Detection of HIV transmission clusters from phylogenetic
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trees using a multi-states birth-death model
Supplementary Materials

Derivation of the likelihood

We show here how the equations involved in the calculation of the MSBD likelihood are derived.

1.1

1.2

Variables involved
A; birth (transmission) rate for state 4, dependent on time such that \;(t) = Ao ,; X ei(t=to.i)
u; death (removal) rate for state i
~ state change rate
m;j = —— rate of transition from state i to state j

p;(t) the probability of a lineage in state ¢ at time ¢ not appearing in the phylogeny, i.e
going extinct before the present and/or not being sampled

¢i,~ (t) the probability of an edge N in state ¢ at time ¢ evolving until the present as shown
in the phylogeny

_ qi,n(t)
v = gin (te)
time t,

the likelihood of an edge N in state ¢ which starts at time ¢, and ends at

Master equations

Since all processes involved (birth, death and state changes) are Poisson processes, they have
exponential waiting times, and we can list all possible events which can happen on a lineage in
state ¢ between time t + 6t and ¢:

a birth happens with probability \;0t + o(dt)

a death happens with probability p;0t + o(dt)

a state change to the new state j happens with probability —1— 0t + o(dt)

n*—1

multiple events happen with probability o(dt)

no event happen with probability 1 — (A; + u; + v)dt + o(dt)



This allows us to write

pi(t+6t) = (1 — (N + i +7)0)pi(t) + Nidtpi(t)? + pidt(1 — o) + Z ———0tp;(t) + o(61)

leading to the master equation

CZ?ti(t):—(’Y-i-/\i(t)-i-Mi)pi( t) 4+ (1 — o) + Nt +Zn*_
J#i

Similarly we have
i, N (4 6t) = (1= (X + i + 7)0t)qi v (t) + 2X:0tpi(t)qi, N () + 0(6t)
leading to the second master equation

dg;,n
dt

(t) = —=(y + Ni(t) + pa) s, N (t) + 20 () qi,n (L)pi(t)

1.3 Solving the approximate equation for p;

As explained in the main text, we now want to solve the approximate equation

Cffti () = —(v + Nilt) + pa)pi(t) + mi(1 = ) + Xs(t)pi(¢)?

with the initial condition p;(t;¢) = Vi¢ and assuming that A;(¢) &~ A; on the interval [t;c,t].
Let v;(t) = A\ipi(t), we obtain

dv;
d:)t = — (v + X + pa)vi(t) + pa(1 = o)A + vy (t)?
Let v;(t) = —Zigg, the equation becomes

ug () + (7 + Xi + pa)ui(t) + pa(L — o) Ajui(t) = 0
The solutions are given by solving
2+ Y+N+p)e+pu(l—0)X;=0
A= (y+ X+ ) =41 =)\ > (v + X + ) = ki =72 + 29N + i) + (N — )* > 0
Let ¢ = VA, we get solutions

—(YH+Ai+pm)—c —(yFAitp)te

T; = 5 and y; = 5
Then, with A and B arbitrary constants, we obtain
ui(t) = Ae™i' + Be¥it
ui(t) = Ax;e® + By;e¥it
Thus
() = uj 1 Azge™' + Bye¥' 1 Az;e”“' + By;
Pt = Niui A Aemit 4+ Bevit )\ Ae ¢t +B



From initial condition p;(t;¢) = Vic,
Azie™"¢ + By; = —(\iVic)(Ae™* + B)

Az + \iVie)e e = =B\ Vie + vi)
Finally

1 Ay + MiVie)wie™® — yiB(\iVice + yi)
Ai Ay + MVig)e=t — B(A:Vie + vi)
1 (y; + )\iVlc)xie*Ct —yi(x; + )\iVIC)e*CtIC

Xi (Y + AVie)e=et — (z; + \iVie)e—ctic

pi(t) =

1.4 Solving the approximate equation for fy

The edge likelihood function fy fulfils the equation

dfx

7t (t) = — (v + Ni(t) + pi) o (£) + 20 (8) fv (8)ps(t)

on the interval [ty; ], with the initial condition fy(t.) = 1 where ¢, is the start of the edge N
and t. the end of the edge.

Similarly to the previous section, we assume that )\; is locally constant on the interval [¢;t.].
We will use the equation for p;(t) based on the initial condition p;(t.) = Vic. The solution is
given by

Cn
In = i (@
where
un (#) = exp( / =201 (8) + (7 + N + )] )
= exp(2in(u;(t)) + (v + Xi + pi)t)
= u; (t)26(7+/\i+ui)t
Thus
£ = Cn B Cn
fN( ) - ui(t)2e(7+)‘i+”i)t - (Aezit + Beyit)26(7+>‘i+“i)t
Cn (M\iVie +vi)?Cn

(Ae=<t + B)2et (AN Vic +yi)et — A(z; + A\ Vic)ecte)2ect
_ (Nipi(te) +yi)*Ce”
(Nipi(te) +yi)e" — (zi + Aipi(te))e )2

The initial condition fy(te) =1 gives

(Nipi(te) +yi)*Ce " = ((Nipilte) + yi)e " — (i + Aipi(te))e™)?
=e

—2cte (yz _ .’L‘i)Q

Thus (Api(te) + y:)?Cly = e (y; — ;).



Finally we obtain

2
) = e—cltett) ( Yi — T )
fult) =e (yi + Aipi(te))et — (@i + Aipi(te))e e

2
— ec(tﬂ—t) ( )
(yi + Nipi(te))ect=te) — (z; + \ipi(te))

2 Details on the algorithm

2.1 Detailed time discretization

Here we describe how to calculate fn and obtain an evaluation of the likelihood provided in Eq.
4, using Eq. 7. Values of p; for all branching times and state change times are precomputed to
avoid the repetition of those calculations for multiple edges. For edge IV in state i starting at
time ¢, and ending at time ¢, (i.e. t;, < t.), we aim to calculate fx(p,t.). Thus we aim to solve,
using the time discretization, the differential equation 3 with initial value f(t.,t.) = 1:

1. Fetch the precomputed value of p;(t.).

2. Divide the interval [tp,t.] in k equidistant intervals [tx,tr—1], [tk—1,tk—2],- - ., [t1,t0] With
to = t. and ty, = tp.

3. For each step [ € [1..k] do the following:

(a) calculate \;; the mean of A;(¢) on the interval [t;,¢;—1] , then

(b) calculate p;(t;) and fn(;,t;—1) by using the constant rates solutions provided in Eq.
6 for p and in Eq. 7 for f with A; = A;;, based on the value p;(t;—1) given by the
precomputed value if [ = 1 and by the previous step [ — 1 otherwise.

4. Finally, compute fn(tp,te) = Hle In(t, ti—1).

2.2 Algorithm: initial condition

The first step of the algorithm is to infer the most likely parameters for a constant birth-death
model, i.e for a model with only one state, given the tree. These parameters will be used as
starting values for the optimization in further steps, to minimize the impact of user-provided
initial values. The initial values used in this initial optimization can have a great impact on
the entire inference: if they are too distant from the maximum likelihood estimates (MLEs),
it can happen that the one-state optimization finds only a local optimum of the parameter
values, and this will in turn affect all subsequent steps of the inference. Our method avoids
this issue by applying an initial coarse-grained optimization step prior to the main optimization
algorithm. Initial values are tested until no further improvement of the likelihood in the one-state
configuration can be obtained. The MLEs obtained will then be used to initialize all further steps
of the algorithm.

3 Features of simulated networks A, B and C
Various features of the A,B,C networks and the resulting simulated trees are shown in table

Networks A and B are very similar both in the size of their trees and in the cluster partition
inside trees. Network C, on the other hand, contains a large number of fairly small clusters.



Even though C trees are much larger on average, the clusters they contain are very small on
average and 34% of them include only 1 or 2 tips of the tree. These very small clusters contain
very little signal from the underlying contact network, and thus are not expected to be detected
by the method.

Network type A B C
Number of clusters in the net- 13 26 100
work

Number of elements per cluster 20 | 21.5 | 9.8
Number of tips per tree 52 60 196
Number of clusters per tree 6.0 6.6 | 39.1
Inferred number of clusters 6.6 5.3 | 16.4
Number of elements per cluster | 9.5 9.6 5.2
in the tree

Proportion of small clusters (<3 | 21% | 14% | 34%
elements) in trees

Table 1: General features of the A, B, C networks. All numbers are averages over the 4 weighting
schemes, i.e averages over all 1200 trees in each network.

4 Sequence simulation on HIV empirical tree

Sequences were generated on the HIV empirical tree using a GTR model with a gamma distribu-
tion with 4 rate categories and invariant sites. The parameters of the molecular evolution model
were set to the estimates obtained by (1l) when inferring the tree, which are shown in table

5 Performance of the MSBD inference

5.1 Speed improvement option

The algorithm as presented in the main text is fast at the beginning of the inference but will
progressively slow down as more states are added, due to the increase in the number of parameters
that need to be optimized.

We have thus added a so-called ‘fast optimization’ option, which limits the number of pa-
rameters which are allowed to change during one step of the maximum likelihood optimization.
In practice, when adding the n-th state change, only the parameters Ag nt1, Ao,as Znt1, Zas fnt1
and i, are optimized, where a is the state from which the epidemic is introduced in state n + 1.
All other parameters are fixed to the values inferred with n states. Thus this option results in
each step of the algorithm having a constant cost instead of a cost dependent on n, however
some precision is lost by fixing parameters.

It is also possible to run the normal analysis for the early steps of the algorithm and turn on
the fast optimization afterwards.

5.2 Speed evaluation

We measured the CPU time necessary to run the MSBD inference on trees from networks A, B
and C on a single core of the Euler cluster of the ETH Ziirich, shown in Table [3| Inferences on



Parameter Value used
Proportion of invariant sites 48%
Frequency of A 0.38
Frequency of C 0.16
Frequency of G 0.22
Frequency of T 0.24
Shape of gamma heterogeneity 0.57
Substitution rate 0.0015
Transition rate A — C 0.23
Transition rate A — G 1.12
Transition rate A — T 0.09
Transition rate C' — G 0.14
Transition rate C' — T 1.0
Transition rate G — T 0.11

Table 2: Parameter values used to simulate sequences with SeqGen.

the A and B networks took a few days of CPU time, however the inference on C networks was
much slower and had to be completed using the “fast optimization” option.

Network A B C C (with fast option)
Average CPU time (s) 130000 | 78562 | > 1025409 468089
Average CPU time (days) 1.5 0.9 >11.9 5.4

Table 3: Average CPU time of the MSBD inference. The inference was performed with the
regular optimization on networks A and B, and on C with the fast optimization. Inferences on
the C networks with the regular optimization were stopped after 12 days of CPU time.

We also compared directly the performance of the “fast optimization” option and the regular
algorithm, using a dataset of 300 trees of average size 200 tips. We first performed a partial
inference on this dataset, which was stopped once either 5 or 15 state changes had been inferred
on each tree. The algorithm was then restarted from the resulting saved states and performed
one optimization step, i.e calculated the maximum likelihood estimates of all parameters when
adding a state change on a given edge to the saved state. As shown in figure [, we measured
both the speed-up resulting from using the faster option and the difference in the maximum log
likelihood found.

As expected the speed-up achieved increases with the number of states already present in
the tested configuration. At 5 state changes, the fast optimization is on average 10 times faster
than the regular one, with a number of outliers with speed-ups of up to 50 times. At 15 state
changes the speed-up is of 70 times on average, a considerable improvement. The difference in
the maximum log-likelihood obtained using the less-precise fast option also increases with the
number of state changes, although the difference remains small compared to the log-likelihood
value, which is on average -1690 for the regular optimization across all categories. The runtimes
for one edge are on average 170s at 5 state changes and 1250s at 15 state changes for the regular
optimization. Since every step of the algorithm involves testing all edges of the tree, the “fast”
option is thus necessary to ensure completion of the inference on trees with more than 10 clusters.
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Figure 1: Box plots representing the speed-up (A) and likelihood difference (B) on one step of
the algorithm when using the “fast optimization” option compared to the default settings. The
dataset used was divided in three categories based on the number of state changes already found
by the inference before the test was run.

6 Parameter inference with incomplete sampling

Tables [4] and [5| show the results of the MSBD inference on simulated trees with respectively
0 = 0.75 and o = 0.5. The sampling proportions were fixed to the correct values in the inference.
As we can see, lower sampling proportions lead to lower accuracy in the parameter estimates, in
particular in the transmission rate estimates. However, the relative error remains low, and the
MSBD estimates appear to remain reliable even with lower sampling proportions, as long as the
actual sampling proportion is known.



A =35,2=12, | A\g=35,2=15, | A\g=15,2=1, | Ay =15,z=2,
Dataset parameters p=1,7=0 p=1,7=0 4=5~=05 4=5~=05
Average simulated 1 1 4.50 5.56
number of > 5 individuals, 1 1 1.70 919
clusters simulated
inferred 1.55 1.41 3.86 3.85
Average simulated 1.90 1.35 11.20 8.65
transmission | inferred 2.38 1.83 11.43 8.92
rate median absolute 0.36 0.42 0.82 073
error
Average §imulated 1.0 1.0 5.0 5.0
inferred 0.89 0.94 5.07 4.82
removal rate median absolute
0.25 0.23 0.86 0.81

error

Table 4: Parameter inference on several datasets with extinct sampling o = 0.75. Each dataset
contains 200 trees of 50 tips each, simulated under a multi-state birth-death process using Gille-
spie’s algorithm. Transmission rates are averaged over the entire tree.

A =050,2=12, | A\g=50,2=15, | A\g=20,z2=1, | A\g =20,z =2,
Dataset parameters p=1,7=0 p=1,7=0 4=5~=05 4=5~=05
Average simulated 1 1 4.39 5.29
number of > 5 individuals, 1 1 1.37 1.84
clusters simulated
inferred 1.48 1.37 3.03 3.21
Average simulated 3.67 2.39 15.94 12.66
transmission | inferred 4.09 2.91 16.62 13.13
rate median absolute 0.30 0.39 118 1.03
error
Average §imulated 1.0 1.0 5.0 5.0
inferred 0.93 0.89 4.96 4.86
removal rate median absolute
0.28 0.26 1.07 0.96

error

Table 5: Parameter inference on several datasets with extinct sampling ¢ = 0.5. Each dataset
contains 200 trees of 50 tips each, simulated under a multi-state birth-death process using Gille-
spie’s algorithm. Transmission rates are averaged over the entire tree.

7 Supplementary figures




A1 Cutpoint (Def 3.) A2 Cutpoint (Def 3.)
0.10 0.10

0.05 015 0.20 0.05 015 0.20
s 4 ¢ 4 . 4 . 3 : +
06 osl - . . : . . . : . .
3 3
© ©
£ £
T 04 T 04
© ©
< <
ke kel
2 2
[%] |7
El g
2 2
02 02
0.0 0.0
0.01 0.02 0.03 0.04 005 001 0.02 0.03 004 0.05
Cutpoint Cutpoint
Definiti -~ Def. 1 -=- Def. 3 -o- Def. 4: Complete link. -+~ MSBD Definiti ~- Def. 1 = Def. 3 -=- Def. 4: Complete link. -+~ MSBD
STINION . bef, 2 -+ Def. 4: Average link. —+- Def. 4: WPGMA « MSBD limited ETINIMON _,_ bef, 2 -+- Def. 4: Average link. —+- Def. 4: WPGMA + MSBD limited
B1 Cutpoint (Def 3.) B2 Cutpoint (Def 3.)
0.1 02 0.1 02
0.75+
3 3
el el
£ £
B 050~ ©
© ©
< <
el el
2 2
|2} |72}
= 3.
T T
2 2
0.25+
0.00-
002 003 0.04 0.05 0.06 007 0.02 003 0.04 0.05 0.06 0.07
Cutpoint Cutpoint
Definition -+ Def. 1 -+~ Def. 3 o Def. 4: Complete link. -+~ MSBD Definition -+ Def. 1 -+~ Def. 3 o Def. 4: Complete link. -+~ MSBD
~o- Def. 2 -=- Def. 4: Average link. -+~ Def. 4: WPGMA © - MSBD limited ~*- Def. 2 -=- Def. 4: Average link. -+~ Def. 4: WPGMA © - MSBD limited
C1 Cutpoint (Def 3.) Cc2 Cutpoint (Def 3.)
0.1 02 0.1
05 05
04 04
3 3
he) ke
j= f=
=03 =03
© ke
C =4
© ©
< <
ke el
2 2
@ 0.2 @ 0.2
El g
o o
< <
04 04
0.0 0.0
0.01 0.02 0.03 0.04 0.05 001 0.02 0.03 004 0.05
Cutpoint Cutpoint
Definiti - Def. 1 -=- Def. 3 -o- Def. 4: Complete link. -+ MSBD Definiti ~- Def. 1 =~ Def. 3 -=- Def. 4: Complete link. -+~ MSBD
ETINION _, bef, 2 -+ Def. 4: Average link. -+ Def. 4: WPGMA + MSBD limited ETINMON _,_ bef, 2 -+- Def. 4: Average link. -+ Def. 4: WPGMA + MSBD limited

Figure 2: Comparison of the average ARI obtained by the different clustering methods in function
of the set cutpoint on networks A (parts A1,A2), B (parts B1,B2) and C (parts C1,C2). For each
network the first column (part 1) shows the results for weight w = 0.5 and the second column (part
2) for w = 0.75. Our proposed MSBD method is not dependent on a cutpoint. The cutpoint range
for Definition 3. is shown on the x-axis on the top, the cutpoint range for all other definitions are
shown on the x-axis at the bottom.



Figure 3: Illustration of nested cluster inference on a tree produced by a type A network. Part
A shows the true clustering, part B shows the clustering inferred by MSBD and part C shows
the clustering inferred by the cutpoint method following Definition 1 with a cutpoint of 0.02.
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— 1=0.76, 2,=0.11, 11;=0.047

—— =11, 220,17, 1,=0.047

—— 105=0.26, 2;=0.017, 14=0.047
204=0.27, 24=0.017, 1,=0.047

Figure 4: Analysis of the empirical HIV tree. Comparison of the clusters obtained with MSBD
(part A) or with PhyloPart with a bootstrap threshold of 0.0 and a genetic distance threshold
of 0.01 (part B), 0.02 (part C) and 0.1 (part D).
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