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Let us consider a set of labeled samples S = {(x1, y1), . . . , (xN , yN )} where
(xi, yi) ∈ X × {−1,+1} for i = 1, . . . , N , and where the space X into which
the data points live is equipped with a dot product 〈., .〉. For example, the data
points xi represent ligands, and their labels yi are equal to +1 for ligands that
bind to a given protein and -1 for ligands that don’t. In the simplest case where
the two classes of data points are linearly separable, Support Vector Machines
[1] (SVM) is an algorithm that learns to separate these two classes based on an
hyperplane whose equation can be defined by a normal vector w and a constant
b: 〈w, x〉 + b = 0. Among the infinity of potential separating hyperplanes,
the optimal hyperplane maximizes the margin. This margin is defined as the
closest distance from the hyperplane to any of the data points. It can be shown
that the search of this optimal hyperplane can be formulated by the following
optimization problem:

argmin
w,b

||w||2 (1a)

subject to yi〈w, xi〉+ b ≥ 1,∀i = 1, . . . , N. (1b)

The solution hyperplane maximizes its distance to the closest data points, and
this distance is equal to 2/||w||2.

Then, the decision function f allowing to make predictions for any new point
x depends on its position with respect to the hyperplane, i.e. based on the sign
of f(x) = 〈w, x〉+ b.

This optimization problem is strictly convex and admits a unique solution.
The Lagrangian associated to the optimization problem leads to the following
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equivalent dual problem:

α∗ = argmin
α

N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjyiyj〈xi, xj〉 (2a)

subject to αi ≥ 0,∀i (2b)

N∑
i=1

αiyi = 0 (2c)

where the coefficients αi are known as the Lagrange multipliers associated
to the constraints yi〈w, xi〉+ b ≥ 1.

In practice, this quadratic problem that can be solved efficiently using a
dedicated algorithm, known as Sequential Minimal Optimization (SMO) [2].
When the optimum α∗ is met, the decision function allowing to make predictions
for any new point x depends on its position with respect to the hyperplane :

f(x) = sign

(
N∑
i=1

α∗
i yi〈x, xi〉+ b∗

)
.

However, the two classes of data points may not be linearly separable. In
these situations, kernel methods are a widely-used set of techniques that allow
to adapt linear methods to non-linear models. Let us consider a semi-definite
positive kernel function K : X×X → R. The Mercer theorem states that there
exists a non-linear function φ : X → H that maps data points in X into a
high dimensional feature Hilbert space H where K can be expressed as a scalar
product: k(x1, x2) = 〈φ(x1), φ(x2)〉H .In practice, H is more often taken to be
Rd. Although the two classes of data points might not be linearly separable
in X, they might become linearly separable in the high dimensional space H
where the SVM can be solved. The principle of kernel trick is that, since the
images of the data point φ(xi) are used only in scalar products, finding the αi
coefficients to solve the SVM can be done by replacing all occurrences of the
scalar product 〈φ(xi), φ(xj)〉H by the kernel function k(xi, xj):

α∗ = argmin
α

N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjyiyjk(xi, xj) (3a)

subject to αi ≥ 0,∀i (3b)

N∑
i=1

αiyi = 0 (3c)

In other words, finding the separating hyperplane in H does not require explicit
definition of the nonlinear mapping function φ, or calculation of the image
vectors φ(xi).

Then, the label of a new data point x is then predicted by a function f(x)
defined as:
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f(x) = sign

(
N∑
i=1

α∗
i yik(x, xi) + b∗

)
In the case where the two classes of points are not separable, we need to allow

some of the training points to be misclassified, i.e. to be on the side of the sepa-
rating hyperplane corresponding to points affected to the opposite label. To this
end, we introduce a penalty terms εn∀n = 1, . . . N (also called slacked variables)
defined by: εn = 0 for data points that are in the correct margin boundary and
εn = |yn − (〈w, xn〉+ b)| for the misclassified points. Thus, points on the deci-
sion boundary will have εn = 1, and misclassified points would be penalized by
εn > 1 proportionally to their distance to the separating hyperplane. Thus, the
penalty terms can be written as εn = max(0, 1−yn(〈w, xn〉+b)). Then the exact
classification constraints of equation 1b are replaced by yi〈w, xi〉+b ≥ 1−εi. In
addition, the penalty terms must satisfy εn ≥ 0∀n = 1, . . . N . The new objec-
tive function aims at both maximizing the margin and minimizing the penalty
terms, i.e. minimizing the number of misclassified points.

argmin
w,b,ε

||w||2+C

N∑
i=1

εi (4a)

subject to yi〈w, xi〉+ b ≥ 1− εi,∀i = 1, . . . , N, (4b)

εi ≥ 0, i = 1, . . . , N. (4c)

The parameter C in the objective function in equation 4a is meant to in-
troduce a trade-off between the maximization of the margin, expressed by the
term 1

2 ||w||
2, and the classification error on the training set, expressed by the

penalty terms. This parameter is usually determined by cross validation on
the training data. In the present study, the optimal parameter C was searched
between 10−5 and 105. As for the separable case, the SVM can also be solved
in the non-separable case using a kernel function.
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