
Intercellular adhesion promotes clonal mixing in growing

bacterial populations

Supplementary information

Anton Kan1†, Ilenne Del Valle2, Tim Rudge4,5, Fernán Federici2,3, and Jim
Haseloff1,*

1
Department of Plant Sciences, University of Cambridge, Cambridge, UK
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Supplemental methods

Plasmid construction All plasmids were built from fragments amplified by PCR with
Phusion R© High-Fidelity DNA Polymerase (NEB), using custom synthesized oligonucleotides
(Sigma Aldrich). Amplified fragments were extracted from an agarose (Sigma Aldrich) gel.
Linear DNA fragments were purified using the MinElute PCR purification kit (QIAGEN),
and assembled into plasmids with Gibson Assembly [1]. E. coli TOP10 (Invitrogen) was
used throughout cloning and further experiments. Plasmids were purified from overnight
cultures using the QIAprep spin miniprep kit (QIAGEN). Plasmid were verified by Sanger
sequencing from Source Bioscience. All plasmids are shown in more detail in section SI1.

Time-lapse sample preparation A small agar pad was made by pouring molten LB
(Sigma Aldrich) and 1.5% agar (Bactoagar, BD Biosciences), supplemented with chloram-
phenicol (12µg/mL) and kanamycin (50µg/mL), into a chamber made of a single GeneFrame
(1.5cm×1.6cm, ThermoScientific) stuck onto a microscope slide, which was then covered by
a glass cover slip and allowed to set. The coverslip was then removed carefully, and the
agar pad was inoculated with bacteria. The pad was then cut into a square of ∼1cm×1cm
and placed bacteria side down onto a clean cover slip, and stuck onto a stack of 3 Gene-
Frames affixed to a microscope slide, such that the agar pad was on the cover slip, inside
the chamber of GeneFrames and glass, and surrounded on the remaining 3 sides with air.

To prepare the bacteria sample, E. coli TOP10 cells, containing either plasmids pSEG4s
or pSEG4ag and accessory plasmid pL31N, were grown to exponential phase in liquid LB
media with chloramphenicol (50µg/mL) and kanamycin (50µg/mL), and at 37◦C in a shak-
ing incubator. During mid-exponential phase (OD=0.1-0.4) the cells were diluted such that
1µL would contain ∼5-50 cfu, and 1µL was applied onto the LB-agar pad, and allowed to
dry for several minutes at 37◦C.

Imaging Macro photography was performed using a Canon EOS 550D SLR
Large two-domain colony images were taken on a Leica SP5 confocal microscope after 24

hours of colony growth. A 10x air objective was used (HCX PL APO CS 10.0x0.40 DRY),
and sfGFP was excited at 488nm and emission detected 490-510nm, mCherry2 at 561nm
and detected at 605-653nm. Colonies were dome shaped, around 1.5mm in diameter and on
average around 110µm tall at the centre, falling to single cell thickness at the edges. The
colonies were thus imaged as a stack of ∼40 horizontal confocal slices, which were combined
into a single image for analysis by taking a maximum intensity projection.

Time-lapse movies were taken on a custom Nikon Eclipse Ti inverted microscope with
a Yokogawa CSU-X1 spinning disk module, hardware autofocus with Nikon Perfect Focus
and an enclosed incubator (Okolab) set to 37◦C. Images were captured with a Photometrics
Evolve (512x512 EMCCD) camera, with image acquisition performed using the Metamorph
software (Molecular Devices). Fluorescence images of the cell layer closest to the coverslip
were taken with a 60x objective (CFI Plan Apo VC 60X Oil) at multiple positions to track
many colonies, every 10 minutes for 16 hours. sfGFP excited at 488nm, and emission
detected at 525nm (ET525/50m filter).
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1 Plasmids
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Figure S1: Schematics of all plasmids used throughout this study.

Table 1: Diagrams of all the plasmids used, showing the plasmid backbone and additional
transcriptional units, described by protein and some promoter names.

Plasmid name Description Source
pKAYag pSB4K5, ampR, araC, pBAD:ag43, J23101:eYFP This study
pSEG4s pETcoco-1, ampR, J23101:sfGFP This study
pSEG5s pETcoco-1, tetR, J23101:mCherry This study
pSEG4pL pETcoco-1, ampR, J23101:sfGFP, pLlac:mCherry This study
pSEG5pL pETcoco-1, tetR, J23101:mCherry, pLlac:sfGFP This study
pSEG4ag pETcoco-1, ampR, J23101:sfGFP, pLlac:ag43 This study
pSEG5ag pETcoco-1, tetR, J23101:mCherry, pLlac:ag43 This study
pL31N pSB4K5, J23101:lacI This study

Plasmids and fully annotated sequences shown in fig. S1 and table 1 will be available
on Addgene.

Plasmid characterization

The plasmid segregation mechanism relied on the segregation plasmids being able to increase
their copy number in response to arabinose. This was characterized for plasmids pSEG4s
and pSEG5s using plate fluorometry and plasmid DNA quantification, and shown in figure
S2a and b. Both plasmids showed a large increase in DNA yield and fluorescence intensity
at arabinose levels above ∼0.1 mM , demonstrating the required increase in copy number.

Plasmids pSEG4s and pSEG5s were augmented with a transcriptional unit containing
ag43 driven by LacI repressed pLlac promoter [2] to create plasmids pSEG4ag and pSEG5ag.
This promoter was characterized using plasmids pSEG4pL and pSEG5pL, which contained
the pLlac promoter driving a spectrally distinct fluorescent protein. Fluorescence was mea-
sured in cultures containing pSEG4pL or pSEG5pL, with LacI bearing accessory plasmid

3



10
0

0

500

1000

1500

2000

Arabinose (mM)

G
F

P
 E

x
p

re
s
s
io

n
 R

a
te

 (
A

.U
.)

10
−4

10
−3

10
−2

10
−1

10
1

10
2
0

50

100

150

200

D
N

A
 Y

ie
ld

 (
n

g
/O

D
/m

L
)

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

0

200

400

Arabinose (mM)

R
F

P
 E

x
p

re
s
s
io

n
 R

a
te

 (
A

.U
.)

0

50

100

150

200

D
N

A
 Y

ie
ld

 (
n

g
/O

D
/m

L
)

pSEG4s pSEG5sa b

c d

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

IPTG (µM)

A
ra

b
in

o
s
e

 (
m

M
)

R
F

P
 E

x
p

re
s
s
io

n
 R

a
te

 (
A

.U
.)

pSEG4pL+pL31N

0

2

4

6

8

IPTG (µM)

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

A
ra

b
in

o
s
e

 (
m

M
)

G
F

P
 E

x
p

re
s
s
io

n
 R

a
te

 (
A

.U
.)

pSEG5pL+pL31N

0

10

20

30

40

50

60

Figure S2: Plasmid characterization. (a) pSEG4s and (b) pSEG5s increase in copy num-
ber and the fluorescent marker expression as a function of arabinose concentration. These
plasmids were further augmented for characterization by a cassette with pLlac-O1 promoter
driving mCherry2 to make (c) pSEG4pL and driving sfGFP in (d) pSEG5pL, which ex-
hibited IPTG induction in gene expression when combined with accessory plasmid pL31N.
Error bars represent standard deviation between triplicate data.

pL31N. The results (fig. S2c-d) showed high promoter activity at IPTG levels above 100
µM at all arabinose levels.

1.1 Materials and methods

Plate Fluorometry Samples were prepared for plate fluorometry by diluting overnight
cultures 1:1000 into fresh media containing the appropriate antibiotics, with the LB media
used throughout. The resulting inoculated media was loaded into a black 96-well, flat clear
bottom plate (Grenier). If an inducer was used, 5 L of the inducer was added to each well
at the appropriate concentration with 195 L of sample, otherwise 200 L of inoculated media
was used. As a control, each plate also contained at least 3 wells containing LB media and
E. coli TOP10 cells without plasmids.

The places were then loaded into in a BMG Clariostar plate reader, where they were
grown in LB with the appropriate antibiotics at 37◦C. Fluorescence and absorbance readings
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were taken every 10 minutes for 16 hours, with shaking between readings. The following
settings were used on the CLARIOstar machine: sfGFP: excitation 470/15 nm, emission
515/20 nm, gain 800, mCherry: excitation 570/15 nm, emission 620/20 nm, gain 1100, OD:
600 nm.

Data was subsequently analysed in the MATLAB (MathWorks) software. Background
autofluorescence in each channel was removed by subtracting the fluorescence intensity of
the control wells (with blank E. coli cells) at the appropriate OD. Fluorescent protein
expression rates were defined as the fluorescence intensity gradient per OD [(dF/dt)/OD],
averaged across an exponential phase window (OD = 0.2 - 1.0).

DNA quantification Plasmid DNA quantification was performed by purifying plas-
mid DNA from overnight cultures, incubated at 37◦C in LB media with chloramphenicol
(10µg/µL) and kanamycin (50µg/µL), and varying levels of arabinose. Minipreparations
were made using the QIAprep spin miniprep kit (QIAGEN), and DNA concentration was
measured using a NanoVue (GE Healthcare Life Sciences).

2 Autoaggregation in liquid culture

IPTG:

Plasmid: pSEG5s
+

pL31N

pSEG5ag
+

pL31N

pSEG4ag
+

pL31N
+ - + - + - + -

pSEG4s
+

pL31N
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b

Figure S3: (a) E. coli TOP10 liquid cultures grown overnight in LB and a shaking incubator
at 37◦C, containing the pL31N accessory plasmid and one of following plasmids plasmids:
pSEG4s, pSEG5s, pSEG4ag, pSEG5ag (indicated in the table below). Each plasmid combi-
nation was grown with either 100mM IPTG (+) or 0 IPTG (-). (b) The same cultures as in
panel A after 5 hours standing at room temperature, showing that IPTG induced expression
of ag43 led to cellular autoaggregation to the bottom of the flask.
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3 Adhesive colony morphotypes
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Figure S4: Confocal micrographs of E. coli TOP10 cells with the pPBag43 plasmid, con-
taining the pBAD promoter driving the ag43 adhesin. Colonies were grown at 37◦C on M9
agar pads at 0 and 100mM arabinose. Unusual morphology can be seen in colonies imaged
at 5 hours, however, this morphology was not found in colonies imaged after 21 hours. Scale
is 10 µm.

3.1 Materials and methods

Microcolonies in figure S4 were grown on 1.5% agar (Bactoagar, BD Biosciences) pads and
M9 (Ameresco) media supplemented with 0.4% (w/v) L-glucose (Riedel-de Haen) and 0.2%
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(w/v) casamino acids (Fisher Scientific). Bacterial cultures were grown to exponential phase,
diluted and placed onto the M9 agar pad, covered by a glass coverslip and enclosed in a
chamber made of several 1.5cmx1.6cm GeneFrames (Thermo Fisher Scientific) and a glass
microscope slide. Slides were incubated in a static 37◦C incubator and imaged in a Leica
SP5 confocal microscope using a 40x objective (HCX PL APO CS 40.0x1.45 OIL UV) and
with the following fluorescence settings: excitation 514 nm, emission 521-555 nm.

4 CellModeller computation adhesion model

4.1 CellModeller basics

A full derivation of the mathematics underpinning CellModeller can be found in [3, 4], as well
as in the CellModeller documentation in https://github.com/HaseloffLab/CellModeller/

blob/master/Doc/Maths/math.pdf. However a brief introduction will be presented here as
background to adhesive interactions.

A cell in CellModeller is modelled by a capsule with 7 coordinates x̃ = (x θ l)
T

, with
x representing the location of the cell centre in 3-dimensional space, θ the 3-dimensional
orientation of the cell, and l the 1-dimensional cell length. Forces in the simulation are
provided by cell growth, and cells feel a viscous drag force proportional to their velocity.
To understand a cell’s motion from a generalized force, we can study the cellular change in
coordinates given a general impulse ∆p̃, represented by (∆p ∆L ∆g)

T
, with linear, angular

and growth components. A change in cell of initial length l0 coordinates can then be give
by:

∆x̃ =


∆p
µl0

12P∆L
µl30
∆g
γ

 (1)

=


1
µl0

0 0

0 12P
µl30

0

0 0 1
γ


∆p

∆L
∆g

 = M−1∆p̃ (2)

Matrix M therefore determines the change in motion from the impulse, with a term for
viscous drag on translational motion, rotational motion, and growth. µ represents the drag
coefficient to motion, whereas γ presents the drag coefficient with respect to growth. The
matrix P is the projection onto the plane perpendicular to the cell axis. A full derivation
can be found in the references above.

For any surface point q on a cell with a center at qa, direction â and length l0, we can
find the displacement of q generated by ∆x̃ along any axis ĥ by calculating:

∆qĥ =
[
ĥT −(ĥ× q)T (ĥ·â)(q·â)

l0

]
∆x̃ = BM−1∆p̃ (3)
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4.2 Intercellular Adhesion
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Figure S5: Modelling intercellular adhesion in CellModeller. (a) For two cells in contact in
the simulation, (b) adhesion was modelled as force opposing transverse motion cells about
the contact (red arrows). (c) This sets up a parabolic potential well at the contact point,
with motion away from the original point of contact penalized energetically by adhesion.
This model generated similar colony morphologies to experimentally found ones: simulated
colonies with around 200 cells and (d) 0 adhesion strength and (e) an adhesion strength
parameter set to 10, appeared similar to E. coli microcolonies with pPBag43 grown for 5
hours on an M9 agar pad with either (f) 0 arabinose and (g) 100 mM arabinose. Scale bars
are 10 m.
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Adhesion is modelled as a simple linear elastic spring between the contact points, where
the restoring force is proportional to the displacement between the cell contact points (fig.
S5a-b).

The bacterial biophysics in CellModeller calculates the impulses on cells such that the
distance between any two touching cells is 0 in the axis normal to the contact. Therefore
to model adhesion between cells in contact, we only need to consider displacement in the
plane orthogonal to the normal.

The energy stored in an elastic spring is given by E = κx2 where κ is the elastic
constant of the spring, and represents the adhesion strength of the contact. This linear
spring therefore produces a parabolic potential well, with the energy proportional to the
square of the displacement (fig. S5c). Minimizing this energy at each timestep constrains
the cells to move with adhesion between contact points.

In a system of two cells A and B, which have a contact, indexed as i, at points pa and pb

on each of the cells. Impulses on the two cells generate a displacement between two contact
points on the cells. The displacement, ∆df , generated in an axis tangential to the contact,

f̂ , can be found in terms of impulses using equation 3, giving:

−∆dfi =
[
daiM

−1
a −dbiM

−1
b

] [∆pa
∆pb

]
(4)

= Gi∆p (5)

Therefore, the energy stored in adhesion at contact i is given by:

Ei = κi∆d
2
fi (6)

= κi(Gi∆p)2 (7)

= (∆pGi)
TκiGi∆p (8)

The simulation solves all impulses such cell overlaps at contacts, defined by d, are mini-
mized. This is done by solving A∆p = −d, where A is a block matrix with ncontacts×ncells,
and represents the system of cellular contacts and the associated axes of each contact with
relation to a cell. This acts to project each impulse for a given cell in the appropriate axis,
thus defining how an impulse affects each contact overlap.

Typically, A is poorly conditioned, meaning that there are many solutions. This therefore
requires regularization, which is performed with Tikhunov regularization [5], which finds the
solution which minimizes the energy. The adhesive energy can be added into the Tikhunov
regularization term, which constrains the solution towards the solutions that minimize the
work done against drag and adhesive energies. Therefore, the expression that needs to be
minimized by the solver is given by:

ε = min∆p{||A∆p + d||2 + α(Edrag + Eadh)} (9)

= min∆p{||A∆p + d||2 + α(M(M−1∆p)2 + (∆pG)TκG∆p)} (10)

To minimize this expression, we find the derivative of ε with respect to ∆p.

dε

d(∆p)
= 0 = AT (A∆p + d) + α(M−1∆p + GTκG∆p) (11)

(ATA + α(M−1 + GTκG))∆p = −ATd (12)

9



This expression therefore minimizes the adhesive energy with respect to tangential dis-
placement in 1 axis. In the 2D case, therefore, it is required only once, as the tangential axis
f̂ , is always perpendicular to the contact and the ẑ axis (assuming the cells are constrained
in the x̂− ŷ plane). In the more general 3 dimensional case, two axes in the plane tangential
to the contact are defined on the fly, and the adhesion energies in each axis are calculated
and added and minimized.

4.3 Implementation

The implementation of this model of intercellular adhesion can be found on http://haselofflab.

github.io/CellModeller/, within on the ’Adhesion’ branch of the GitHub repository.
Within the biophysical model, the term κ defined the strength of the adhesive interaction

for a given contact. For implementation, the adhesion strength between each cell type can
be set in the initialization of each cell. The logic of adhesion can also be defined by the
user in the model in the adhLogicCL function, which is parsed into the openCL code. This
function sets how different cell types with differing adhesion strengths interact. For example,
the following code:

de f adhLogicCL ( ) :
””” re turn min ( adh str1 , adh s t r2 ) ; ”” ”

defines the adhesion strength of a contact by the minimal adhesion strength of the cells
in contact. However this can be altered in a variety of ways to model a wide range of
adhesive behaviour.

A usage guide for the adhesion module can be found in the documentation on the
CellModeller website.

4.4 Usage notes

At intermediate adhesion the spatial packing of cells was less efficient than in experiments.
This was likely due to the interaction between the agar pad and the colony which serve to
compress the cells in the colony together [6], which was not explicitly accounted for in the
model. However, these forces are only present when the bacteria are between an agar pads
and glass cover slips, and are not present in colonies growing on an agar surface.
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5 Optical flow optimization

The Farneback optical flow algorithm [7], used in chapter 6 on time-lapse microscopy data
was first parameterized and validated with simulation data. To do this, CellModeller simu-
lations required the appropriate length and timescales, to demonstrate that the optical flow
finds the appropriate motion, and to find parameters optimized for motion in the time-lapse
microscopy data.

Therefore, colonies were simulated growing from a single cell, saving an snapshot of the
simulation with a frequency such that area growth of the simulation matched experimental
data (fig. S6c). Furthermore, the resolution of the snapshots was set to match experimental
data (512x512 pixels), and the width of the field of view also matched the data (136.5
µm). The image sequence of the simulated colonies (fig. S6b) therefore appeared similar
to experimental data (fig. S6a). Furthermore, the velocity field between each frame of the
simulation was found, and exported to a file.

The optical flow algorithm, implemented in python using the openCV package [8], re-
quires several parameters which are listed below, along with the descriptions from the python
openCV documentation (http://docs.opencv.org/2.4/modules/video/doc/motion_analysis_
and_object_tracking.html):

• pyr scale parameter, specifying the image scale (< 1) to build pyramids for each
image; pyr scale=0.5 means a classical pyramid, where each next layer is twice smaller
than the previous one.

• levels number of pyramid layers including the initial image; levels=1 means that no
extra layers are created and only the original images are used.

• winsize averaging window size; larger values increase the algorithm robustness to
image noise and give more chances for fast motion detection, but yield more blurred
motion field. iterations number of iterations the algorithm does at each pyramid level.

• poly n size of the pixel neighborhood used to find polynomial expansion in each
pixel; larger values mean that the image will be approximated with smoother surfaces,
yielding more robust algorithm and more blurred motion field, typically poly n =5 or
7.

• poly sigma standard deviation of the Gaussian that is used to smooth derivatives
used as a basis for the polynomial expansion; for poly n=5, you can set poly sigma=1.1,
for poly n=7, a good value would be poly sigma=1.5.

• flags operation flags that can be a combination of the following:

OPTFLOW USE INITIAL FLOW uses the input flow as an initial flow approxima-
tion.

OPTFLOW FARNEBACK GAUSSIAN uses the Gaussian winsize x winsize filter in-
stead of a box filter of the same size for optical flow estimation; usually, this option
gives z more accurate flow than with a box filter, at the cost of lower speed; normally,
winsize for a Gaussian window should be set to a larger value to achieve the same level
of robustness.

In order to find a parameter set that would allow for the Optical Flow algorithm to
accurately find the velocity fields in experimental data, an exhaustive parameter search
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Figure S6: (a) Montage of time-lapse microscopy data of E. coli TOP10 cells with plas-
mids pSEG4s and accessory plasmid pL31N, growing on an M9 agar pad with 100 mM
IPTG, chloramphenicol and kanamycin, showing a growing colony at frame 0, 12, 24 and
36, corresponding to 0, 120, 240 and 360 minutes. (b) CellModeller simulation data, shown
at the same frame number as the time-lapse, with the an equivalent image pixelation and
length scale. (c) CellModeller growth rate was set such that the area growth between frames
matched the microscopy data. Scale bars are 50 µm.

was performed using a simulated dataset with known velocity fields. The simulations were
designed to be of equivalent image pixelation (512x512), length scale (cell width = 0.75 µm,
cell length = 1 - 4 µm) and time scale between frames (figure S6c). A total of three such
simulations were performed and used for parameter optimization.

To calculate the error of the optical flow output, the optical flow derived velocity field,
Fopt was subtracted from the exact velocity field provided by the CellModeller simulation,
Fsim. The resulting magnitude of this vector was then found for each pixel, and then
summed in quadrature with values from other pixels containing cells. To calculate the error
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per pixel as a percentage, the total error was normalized by the magnitude of the real
velocity fields, to obtain the following expression for the error per pixel:

Error per pixel =

√∑
colony(|Fsim − Fopt|)2∑

colony |Fsim|
(13)

Iteration over all parameters was performed one parameter at a time. Once a minimum
was found for the first parameter, the value was saved and iteration proceeded over the next
parameter, and so on. This was performed several times to find a global minimum. Iterations
about the final parameter set used are shown in figure S7a, finding a final parameter set
with an error rate per pixel of around 2%. The final parameter set accurately recapitulated
the model velocity field well, as shown in figure S7c and d.

The final parameter set chosen was the following:

• pyr scale =0.25

• levels = 3

• winsize = 25

• poly n = 5 (Note that this was a slightly suboptimal choice, however, the documen-
tation recommended that this be kept at either 5 or 7)

• poly sigma = 0.7

• flags = 256 (OPTFLOW USE INITIAL FLOW) (This flag was used throughout since
the velocity field at any given point was similar to the previous time point)

Therefore, the code calling the optical flow algorithm is as follows:

cv2 . ca lcOptica lFlowFarneback ( prev , img , None ,
0 . 5 , 3 , 25 , 28 , 5 , 0 . 7 , 256)

Where prev refers to the initial or previous image of the image sequence, and img the
subsequent image.
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Figure S7: (a) Exhaustive parameter iteration across all 6 parameters of the optical flow
algorithm for 3 separate simulation datasets, shown in red, green and blue. The y-axis
in each case shows the percentage error per pixel. The vertical bold line in each plot
represents the final parameter value used. When the optical flow algorithm uses the final
parameter set on simulation data video, it accurately recapitulates the velocity field of the
simulation. Panel (b) shows a snapshot of simulation data at the 40th frame, and (c)
shows the velocity field as a quiver plot for the frame calculated by the simulation software,
almost indistinguishable from the optical flow derived field in (d). Arrow lengths represent
the distance travelled every 10 minutes. Scale bars are 50 µm.
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