 2,860 ± 96.5 26 25 ± 1.73 48,883 ± 420.0 28

50% 11 ± 3.07 14,227 ± 210.7 17 11 ± 2.25 2,613 ± 55.1 25 23 ± 2.08 48,648 ± 137.5 23

60% 13 ± 3.40 14,187 ± 348.4 19 14 ± 2.45 2,389 ± 64.7 25 25 ± 1.53 48,733 ± 58.9 28

70% 14 ± 2.28 13,948 ± 190.7 18 19 ± 1.78 2,256 ± 63.4 29 23 ± 1.15 48,417 ± 58.9 26

80% 13 ± 1.06 14,063 ± 249.4 19 20 ± 3.02 2,151 ± 63.4 33 25 ± 1.15 48,546 ± 573.5 28

90% 15 ± 1.58 13,833 ± 177.3 18 21 ± 2.64 1,994 ± 59.5 30 25 ± 1.25 48,446 ± 387.6 28

Elements in the supplementary table are means ± standard deviation. TF and FP are True Positives and False Positives.

# Unique is the number of identified unique novel edges over 10 runs of the methods starting with randomly selected priors.

Supplementary Table 6: The comparison of the methods based on the ability to identify novel
interactions that were not used in the DREAM5 challenge as a function of quality of the prior
network where the prior quality is measured as the ratio of true to false edges.

ratio of Inferelator NetREX MERLIN P

true to false # TP # FP # Unique # TP # FP # Unique # TP # FP # Unique

1:0 16 ± 2.50 15,052 ± 124.8 25 19 ± 1.91 3,014 ± 56.4 26 25 ±1.91 46,493 ± 481.5 28

1:2 12 ± 4.67 15,085 ± 441.3 20 11 ± 2.36 5,088 ± 78.3 34 24 ± 0.00 47,033 ± 413.1 26

1:5 9 ± 4.48 15,292 ± 269.6 18 11 ± 2.27 8,187 ± 85.4 49 23 ± 0.58 46,751 ± 279.9 24

1:10 8 ± 3.21 15,252 ± 378.3 12 12 ± 3.41 13,363 ± 104.4 53 24 ± 0.58 47,187 ± 274.5 26

0:1 5 ± 4.81 15,454 ± 317.4 11 1 ± 1.96 3,032 ± 65.4 10 23 ± 2.08 46,607 ± 272.5 24

Elements in the supplementary table are means ± standard deviation. TF and FP are True Positives and False Positives.

# Unique is the number of identified unique novel edges over 10 runs of the methods starting with randomly selected priors.
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Supplementary Figure 6: Performance comparison of previous enrichment scores [24] and our pro-
posed PPI and GO scores on E.coli GRNs with different noise levels. The simulated E.coli GRNs
are generated based on the noise level, controlled by the percentage of the true edges and the ratio of
true to false edges. Under each noise level, 10 randomly simulated E.coli GRNs are generated. PPI
and GO scores are obtained by averaging over those 10 random networks. The first row contains
the PPI and GO enrichment scores proposed in [24]. The second row includes the performance of
our proposed PPI and GO scores. The comparison indicates that our proposed scores are more
consistent with the quality of the networks than the previous ones [24]. Specifically, the higher the
percentage of true edges and the lower the ratio of true to false edges, the higher the PPI and GO
scores are.
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Supplementary Table 7: Detailed prior networks information.

Prior networks for # Genes # TFs # Interactions

Female 7,530 383 228,946

Male 8,529 363 203,068

Female without ovary genes 5916 383 156,066

Male without testis genes 6,698 347 156,436

We used the DREAM5 challenge E. coli dataset which has 807 samples and 2066 “gold standard”
regulatory edges to explore sample size requirement. We used the “gold standard” E. coli network
to generate a prior network that is estimated to have 20% of true edges (414 edges out of 2066 “gold
standard” edges). The 20% threshold correspond to the threshold for which we start to observe
improvements of the prediction made by NetREX over the prediction made by expression only
methods. Then we applied NetREX to reconstruct the E. coli GRN given the same prior network
and randomly selected expression data of various sizes. Specifically, each sample size we randomly
selected 10 sets of samples and run NetREX. As shown in Fig. 7, when the sample size is less than
100, the performance of NetREX was quickly improving with the number of samples. After sample
size reached 1̃00, adding additional samples did not have a drastic effect. Interestingly, even with
a small number of samples, NetREX provided an improvement over the prior network in terms of
AUPR score.
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Supplementary Figure 7: Impact of sample size on NetREX performance. (a) The average and
standard deviation of AUPR for different sample sizes. (b) The zoom in of (a) between sample size
10 and 100.

Supplementary Note 4. Results on Drosophila Data

Next we applied NetREX to gene expression data in adult female and male flies from 99 hemizy-
gotic lines (deletion/+) of the Drosophila deletion collection (DrosDel) project covering 68% of
chromosome 2L. Specifically, in each of the DrosDel lines a different chromosomal fragment has
been deleted, leaving the organism with only one copy of genes for the deleted region [25]. We
used the network in [24], which was constructed through integrating diverse functional genomics
datasets (such as TF binding and evolutionarily conserved sequence motifs) in a supervised learn-
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ing framework, as the prior network for NetREX . The data used in [24] generally came from
cell lines and expression profiles of certain developmental stages. NetREX predicted regulatory
networks for adult female flies, and we subsequently verified these networks using GO functional
annotations [26], physical protein-protein interactions (PPIs), and target genes of the Drosophila
TF doublesex (DSX) [27].

In order to reconstruct different sex-specific networks, the prior networks were also different.
The detailed information of the 3 different prior networks used is listed in Supplementary Table 7.

Supplementary Table 8: Detailed information used for PPI and GO scores comparison for predicted
Drosophila female-specific networks.

# Co-regulated gene pairs #PPIs
#Gene pairs

(GO term similarity >=0.5)
PPI score GO score

Prior 316670 659 972 74.113 3.9966

Genie3(top 50,000) 30528 64 301 229.6467 300.653

Genie3(top 100,000) 12798 49 139 153.6647 243.8724

Genie3(top 150,000) 7228 47 89 137.3332 129.4579

Genie3(top 200,000) 4951 48 61 138.2621 122.2693

Genie3(top 250,000) 3855 50 45 143.224 94.2473

Genie3(top 300,000) 3133 43 40 137.4621 80.0387

NetREX(top 50,000) 19737 111 157 >324.698>324.698

NetREX(top 100,000) 43164 108 409 >324.698>324.698

NetREX(top 150,000) 69048 112 448 >324.698>324.698

NetREX(top 200,000) 75838 107 508 >324.698>324.698

NetREX(top 250,000) 74857 108 525 302.1078 >324.698

NetREX(top 300,000) 74710 109 542 273.5249 >324.698

Detailed information for computing PPI and GO scores for the predicted female-specific, male-
specific, and male-specific without genes highly expressed in the testis networks is listed in Supple-
mentary Table 8, Supplementary Table 9, and Supplementary Table 10, respectively. For Genie3
and NetREX, because certain cutoffs needs to be selected in order to have a fair comparison, we
show PPI and GO scores under different cutoffs. We found that networks inferred by NetREX
achieve the best PPI and GO scores for female flies and networks predicted by Genie3 achieve the
best PPI and GO scores for male files. After removing genes highly expressed in the testis from
the prior network and the expression data, we found that NetREX performs better than Genie3.

Despite having used the same base prior network to reconstruct the sex-specific Drosophila
GRNs, the quality of the predicted networks ended up being quite different. Based on the above
evaluation, we found the prior network proposed in [24] to be female biased. In this section, we
aim to assess the quality of the prior networks.

For female flies, Q (G0) = 6.4 when C = {60, 000, 80, 000, 100, 000, 120, 000, 140, 000}.
For male flies, Q (G0) = −14.4 when C = {60, 000, 80, 000, 100, 000, 120, 000, 140, 000}. And
for male flies where we remove genes highly expressed in the testis, Q (G0) = 4.1 when C =
{20, 000, 40, 000, 60, 000, 80, 000, 100, 000}. The quality scores are consistent with the per-
formance in terms of PPI and GO scores.
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Supplementary Table 9: Detailed information used for PPI and GO scores comparison for predicted
Drosophila male-specific networks.

# Co-regulated gene pairs #PPIs
#Gene pairs

(GO term similarity >=0.5)
PPI score GO score

Prior 273801 588 766 108.112 2.7996

Genie3(top 50,000) 114221 174 1321 59.4729 274.0408

Genie3(top 100,000) 80969 108 1187 28.1434 >324.698

Genie3(top 150,000) 63931 91 1166 27.6026 >324.698

Genie3(top 200,000) 53500 99 1131 46.4055 >324.698

Genie3(top 250,000) 46832 85 1129 40.1093 >324.698

Genie3(top 300,000) 39723 82 1009 44.5129 >324.698

NetREX(top 50,000) 17456 57 940 49.4762 >324.698

NetREX(top 100,000) 20712 34 538 21.4606 308.1195

NetREX(top 150,000) 27018 33 557 16.0788 220.8253

NetREX(top 200,000) 42193 34 458 9.358 185.5866

NetREX(top 250,000) 50242 42 502 10.0698 209.5641

NetREX(top 300,000) 68532 97 627 27.9719 151.8892

Supplementary Table 10: Detailed information used for PPI and GO scores comparison for predicted
Drosophila male-specific networks without genes highly expressed in testis.

# Co-regulated gene pairs #PPIs
#Gene pairs

(GO term similarity >=0.5)
PPI score GO score

Prior 185710 342 584 53.3471 4.7076

Genie3(top 50,000) 30528 64 301 37.5303 71.6957

Genie3(top 100,000) 12798 49 139 44.6857 26.9861

Genie3(top 150,000) 7228 47 89 60.6501 21.1984

Genie3(top 200,000) 4951 48 61 75.5626 15.0099

Genie3(top 250,000) 3855 50 45 88.694 10.6838

NetREX(top 50,000) 47642 140 899 137.77 324.698

NetREX(top 100,000) 27826 90 605 110.27 251.53

NetREX(top 150,000) 28515 122 568 133.08 218.26

NetREX(top 200,000) 62551 185 644 83.23 109.86

NetREX(top 250,000) 88763 259 725 99.02 79.6111
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Supplementary Table 11: DSX agreement on male-specific networks without genes highly expressed
in testis.

# predicted # verfied percentage p-value

Prior 2 2 100% 3.10E-01

MERLIN P 85 49 57.6% 4.30E-01

Inferelator 4 3 75% 4.10E-01

Genie3(Top 20 TFs) 145 103 71.03% 1.29E-04

Genie3(Top 30 TFs) 274 190 69.34% 2.90E-06

Genie3(Top 40 TFs) 427 285 66.74% 3.48E-06

NetREX(Top 20 TFs) 23 19 82.61% 7.21E-03

NetREX(Top 30 TFs) 46 37 80.43% 4.52E-04

NetREX(Top 40 TFs) 62 51 82.26% 1.15E-05

Background: 6698 genes in male-specific networks without genes highly expressed in testis and 3755 of them are DSX targets.

p-values are computed by hypergeometric test.

As several lines of evidence indicate that the organizational principles of the regulatory program
of the testis is unique [28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. The Drosophila testis
has a radically different gene expression machinery compared to any other tissue [28, 29, 31].
There are probably several causes of this special gene expression profile. First, the testis expresses
specific paralogous components of the basal transcriptional machinery (distinct TATA binding
protein Associated Factors, or TAFs) [34]. Perhaps because of this specialized basal core promoter
machinery, at least some spermatocyte gene expression requires only very short promoters, such as
the 14 bases required for expression of a tubulin encoding gene in the testis [40]. Additionally, gene
expression in the male germline is regulated more hierarchically, with high levels of expression in
primary spermatocytes and then only low-level expression during meiosis and sperm maturation.
This transcriptional control is mediated by testis-specific basal transcriptional machinery and core
promoter sequences, not typical transcription factors and enhancers [36, 33, 34, 38, 39]. The
bulk of regulation appears to occur by translational control [41, 42] and is thus not modeled by a
transcription factor based network.

To further validate the predictions obtained from different methods, we concentrated on target
genes of the Drosophila transcription factor doublesex (DSX) which is involved in the sex determi-
nation system as two different isoforms [43]. Recently, Clough et al. [27] reported a rich set of DSX
targets based on a series of genome-wide experiments and analysis. According to [27], we treated
a gene as a DSX target based on either its ChIP-Seq gene occupancy or its conserved motif scores
(IC> 2). Thus, we checked how well the predicted DSX targets of NetREX are in agreement with
genes identified in [27].

When we keep the genes highly expressed in ovary in our reconstructed female specific GRN,
the DSX targets predicted by NetREX are highly overlapped with those reported in [27]. The
details are shown in Supplementary Fig. 8. The results for female networks without genes highly
expressed in ovary are shown in the main text (Fig.4 a, b, and c). We found NetREX significantly
outperforms other methods in female flies with or without genes highly expressed in ovary. But
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the GRN without genes highly expressed in ovary has better performance than the one with genes
highly expressed in ovary.

Supplementary Figure 8: Validation of predicted DXS targets (predicted with genes highly ex-
pressed in ovary). (a) Enrichment of experimentally supported DSX targets recovered by different
methods for female GRN. Enrichment for male GRN without testis is shown in Supplementary
Table 12. (b) Precision-recall curves for predicting DSX targets for compared methods. The DSX
targets predicted by each method are ranked by assigned weights. A high area under the curve
corresponds to high precision (low false positive rate) and high recall (low false negative rate). As
the ground truth we use DSX targets reported in 8 based on ChiP-Seq occupancy and conserved
motif scores. (c) Top 100 targets predicted by NetREX in the female GRN.

The result for the agreement in the male network without genes highly expressed in the testis
is shown in Supplementary Table 11. After removing genes highly expressed in the testis, the
performance of predicting DSX targets by NetREX is competitive to that of Genie3 in male flies.

We identified genes that are differentially expressed in male and female flies using indepen-
dent sexed-tissue expression data obtained from GSE99574. We used expression data from only
Drosophila melanogaster tissues (96 samples from GSM2647254 to GSM2647349) to identify sex
differentially expressed genes. Those 96 samples come from 8 tissues, namely, whole body, gonad,
reproductive tract, abdomen carcass, digestive system, genitalia or terminalia, and thorax. For each
tissue, we considered genes as having sex biased expression when the absolute log2 fold change is
larger than 2 as well as the adjusted p-value is less than 1.0E-3 (log2 fold change and adjusted
p-value were computed by DESeq2 [44]). Then we identified sex differentially expressed genes by
finding the union among the sex differentially expressed genes identified in each tissue.

We examined whether DSX targets were enriched in those differentially expressed genes (iden-
tified by the method introduced in the the above paragraph) using the hypergeometic test. All
compared methods return ranked lists of predictions. They might predict different number of regu-
lators for each gene. To fairly compare those GRNs we take for each method the k-best predictions
for each gene. We set k = 20, 30, 40 and show the results for female GRN with and without genes
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highly expressed in ovary in Supplementary Fig. 9
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Supplementary Figure 9: Comparison of DSX targets in GRNs with/without genes highly expressed
in ovary enriched in differentially expressed genes with different cutoffs. (a) Comparison when
considering genes highly expressed in ovary. (b)Comparison when not considering genes highly
expressed in ovary.

For a fair comparison of the GRNs predicted by different methods, we compared everything
using the same cutoff. For example, if the cutoff is 30 TFs per gene, it means that each gene at
most could have 30 TFs based on the edge weights. The detailed comparison with more cutoffs for
both male (without testis) and female is shown in Supplementary Fig. 10
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Supplementary Figure 10: Comparison of DSX targets in GRNs without genes highly expressed in
testis enriched in differentially expressed genes with different cutoffs.
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Supplementary Note 5. Different Metrics

The p-value of the hypergeometric test is a metric used for evaluating the performance of different
approaches. Suppose there are N biological “gold standard” samples within M possible samples,
and a method selects m samples where n of them are “gold standard”. The hypergeometric test
can identify whether the “gold standard” samples are over-represented in the selected samples. The
p-value is then the probability that more than n “gold standard” samples are identified in m sam-
ples. Therefore, the lower the probability is, the better the method is. We then use − log10(p-value)
instead of the p-value. Due to float precision (IEEE-754 Floating Point), the smallest p-value could
be 0.5× 10−324, and the largest − log10(p-value) is 324.698.

The F-measure is defined as

2× Precision× Recall

Precision + Recall
, (40)

where

Precision =
|Ep ∩ E|
|Ep|

, Recall =
|Ep ∩ E|
|E|

. (41)

E and Ep are edge sets of the underlying regulatory network G and the predicted regulatory network,
respectively. F-measure ranges from 0 to 1, where 1 denotes that the underlying G is fully recovered
and 0 means the opposite.

Here, we want to emphasis the difference between F-measure and AUROC and AUPR scores.
The F-measure disregards the ranking of the edges in the predicted networks, and instead measures
the overlap between the predicted networks and the “gold standard” networks. In contrast, AUROC
and AUPR scores focus more on the ranking of the edges in the predicted networks.

Supplementary Note 6. Parameter Selection

For all prior-based methods, when constructing a GRN using a prior network with a partial “gold
standard”, we can try different parameters and find the optimal parameter set using the “gold
standard” information. However, when there is no “gold standard” information available, NetREX
can work in a consensus manner that ranks the edges in the network based on networks predicted
from different parameters [17]. For other competing methods, we tried different parameters and
used the ones that yielded the best scores of interest.

For simulated data, the parameters used to generate simulated data are L = 60, N = 500,M =
100. The density of the “gold standard” GRN is 0.1. The noise level in simulated expression data
E is controlled by σ = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. The percentage of true edges
in G0 is controlled by θ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

There are seven parameters for the NetREX algorithm, which are λ, η, κ, ξ, µ, a and b. We
applied a grid search to find the optimal parameter set. The settings are as follows. We set
η − λ ∈ [0.2, 5] with interval 0.2, η + λ ∈ [1, 50] with interval 1, κ ∈ [0.1, 0.5] with interval 0.1,
ξ = {0.1, 1}, µ = {0.1, 1} and a = b = maxi,j(abs E(i, j)). We used the same parameter set for
NetREX NP except λ = 0 and η ∈ [1, 50] with interval 1. For the NetREX `1 algorithm, we used
exactly the same parameters as in the NetREX algorithm.

To test the potential of the competing algorithms, for a certain noise level, we first applied a
grid search to all algorithms to find their optimal parameters on one simulated dataset based on
F-measure. Then we used the optimal parameters for the other 50 simulated datasets under the
same noise level. We compared the performance of different algorithms based on F-measures.
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For E.coli data, we tested the competing algorithms by using prior networks with different
noise levels controlled by the percentage of true edges or the ratio of true to false edges. For
prior networks of a certain noise level, as in the treatment of the simulation data, we used a grid
search to get the optimal parameters for one prior network based on AUPR score. Then we applied
the optimal parameters to the other 10 prior networks generated at the same noise level. The
AUROC, AUPR and the number of identified novel interactions that were not used in DREAM5
were reported.

For Inferelator, we set the number of bootstrap times at 5, which is the same as in NetREX,
and obtained the optimal prior weight based on the above training procedure. For MERLIN P, we
obtained the optimal prior network weight also based on the above training procedure. For Genie3,
we use the AUROC and AUPR scores reported on the DREAM5 challenge website.

With respect to Drosophila data, for running NetREX with the consensus strategy to construct
the female-specific network, we set the parameters in a certain range to make sure the total number
of edges in the predicted networks was around 250, 000 and the number of edges overlapping with
the prior network was between 120, 000 to 200, 000. Specifically, we set the number of total edges
to 250, 000 and the number of kept edges varied from 120, 000 to 200, 000 with interval 10, 000.
We used the same total edge and kept edge parameters when building the male-specific network.
For constructing the male-specific network without genes highly expressed in the testis, we set
parameters to keep the total number of edges in the predicted networks around 200, 000 and the
number of edges overlapping with the prior network between 80, 000 to 150, 000. Specifically, we set
the number of total edges to 200, 000 and the number of kept edges varied from 80, 000 to 150, 000
with interval 10, 000.

For Inferelator and MERLIN P, we used the parameters suggested in 1].The only parameter[2√
used for GENIE3 is K.[45] suggests two settings, K = M − 1 and K = M . We compared the√ 
results of these two Ks and found K = M − 1 to be better than K = M . Therefore, we used

K = M − 1 in our comparisons. When a cutoff was needed to obtain the final GRN, we ranked the
weights predicted by GENIE3 and did cutoffs based on rank.
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