

# **Expanded View Figures**

Figure EV1. Related to Fig 1: The effects of ELAC2 loss on survival and skeletal muscle.

A Morphology of the  $Elac2^{+/+}$  and  $Elac2^{-/-}$  embryos at day E8.5. Scale bar, 1 mm.

L/L, cre

L/L

B Hematoxylin and eosin (H&E) of heart from control (L/L) and knockout (L/L, cre) mice. Scale bar is 100 μm.

L/L

C Hematoxylin and eosin (H&E), and NADH and COX staining of skeletal muscle from control (L/L) and knockout (L/L, cre) mice. Scale bar is 100 µm.

L/L, cre

D Changes in mitochondrial and nuclear DNA were determined by qPCR on DNA isolated from 4-week-old control (L/L, n = 3) and knockout (L/L, cre, n = 3) mouse hearts. Values are means  $\pm$  SEM.







С



### Figure EV2. Related to Fig 4: The effects of ELAC2 loss on RNA-binding proteins.

A–C The levels of nuclear-encoded mitochondrial RNA-binding proteins (A), proteases (B), and mitochondrial ribosomal proteins (C) were measured by immunoblotting in heart mitochondria from 4-week-old control (*L/L*) and knockout (*L/L*, *cre*) mice. Porin was used as a loading control.

#### Figure EV3. Related to Figs 5 and 6: Loss of Elac2 causes a primarily transcriptional response.

A–D Reads mapping from the small RNA-Seq datasets were summarized to identify that mature tRNA sequences were reduced in most cases in the *Elac2* knockout mice (A), loss of the mascRNA derived from *Malat1* (B), a strong coordinated increase in cytoplasmic tRNA synthetases and several snoRNP components (C). Differential expression analyses on the RNA-Seq datasets identified an increased transcriptional regulation of mitochondrial ribosomal mRNAs and tRNA synthetases (D). Taken together, these data show that loss of ELAC2 and consequent impaired processing of non-coding RNAs causes a compensatory increase in ribosomal proteins and tRNA synthetases in response to reduced mature tRNA levels.



В



Figure EV3.

С

| Cytoplasmic tRNA synthetases |       |       |      |      |  |
|------------------------------|-------|-------|------|------|--|
|                              | Aars  | Farsb | Lars | Sars |  |
|                              | Cars  | Gars  | Mars | Tars |  |
|                              | Dars  | Hars  | Nars | Vars |  |
|                              | Eprs  | lars  | Qars | Wars |  |
|                              | Farsa | Kars  | Rars | Yars |  |

H/ACA ----

| ACA snoRNP |       |   |  |  |
|------------|-------|---|--|--|
|            | Dkc1  |   |  |  |
|            | Nop10 | ) |  |  |
|            | Nhp2  |   |  |  |
|            | Gar1  |   |  |  |

| C/D snoRNP |       |   |  |  |
|------------|-------|---|--|--|
|            | Fbl   |   |  |  |
|            | Snu13 | 3 |  |  |
|            | Nop56 | 6 |  |  |
|            | Nop58 | 3 |  |  |

D

## Large mitochondrial ribosomal subunit

| Mrpl1  | Mrpl17 | MrpI33 | Mrpl45 |
|--------|--------|--------|--------|
| Mrpl2  | Mrpl18 | MrpI34 | Mrpl46 |
| Mrpl3  | MrpI19 | MrpI35 | Mrpl47 |
| Mrpl4  | MrpI20 | MrpI36 | Mrpl48 |
| Mrpl9  | Mrpl21 | MrpI37 | Mrpl49 |
| Mrpl10 | Mrpl22 | MrpI38 | Mrpl50 |
| Mrpl11 | MrpI23 | MrpI39 | Mrpl51 |
| Mrpl12 | Mrpl24 | Mrpl40 | Mrpl52 |
| Mrpl13 | Mrpl27 | Mrpl41 | Mrpl53 |
| Mrpl14 | Mrpl28 | Mrpl42 | MrpI54 |
| Mrpl15 | MrpI30 | Mrpl43 | Mrpl55 |
| Mrpl16 | Mrpl32 | Mrpl44 | Lactb  |

| Small | mito | ochon | drial | riboso | mal s | ubuni | t |
|-------|------|-------|-------|--------|-------|-------|---|
|       |      |       |       |        |       |       |   |

| Mrps2  | Mrps16  | Mrps26 |
|--------|---------|--------|
| Mrps5  | Mrps17  | Mrps27 |
| Mrps6  | Mrps18a | Mrps28 |
| Mrps7  | Mrps18b | Dap3   |
| Mrps9  | Mrps18c | Mrps30 |
| Mrps10 | Mrps21  | Mrps31 |
| Mrps11 | Mrps22  | Mrps33 |
| Mrps12 | Mrps23  | Mrps34 |
| Mrps14 | Mrps24  | Mrps35 |
| Mrps15 | Mrps25  | Mrps36 |

#### Mitochondrial tRNA synthetases

| Aars2 | Gatb  | Mars2 | Sars2 |
|-------|-------|-------|-------|
| Cars2 | Gatc  | Nars2 | Tars2 |
| Dars2 | Hars2 | Pars2 | Vars2 |
| Ears2 | lars2 | Qrsl1 | Wars2 |
| Fars2 | Lars2 | Rars2 | Yars2 |







Figure EV4. Related to Fig 7: Loss of Elac2 causes varied effects on tRNA fragment pools and increases in pre-tRNA-derived small RNAs.

A, B We identified that tRNA fragments derived from the 5' and 3' ends of mature tRNAs (tRF-5 and tRF-3, respectively) and 3' pre-tRNA trailers (tRF-1) showed differential changes (A) and increases in pre-tRNA-derived small RNA associated with Pol III termination sites, including those derived from secondary termination sites from long pre-tRNA transcripts (B).