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Appendix A. Hydrodynamics and cell models

We employ dissipative particle dynamics (DPD) to model whole blood flow, i.e. plasma, red blood cells
(RBCs), platelets and white blood cells (WBCs) in the microfluidic channels. The DPD method is a meso-
scopic particle-based simulation technique, where each DPD particle represents a lump of molecules and
interacts with other particles through soft pairwise forces. Since these interactions depend only on the relative
positions and velocities, the resulting DPD fluids are Galilean invariant. Therefore, DPD can provide the cor-
rect hydrodynamic behavior of fluids at the mesoscale, and it has been successfully applied to study complex
fluids (1, 2). The equation of motion for each particle i is governed by the sum of pair interactions f i with the
surrounding particles j and integrated using a velocity-Verlet algorithm. The time evolution of velocity (vi)
and position (ri) of a particle i with mass mi is determined by Newton’s second law of motion:

dri = vi dt ; dvi = fi/mi dt. (1)

In the classical DPD method, the total force fi exerted on particle i by particle j is composed of a conservative
force (FCij), a dissipative force (FDij ), and a random force (FRij) given by

FCij = aij(1−
rij
rc

)r̂ij for rij ≤ rc; 0 for rij > rc, (2)

FDij = γωd(rij)(r̂ij · v̂ij)r̂ij , (3)

FRij = σωr(rij)
ζij√
dt
r̂ij , (4)

where rc is a cut-off radius, and aij , γ, σ are the conservative, dissipative and random coefficients, respec-
tively, rij is the distance with the corresponding unit vector r̂ij , v̂ij is the difference between the two veloc-
ities, ζij is a Gaussian random number with zero mean and unit variance, and dt is the simulation timestep
size. The parameters γ and σ and the weight functions coupled through the fluctuation-dissipation theorem
and are related by ωd = ω2

r and σ2 = 2γkBT , where kB is the Boltzmann constant and T is the temperature
of the system. The weight function ωr(rij) = (1− rij/rc)k with k = 1 in the standard DPD method, whereas
other values of k have been used to increase the fluid viscosity (3). More detailed description of DPD method
can be found elsewhere (4, 5); see also (6) for RBC and platelet modeling.

1



Figure S1: Schematic of the RBC, platelet, and WBC models.

In addition to blood plasma modeled by collections of free DPD particles, the membrane of suspending
cells including RBCs, platelets, and WBCs is constructed by a 2D triangulated network with Nv vertices
(DPD particles). The vertices are connected by Ns elastic bonds to impose proper membrane mechanics, see
the schematic cell models in Fig. S1. This DPD representation of RBCs, platelets, and WBCs was extensively
used and validated in the previous studies for both healthy and diseased cells (6–9). For a single cell, the free
energy (Vcell) is given by

Vcell = Vs + Vb + Va+v. (5)

The elastic energy Vs representing the elastic interactions of the cell membrane is defined by

Vs =
∑

j∈1...Ns

[
kBT lm(3x

2
j − 2x3j )

4p(1− xj)
+
kp
lj

]
, (6)

where p is the persistence length, kp is the spring constant, kBT is the energy unit, lj is the length of the spring
j, lm is the maximum spring extension, and xj = lj/lm. p and kp are computed by balancing the forces at
equilibrium and from their relation to the macroscopic shear modulus, µs:

µs =

√
3kBT

4plmx0

(
x0

2(1− x0)3
− 1

4(1− x0)2
+

1

4

)
+

3
√
3kp

4l30
, (7)

where l0 is the equilibrium spring length and x0 = l0/lm. The bending resistance Vb of the cell membrane is
modeled by

Vb =
∑

j∈1...Ns

kb [1− cos(θj − θ0)] , (8)

where kb is the bending constant, and it is related to the macroscopic bending rigidity kc with the expression
kb = 2kc/

√
3, θj is the instantaneous angle between two adjacent triangles having the common edge j, and

θ0 is the spontaneous angle. In addition, the area and volume constraints Va+v are imposed to mimic the
area-preserving lipid bilayer and the incompressible interior fluid. The corresponding energy is given by

Va+v =
∑

j∈1...Nt

kd(Aj −A0)
2

2A0
+
ka(Acell −Atot

0 )2

2Atot
0

+
kv(Vcell − V tot

0 )2

2V tot
0

, (9)

where Nt is the number of triangles in the membrane network, A0 is the equilibrium value of a triangle area,
and kd, ka and kv are the local area, global area and volume constraint coefficients, respectively. The terms
Atot

0 and V tot
0 are targeted cell area and volume. In practice, we use high values for the constraint coefficients

to enforce area and volume incompressibility.
Fluid-cell interactions are achieved through viscous friction using the dissipative and random DPD forces.

In order to impose appropriate boundary conditions between the fluid and the cell membrane, a DPD dissipa-
tive force (FD) between fluid particles and membrane vertices needs to be properly applied. The dissipative
coefficient γ is computed such that no-slip condition on cell surface is enforced and γ is derived based on
the idealized case of linear shear flow over a patch of RBC membrane. The total shear force exerted by the
fluid on a patch of area A is equal to Aηγ̇, where η is the viscosity of fluid and γ̇ is the local wall shear rate.

2



In DPD discrete form, we distribute a number of particles on the wall to mimic the membrane vertices. The
force (Fv) on a single wall particle exerted by the fluid can be found as follows

Fv =

∫
VH

ng(r)FDdV , (10)

where n is the fluid number density, g(r) is the radial distribution function of fluid particles with respect to the
wall particles, and VH is the half sphere volume of fluid above the wall. The total shear force on the area A
is equal to FvNA, where NA is the number of wall particles on the patch with area A. The radial distribution
function is uniform g(r) = 1 when the repulsive conservative interaction between fluid and wall particles
is zero (6, 10). The repulsive-force coefficient for the fluid-cell interactions is therefore set to zero, and the
dissipative coefficients can be computed through the equality of FvNA = Aηγ̇. The DPD parameters used in
eqn (2)-(4) for all types of DPD particles and the cell membrane parameters used in eqn (6)-(9) for all blood
cell models are given in Tables S1 and S2, respectively.

Table S1: DPD parameters used in simulations. rc is the cut-off radius, aij is the conservative coefficient, γ is
the dissipative coefficient, and k is the weight function exponent. In all simulations, we set the particle mass
m = 1, and the thermal energy kBT = 0.10 in DPD units. Note that S= solvent (representing plasma), R=
RBC, P= platelet, and W= WBC.

type rc aij γ k

S-S 1.58 5.0 20.0 0.20

S-R 1.5 0.0 45.0 0.20

S-P/S-W 1.5 0.0 10.0 0.20

R-R 1.0 10.0 10.0 0.20

R-P/R-W 1.0 10.0 10.0 0.20

P-P/P-W/W-W 1.0 10.0 10.0 0.20

In order to prevent cell overlap we also adopt a Morse potential between cell membrane particles in the
form of

VM (r) = De[e
2β(r0−r) − 2eβ(r0−r)] , (11)

where r is the separation distance, r0 is the zero force distance, De is the well depth of the potential, and β
characterizes the interaction range. By properly setting the parameters, we can ensure strong repulsive forces
between cell membrane particles and prevent their overlap. We present the Morse potential parameters used
for cell-cell interactions in Table S3. Note that the cutoff radius rcM = 1 is set for all the Morse interactions.

It is also important to derive the scaling relationships between model (DPD) units and physical units. We
first define the length scale as

rM =
DP

0

DM
0

, (12)

whereD0 is the RBC diameter, rM is the model unit of length, and the superscripts M and P denote the model
and physical units, respectively. In the current study, we consider DP

0 = 7.82×10−6 m (11), DM
0 = 7.82, then

rM = 1.0×10−6 m can be obtained. In addition, the time scale is defined as

τ =
DP

0

DM
0

ηP

ηM
µM0
µP0

, (13)
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Table S2: Cell membrane parameters for normal RBCs (NRBCs), diabetic RBCs (DRBCs), platelets with
mean platelet volume (MPV)= 6 fL (PLTs), platelets with MPV= 12 fL (PLT*), and white blood cells (WBCs).
Nv is the number of DPD particles on the membrane, lm is the maximum bond extension, l0 is the equilibrium
bond length, kb is the bending constant, µs is the shear modulus, Atot

0 and V tot
0 are the specified cell area and

volume, respectively, kd + ka is the combined area constraint coefficient, and kv is the volume constraint
coefficient.

cell Nv lm/l0 kb µs Atot
0 (V tot

0 ) kd + ka (kv)

NRBC 500 1.8 6.025 100.0 132.87 (92.45) 5000 (5000)

DRBC 500 1.8 6.025 200.0 132.87 (127.45) 5000 (5000)

PLT 48 1.8 100.0 104 19.63 (6.02) 5000 (104)

PLT* 48 1.8 100.0 104 31.16 (12.01) 5000 (104)

WBC 2498 1.8 6.025 2200.0 313.78 (522.44) 50000 (5× 104)

Table S3: Morse potential parameters for cell-cell interactions. De is the well depth of the potential, r0 is the
zero force distance, and β characterizes the interaction range. Note that R= RBC, P= platelet, and W= WBC.

type De β r0

R-R 5.0 2.0 0.95
R-P/R-W 10.0 2.0 1.0
P-P/P-W/W-W 10.0 2.0 1.0

where η is the viscosity of plasma and µ0 is the RBC shear modulus. In this study, we consider ηP =
1.25×10−3 Pa·s, µP0 = 4.73×10−6 N/m, ηM= 148 and µM0 = 100 (6, 12, 13), then the DPD time scale is τ =
1.8×10−4 s. The size of a DPD particle for representing blood plasma can be estimated by

Vdpd = VD/Nl , (14)

where we used the volume of the modeled domain VD = 113411.5 µm3 and the number of solvent particles in
the domain Nl= 365014. Hence, a particle size is Vdpd = 3.1×10−19 m3. The volume of a water molecule is
∼3×10−29 m3 (14). Therefore, the mapping between the water molecules and a solvent bead in our system
is at the scale of O(1010) water molecules/DPD particle.

Appendix B. DPD model validation

The focus of this study is quantifying platelet margination in diabetic blood flow via a high-fidelity numerical
approach. It is important to validate the numerical model prior to using it in applications extensively. As there
is little to no available microfluidic data on platelet margination in the literature, we resort to the measurements
made for marginated polystyrene micro-beads suspended in bovine blood from the work of Carboni et al. (15).

In order to have the closest possible comparison with the experimental measurements, a rectangular chan-
nel with the same height (40 µm) is considered in our DPD simulations with human blood driven by the
pressure gradient, which generates different flowrates corresponding to wall shear rates of 60 and 120 s−1

similar to the experiment. The width of the channel is assumed to be much larger than its height, which makes

4



the DPD system periodic along the width of the channel. Further, we assume a periodic channel flow along
the flow direction. Rigid spherical particles of variable sizes, 0.53, 0.84 and 2.11 µm, are modeled by DPD
particles connected to each other through stiff wormlike chains (WLCs) (16) similar to the model described
for platelets. For smaller beads, however, 12 DPD particles are used to form the sphere, as opposed to 42
DPD particles used for the largest bead.

Figure S2: DPD model validation and comparison with microfluidic measurements for rigid spherical parti-
cles. (a) Time-averaged particle (bars) and RBC volume fraction (red line) along the channel height (particle
diameter 2.11 µm). (b) Comparison of computed and measured margination ratios for spherical particles of
different sizes, with experimental data by Carboni et al. (15). (c) Computed margination ratios for different
particle sizes evaluated for two wall shear rates.

A representative result for time-averaged particle and RBC distributions across the channel height is given
in Fig. S2, where both distributions are given as volume fractions. The mean volume fraction of RBCs is 35%
(blood hematocrit used in experiments (15)), a rise in RBC volume fraction close to the center of the channel
and the depletion of RBCs adjacent to the channel walls are clear. The cell free layer (CFL) thickness is
estimated to be ≈ 2µm, which is used for calculating the margination ratio. The spherical particles volume
fraction is quite higher in the CFL due to the margination effects.

Margination ratio (referred to as margination percentage in the main text) defined as the ratio of marginated
particles in the CFL divided by the number of suspended particles is plotted in Fig. S2(b) for three different
particle sizes at wall shear rate 60 s−1. The results show good comparison with the experiments, suggesting
that the margination ratio increases by the size of the particles. The difference, however, could be attributed to
the image resolution in the experiments and the fact that bin sizes considered in the experiment are relatively
larger than the CFL thickness. It is also noted that the different sizes of RBCs adopted in the experiment (15)
and simulation (bovine RBCs with diameter 5-6 µm (17) vs. human RBCs with diameter 7.5-8.7 µm (11))
could lead to slight differences in the magnitude of margination ratio in our simulations. However, the simu-
lation results will not be affected qualitatively because we keep the blood hematocrit (Hct= 35%) the same as
the experiments (15). The volume fraction of RBCs is detrimental in the frequency of particle collisions with
the RBCs that leads to particle margination (18, 19). In addition, the effect of shear rate on particles margina-
tion is plotted in Fig. S2(c). Increasing the shear rate enhances particle margination (which is observed for
oblate platelets as well) for all particle sizes as reported by the experiment of Carboni et al. (15), and con-
firmed in a few other numerical simulations (6, 20). In the current model validation, we only consider particles
with spherical shapes and not the oblate spheroids (the shape of a resting platelet) since spherical polystyrene
micro-beads were used in the experiment. In fact, particle shapes are also important for margination, which
have been investigated numerically in a few other studies. Reasor et al. (21) observed that comparing with the
spherical particles, the oblate particles (in particular the disk-like oblates) were easily trapped in the center-
occupied RBC core, lowering their margination rate. On the other hand, Vahidkhah and Bagchi (22) found
that the frequency of particle-RBC collision played a key role in determining particle margination rate, and
the oblate particles of moderate aspect ratio (AR=0.5) exhibited the highest frequency among the spherical,
rod-like, and oblate particles (AR=0.3,0.5).
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Appendix C. Blood sample preparation and analysis procedures

Clinical data from 136 consecutively subjects were pulled from the biochemical database of the S. Lepida
Biomedical Laboratory in Athens Greece specifically for this study. Data had been obtained using stan-
dard automatic biochemical analyzers (Sysmex XT-1800i and ILAB 350 Clinical Chemistry System) were
anonymized and thus exempt from IRB oversight. Clinical data included HbA1c, fasting glucose level, mean
corpuscular volume (MCV), mean platelet volume (MPV), plateletcrit (PCT), and WBC counts. A total of 64
type 2 diabetic patients (30 males and 34 females; age, 61±13.69 years; range, 34 – 90 years) and 72 healthy
controls (30 males and 42 females; age, 52±17.80 years; range, 26 – 94 years) were included in the study,
and the clinical data were analyzed by one-way analysis of variance (ANOVA). Variables given as absolute or
mean value ± standard error are shown in Table S4. Statistical significance was defined as p <0.05.

As shown in Table S4 and Fig. S3, despite the slightly decreased mean value of MCV in diabetic subjects,
p =0.05 estimated based on one-way ANOVA test indicates no significant difference in MCV of control and
diabetic blood samples. On the other hand, there are significantly higher MPV (10.0±1.26 fL vs 9.2±1.70 fL,
p =0.003), PCT (0.23±0.06 % vs 0.21±0.07 %, p =0.02), and WBC count (8.04±2.16 k/µL vs 6.85±1.96
k/µL, p =0.001) for diabetic subjects compared with non-diabetics.

Table S4: Clinical characteristics of the study groups

Controls Diabetics p-value

Total subject number 72 64 –
Male/ Female 30/ 42 30/ 34 –
Age range (years) 26 – 94 34 – 90 –
Mean age (years) 52 ± 17.80 61 ± 13.69 –
Mean HbA1c (%) 5.25 ± 0.29 7.66 ± 1.41 –
Fasting glucose (mg/dl) 99.0 ± 15.4 144.5 ± 45.8 –
MCV (fL) 88.33 ± 7.76 85.26 ± 9.89 0.05
MPV (fL) 9.2 ± 1.70 10.0 ± 1.26 0.003
PCT (%) 0.21 ± 0.07 0.23 ± 0.06 0.02
WBC count (k/µL) 6.85 ± 1.96 8.04 ± 2.16 0.001

Variables are expressed as mean value ± standard error. Note that MCV= mean corpuscular volume, MPV=
mean platelet volume, and PCT= plateletcrit. p-value is estimated based on one-way ANOVA test.
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Figure S3: Mean corpuscular volume (MCV) and mean platelet volume (MPV) from healthy controls and
diabetic patients. (a) and (c) Scatter plots of all measured data, where the horizontal lines are mean values
and the vertical error bars are the sample standard deviation. (b) and (d) Histograms showing the count
distributions of MCV and MPV in controls and diabetics.
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