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The Supplementary Information is divided into three main parts.  Part I (Supplementary Topics) 
includes 18 brief text topics, each expanding on a specific technical or discussion issue in the 
order it was raised in the main text.  Part II (Supplementary Figures) includes 11 figures that 
illustrate important points raised in the main text or supplementary topics.  Supplementary 
References follow in Part III.   
 
I. Supplementary Topics 
 
1. What do the terms T1-weighted and T2-weighted mean in terms of MRI and myelin contrast? 
 
Students learning about brain imaging (for research or clinical purposes) are exposed early on 
to the distinction between “T1-weighted (T1w)” and “T2-weighted (T2w)” images.  T1w images 
have an intensity profile of white matter (WM) > grey matter (GM) > cerebrospinal fluid (CSF).  
In contrast, T2w images have the opposite intensity profile (CSF > GM > WM).  Although these 
terms were originally based on the types of MR contrast in the images from simple gradient 
echo or spin echo sequences, they have come to refer more to the direction of contrast in MRI 
images given the increasing complexity of the MR pulse sequences currently in use for 3D high 
resolution brain imaging (and scanner manufacturers, radiologists, and many brain imagers use 
the terms in this way).  Two particular 3D sequences in current widespread use are 3D 
MPRAGE (magnetization prepared rapid gradient echo)1 and 3D SPACE (single slab variable 
flip angle turbo/fast spin echo2.  However, none of these terms is completely accurate in 
describing the MR contrast mechanisms that create each image.  The T1w contrast 
(WM>GM>CSF) in an MPRAGE image is dominated by the T1 relaxation mechanism but also 
has T2* and proton density (PD) components3.  On the other hand, the contrast in a SPACE 
image can be manipulated via the variable flip angle scheme for the refocusing RF pulse train4 
to generate T2w5, T1w6, or proton density weighted (PDw) images. The T2w contrast 
(CSF>GM>WM), which contains both T1 and T2 relaxation mechanisms5, is the most commonly 
used contrast for 3D SPACE and was the choice in the HCP’s T2w SPACE protocol. Given the 
complexity surrounding the MR contrast mechanisms in 3D structural acquisitions, we refer to 
the HCP MPRAGE and SPACE acquisitions simply as T1w and T2w images, consistent with 
their intensity profiles (albeit with no intention to imply that just a single underlying contrast 
mechanism is present).  We also note that in our experience the best results for T1w and T2w 
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images are achieved using the 3D MPRAGE and SPACE sequences at 0.8 mm isotropic 
resolution or better, half the thickness of the thinnest cortex.   
 
T1w and T2w images can be used to compute a T1w/T2w ratio in order to map myelin content 
in cortical grey matter7.  As mentioned above, T1, T2, T2*, and PD all contribute to some degree 
to the contrast in the T1w and T2w images.  The lipids in myelin affect T1 contrast8, and iron, 
which colocalizes with myelin particularly in cortical grey matter9, affects T2* contrast8.   Proton 
density also appears to contribute to grey/white contrast and may also contribute to intracortical 
myelin contrast10.  Thus, many types of MR contrast also contribute to the T1w/T2w ratio and 
hence to the grey matter myelin maps produced by this ratio.  We treat these maps as an in vivo 
“myelin stain,” rather than a quantitative measure of MR properties, and their validation is 
primarily neuroanatomical, rather than biophysical (i.e. they correlate strongly with known 
patterns of myelination within the grey matter7).  Though there has been debate as to whether 
the T1w/T2w ratio is the best approach for in vivo myelin mapping (as opposed to alternatives 
such as quantitative T1 images10-14, quantitative magnetization transfer images, quantitative T2* 
images15, T1w/T2*w ratio images16, myelin water fraction images, etc), we are unaware of an 
approach that produces as high a contrast-to-noise ratio (CNR) per unit acquisition time and 
field strength, enabling spatial resolution to be maximized within a fixed scan time (< 13 min 
combined between the T1w and T2w acquisitions at 3T and 0.8mm isotropic).  Also, T1w and 
T2w images are both very useful for generating accurate surface models and subcortical 
segmentations17.  Thus, we recommend that most studies acquire both images (and then the 
T1w/T2w myelin maps come ‘for free’), but studies focusing on quantification may elect instead 
to use their available scan time to acquire quantitative MR parameter maps.  A FLAIR type 
acquisition (also based on the 3D SPACE sequence with an inversion recovery preparation) 
could be used in place of the T2w SPACE acquisition if FLAIR contrast is important for other 
reasons. However, such FLAIR images do not have as much contrast for myelin or as high SNR 
as the T2w images mentioned before, so the myelin maps they produce are noisier.   
 
2.  Why is the HCP’s Diffusion Protocol Special?  
 
The HCP’s diffusion protocol differs from traditional diffusion imaging in several important ways.  
It uses many more diffusion encoding directions (270) enabled by an hour-long scanning 
session and three-fold multi-band acceleration (MB=3), which incurs little SNR penalty.  The 
WU-Minn-Ox HCP dMRI data were acquired on a customized scanner with stronger diffusion 
encoding gradients that can operate with 100 mT/m maximal gradient strength (Gmax).  This 
reduces diffusion encoding times (TE) compared to standard gradients of 40 mT/m (Siemens 
Trio) for a given diffusion weighting magnitude (b value). Consequently, signal loss due to T2 
decay during diffusion encoding is significantly less and the resultant gain in SNR is traded for 
higher spatial resolution. HCP dMRI data achieved 1.25 mm isotropic resolution with sufficient 
SNR for b-values as high as 3000 s/mm2 and used b shells of 1000, 2000, and 3000 s/mm2 18.  
(Note that Siemens subsequently introduced the 3T Prisma, developed in part through their 
collaboration with the HCP with a maximum gradient strength of 80 mT/m, which enables users 
in the community to use HCP-style diffusion protocols).  The 7T data also have high SNR with 
an even higher spatial resolution (1.05 mm isotropic), 130 directions at b-values of 1000 and 
2000 s/mm2 19 (see Supplementary Fig. 2).  The MGH/UCLA HCP consortium took a different 
approach with their even more powerful gradients (300 mT/m Gmax) by scanning subjects at 
1.5mm isotropic resolution and b values up to 10000 s/mm2 20. Both HCP consortia chose to use 
the original monopolar (i.e., Stejskal-Tanner21) diffusion encoding sequence.  It has a shorter TE 
compared to the bipolar (twice-refocused) sequence22 that has been popular for whole brain 
diffusion MRI in the last decade because it reduces eddy currents at the expense of an 
increased TE (and thereby reduced SNR). The HCP could tolerate substantially worse eddy 

Nature Neuroscience: doi:10.1038/nn.4361



	 3	

current effects with the monopolar diffusion encoding at high b-value because eddy current 
distortions are instead corrected during post-processing using a newly developed approach23 
that goes beyond traditional affine image registration (see Topic #8 below).  The HCP also 
acquired two sets of scans having reversed phase encoding directions. This enables correction 
of signal that had piled up in one phase encoding direction and spread out in the other without 
an SNR penalty. Indeed SNR actually increases across the image when both images are 
averaged, producing a relatively unbiased estimate of the signal intensities throughout the final 
image24). Tractography examples indicative of the data quality are shown in Sotiropoulos et 
al.18.  Another example (Supplementary Fig. 3) illustrates the ability to precisely map patterns of 
cortico-striatal connectivity from human HCP tractography data that closely parallel the tracer-
based connectivity patterns reported in the macaque.  
 
3. Simultaneous Multi-slice (Multi-Band) Echo Planer Imaging (EPI) 
 
The high spatial and temporal resolution of the HCP data would not have been possible without 
the accelerated imaging enabled by Simultaneous Multi-slice (Multi-Band) EPI. This 
transformative development has become the new standard for EPI imaging, the workhorse 
sequence for brain fMRI and dMRI.  In MR imaging, there is always a tradeoff between 
resolution and data acquisition times.  Higher resolution data simply take longer to acquire. In 
fMRI, this tension leads to longer TRs (i.e. worse temporal resolution) with increasing spatial 
resolution.  In dMRI, the trade-off is between spatial resolution and angular resolution (in q-
space).  The approach adopted by the HCP to substantially alleviate this tradeoff is the 
simultaneous multi-slice (SMS), multi-band (MB) technique that was first employed in brain 
imaging to reduce the time to acquire very high resolution functional imaging data25.  In 
conventional EPI image acquisition, each 2D slice covering the volume of interest is acquired 
sequentially in time.  In SMS/MB, multiple slices are excited and acquired simultaneously using 
multi-banded pulses.  The resultant image represents the sum of the simultaneously excited 
slices.  These overlapping slices can be unaliased using spatial information inherent in the 
multi-channel array of coils that are used for receiving the signals (see Supplementary Fig. 4). 
These coils are sensitive to regions of the brain in close proximity to their physical location and 
lose sensitivity with increasing distance. Each coil yields a linear combination of signals from the 
different slices (weighted by their sensitivity profiles), and a matrix inversion provides a solution 
to separate the slices from one another.  The imaging time is reduced by the number of 
simultaneously excited slices (MB factor), which receive the same contrast encoding.  This is 
especially important for EPI-based fMRI and dMRI, as contrast encoding time usually outweighs 
the EPI readout time.  The MB factor cannot be increased too high, however, as it is affected by 
the number of receive coils in the array, and their size, proximity to the sample, and layout.  
There is a penalty to be paid in noise enhancement and cross-slice contamination with 
increasing MB factors, which must be kept to a negligible level, but these parameters can be 
measured to determine feasible MB acceleration factors. Displacing slices with respect to each 
other at the image acquisition stage prior to unaliasing significantly improves the maximum 
usable MB factors26.  In the HCP’s 3T fMRI data acquisition, an MB factor of 8 was used with a 
32 channel array coil after extensive testing.  This allowed whole brain 2 mm isotropic coverage 
in 0.72s as opposed to 5.6s with a single band fMRI sequence, significantly improving data 
quality and SNR efficiency27.  For HCP diffusion MRI, a MB factor of 3 was employed, making it 
feasible to obtain high spatial and q-space resolution data.   In dMRI, the ultimate limitation in 
acceleration is the T1

 relaxation of spins, as going faster than approximately 2xT1 per volume of 
interest (whole brain for the HCP) becomes SNR-inefficient.  However, when high spatial 
resolution is employed in dMRI, MB factors are restricted by RF power deposition before 
reaching this ultimate limit.  The dMRI sequence requires more power than the fMRI sequence 
because, as a spin echo sequence, it requires the use of a 180-degree refocusing pulse, in 
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addition to the 90-degree excitation pulse also present in a gradient echo fMRI sequence.  
Further, the MB pulses aggravate the situation because they also increase the power demands. 
The combination is limited by the safely achievable peak power and total power deposited in the 
subject. There are solutions to these limitations developed by the HCP19,28,29, some of which 
were employed in the 7 Tesla dMRI component of the HCP data acquisition. 
 
4. HCP-Short Protocols 
 
The HCP-Short protocols are similar in key respects to the HCP-Full protocol, but are less than 
half the total scan duration (~1-2 h total scanning over one or two sessions vs ~4 h over four 
sessions).  HCP-Short is designed for studies in which the subject population may not tolerate 
intensive multi-session scanning and individual scans of 15 min duration, owing to age and/or 
brain disorders.  The HCP-Short protocols aim to provide sufficient high-quality data to enable 
HCP-style analyses, including selective removal of artifacts, intersubject registration using areal-
feature-based alignment (e.g., MSMAll), and cortical parcellation using the areal classifier.  
There are multiple variants of the HCP-Short protocols, because some protocols have project-
specific aspects (e.g., related to the particular age range or brain disorder under investigation).  
The initial HCP-Short protocol was developed for the HCP Lifespan Pilot project, a 1-year effort 
by both HCP consortia to obtain pilot data for the recently launched HCP Lifespan Development 
and Lifespan Aging projects (see Figure 5 in main text).  We describe below adaptations of the 
Lifespan HCP-Short protocols proposed for the HCP-Aging and HCP-Development Lifespan 
projects, which will both use the 3T Prisma platform at each of the four consortium data 
acquisition sites.  Note that these protocols are currently undergoing further piloting, with final 
protocols and parameters to be available at http://protocols.humanconnectome.org/lifespan/.   
 
Structural scans for HCP-Short are similar to that for HCP-Full, but the spatial resolution is 
slightly lower (0.8 mm isotropic voxels instead of 0.7 mm), and only a single pair of T1w and 
T2w scans is collected (albeit with a repeated acquisition if the scanning technician deems them 
to be only “fair” or worse quality). This increases SNR and shortens scan duration slightly (14 
min total for T1w and T2w vs 16 min) while preserving the benefits of high spatial resolution for 
cortical segmentation and maps of myelin and cortical thickness. Additionally, the Lifespan HCP 
may use ‘volumetric navigators’ (vNavs) to record (and possibly correct for) within-scan head 
motion30,31 – see also Topic #4 below.  
 
For fMRI scans, the HCP-Short protocol acquires data at the same spatial and temporal 
resolution as for HCP-Full (2 mm isotropic; TR = 0.72-0.8 s) using a MB factor of 8. Phase 
encoding is along the A/P axis for the Prisma (vs the L/R axis for the customized WU 
Connectom scanner).  In addition, HCP-Short acquires a spin-echo AP-PA field map pair. 
 
For rfMRI, HCP-Short scans are shorter in duration (usually 5.0-5.5 min/scan, but 3 min/scan for 
younger children, vs 15 min/scan for HCP-Full), and in total scan time (30-40 min vs 1 h). The 
reproducibility of resting-state networks (RSNs) increases steeply with total scan time over the 
first 30 min of rfMRI acquisitions (with additional improvement up to 80-100 min)32. It may be 
possible to augment information about RSNs using task-fMRI scans (see below), given that 
functional connectivity is similar when measured during tasks or the resting state33, and this may 
add to the useful data for intersubject alignment and individual-subject parcellation. 
 
The task-fMRI aspect of the HCP-Short protocols utilized to date is much briefer (ranging from 
no task fMRI to ~30 min total, vs 1 h for HCP-Full) and allows for project-specific tasks 
appropriate for particular age ranges or brain disorders.  The HCP Lifespan projects are 
currently considering options to acquire task data using up to five tasks, each with a notably 
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short (~2 min) scan duration.  More generally, the HCP-style paradigm supports diverse task 
fMRI protocols to reflect project-specific aims without major adverse impacts on intersubject 
registration (“MSMAll” surface registration does not use task-fMRI activations) or areal 
classification (which also does not require task-fMRI activations, cf. Ref. 34). 
 
For dMRI, HCP-Short acquires 22 min of dMRI data (four 5.5 min scans) at a spatial resolution 
of 1.5 mm isotropic voxels (vs. 1.25 mm for HCP-Full), two b values (1,500 and 3,000 s/mm2) 
and ~75-90 directions/shell.  The lower maximal gradient strength for the Prisma (80 mT/m, vs 
100 mT/m for the WU customized Connectom scanner) yields a longer TE and slightly lower 
SNR per image, but HCP-Short uses a simultaneous multi-slice (“multi-band”) factor of 4 for 
dMRI on the Prisma (vs. 3 for main HCP) while keeping within SAR and peak power limits 
because of additional pulse sequence development that occurred after the main HCP began.  
Possible refinements are being evaluated that would enable a MB factor of 5 or 6 using the two 
channel parallel transmit (pTx) capability of the Prisma and the local and global SAR regularized 
multi-band pTx pulses recently developed at UMinn29,35,36.   
 
The Lifespan HCP-Short protocol will also likely include a ~5 min Arterial Spin Labeling (ASL) 
perfusion MRI scan, which provides a quantitative measurement of cerebral blood flow (CBF). 
Since perfusion is normally coupled to metabolism, ASL is a useful surrogate marker of basal 
brain function, as well as aiding in the discrimination between neuronally-related vs 
cardiovascular-related effects seen in BOLD imaging. The Lifespan HCP projects are currently 
evaluating both background suppressed 3D segmented GRASE pseudo-continuous ASL 
(pCASL)37 and 2D multi-band EPI based pCASLa38. 
 
5. Head Movement During 3D Structural Scans  
 
Head movement during 3D T1w and T2w scans produces currently uncorrectable image 
blurring and banding and is a major problem for both research and clinical neuroimaging.  Even 
a single translation of a millimeter or so during a scan of 6 – 8 min duration will cause blurring.  
The main HCP reduced the problem by acquiring two T1w and T2w images. Moreover, if these 
were not of adequate quality - rated good or excellent based on a systematic manual QC 
evaluation 
(http://humanconnectome.org/documentation/S900/HCP_S900_Release_Appendix_IV.pdf, 
parts I – III, pp. 17 - 28), subjects were asked to complete an additional scanning session where 
up to two pairs of T1w and T2w images were acquired.  All T1w and T2w scans from the same 
session that were rated good or excellent in overall quality were used in further processing.  
Though the HCP invested in an external motion tracking camera, this technology was in its very 
early stages, and problems associated with tracking chip attachment to skin and skin movement 
independent of the rigid body motion of the head were not solved. As a result this approach was 
abandoned early in the project.  An alterative approach that shows promise involves ‘navigator’ 
sequences that acquire low resolution EPI data within the dead time of T1w and T2w 
sequences.  This data can be used to detect subject motion, and, in addition, adjust the imaging 
gradients to compensate for subject movement, avoiding blurring issues, and reacquire lines in 
k-space that were acquired during subject movement so as not to use k-space data corrupted 
by motion in the final Fourier reconstruction.  If the robustness of these approaches can be 
established, future studies may wish to take advantage of such online movement 
correction30,31,39 to enable consistently high quality structural image acquisitions.   
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6.  Gradient Distortion 
 
Spatial localization as well as diffusion encoding is achieved through the gradients of the MR 
system.  However, the gradients are not perfectly linear in space, which leads to image 
distortions as well as errors in diffusion encoding.  For dMRI in particular, such gradient 
nonlinearities can influence the magnitude and direction of diffusion-sensitizing gradients40 on 
top of the spatial distortions that they induce.  Spatial distortions due to gradient nonlinearities 
need to be corrected if images acquired on different scanners are to be compared.  Also the 
correct diffusion weighting in magnitude and direction must be used if one is to avoid errors in 
the estimated diffusion parameters that drive tractography algorithms.  In the HCP these 
corrections were implemented within the HCP’s minimal preprocessing pipelines17. 
 
A second problem exists with respect to calibration of the gradients.  For example, if the 
sequence calls for 40 mT/m, do we actually get 40 mT/m or just 39.2 mT/m?  Usually the 
calibrations are within a small percentage of the targeted value, but they are not exact. This was 
initially a problem for combining 3T and 7T data on the same subject in the main HCP.  These 
issues were carefully evaluated and calibrated using a grid “phantom” and corrected in 
postprocessing, by enabling additional degrees of freedom in the boundary-based registration of 
the HCP’s minimal preprocessing pipelines17,41 (from 6 DOF to 12 DOF). 
 
7. Why Spin Echo Field Maps? 
 
Maps of susceptibility-induced image distortion can be derived from a pair of spin-echo EPI 
images with reversed phase encoding directions.  We call these “Spin Echo Field Map” scans in 
the HCP-style protocols.  They offer several advantages over the more traditional dual-echo, 
gradient-echo based field maps, where the magnetic field is computed based on the phase 
difference of images from two differing echo times.  Spin echo field maps are faster to acquire 
(and thus more robust to subject motion), and can be matched exactly to the gradient echo fMRI 
data in terms of resolution, geometry, and distortion (via matching the echo spacing).  As a 
result, the distortion is identical between the two images, making image registration of the 
distorted spin echo and gradient echo fMRI images substantially easier.  The HCP tested the 
two distortion correction approaches and found that they performed similarly, leading to the 
recommendation that the faster imaging approach be used.  Importantly, additional information 
can be obtained from the spin echo images.  Gradient echo fMRI images suffer from signal 
dropout due to dephasing in areas of high magnetic field inhomogeneity that is absent in the 
spin echo field map images with similar image distortion.  This difference can be used to 
segment these regions of dropout, and these segmentations can serve as useful information to 
know where the fMRI signal is likely to be unreliable.  Additionally, the spin echo and gradient 
echo images can be combined to estimate the difference in the effects of the transmit B1 field 
on each of the images plus an estimate of the receive B1 field on the fMRI image34.  This 
receive field is more accurate than that generated from T1w and T2w images acquired in a 
different imaging session (and which experience somewhat different transmit field effects), and 
thus can be used to bias-correct the fMRI data without the need to acquire additional sequences 
or use additional preparatory time on the scanner.  For some fMRI analyses (e.g., resting-state 
correlations and task z-statistics), bias correction of fMRI is not needed. However, for other 
analyses (e.g., beta maps, variance maps), an fMRI intensity bias field can make the data less 
biologically interpretable across the whole image.  For such analyses, accurate intensity bias 
correction is important34.  The latest version of the HCP’s minimal preprocessing pipelines 
(v3.15.1 or later) now enables this sort of correction; moreover, as a simple multiplicative bias 
field, it can be retrospectively applied to prior HCP data as well.     
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8.  Eddy Current Distortion Correction and dMRI Outlier Removal 
 
A major problem for dMRI data arises from eddy currents induced by magnetic field modulations 
that are distinct for each diffusion direction and are more pronounced in the mono-polar 
diffusion-encoding scheme chosen by the HCP (for SNR efficiency as mentioned in Topic #2).  
dMRI data also suffer from signal dropouts caused by head movement and other sources, 
analogous to those that plague fMRI data.  The HCP’s ‘eddy’ software (released in FSL, and not 
to be confused with the older ‘eddy_correct’ script based on affine registration) corrects for 
linear and nonlinear eddy current distortions and also has an option to use model-based outlier 
detection and replacement to correct corrupted individual slices24,42,43.  Counter to the typical 
practice of individually registering each diffusion-weighted volume to a reference, eddy uses all 
data volumes jointly.  A Gaussian-process-based generative data model is used to make 
predictions about what the 3D dMRI volumes should look like at every point in q-space given 
knowledge of the different distortions. Inversion of this model enables accurate estimation of the 
distortion fields, which can then be applied to correct the data.  This combination of monopolar 
acquisition and eddy-based post-processing results in fewer artifacts and less distortion than 
traditionally achieved, yet with lower TE and therefore higher SNR that the HCP used to achieve 
higher spatial resolution (see Topic #2). 
 
9.  More about the Global Signal and fMRI Data Temporal Cleanup 
 
One idea that has gained substantial currency in the literature is that global signal fluctuations 
are often induced by direct effects of subject movement44-46.  Invoking this hypothesis, some 
argue that it is necessary to regress out the global signal in order to adequately correct for 
subject movement.  However, to our knowledge, no direct biophysical causal mechanism has 
been proposed to account for subject movement leading to global fluctuations in the fMRI signal 
(particularly those with the tissue specific and area specific effects shown in Supplementary 
Figs. 5 and 6).  Instead, it is worth considering the kinds of effects seen in fMRI images that are 
clearly attributable to head movement and which can be removed using ICA+FIX (ICA+FIX 
consists of detrending, aggressive 24 movement parameter regression, and non-aggressive 
noise ICA component regression): 1) Largely linear effects of moving the head within an 
inhomogeneous receive coil.  These effects tend to produce “rings” around the perimeter of the 
brain, reflecting signal intensity increases as the head gets closer to the head coil on one side 
and decreases as the head gets further from the coil on the other side.  Such spatially specific 
effects are readily identified by ICA+FIX and eliminated from the data.  2) Complex interactions 
between head motion and the magnetic field inhomogeneities in the fronto-polar, orbito-frontal, 
anterior temporal, and inferior temporal cortices.  These effects are also spatially specific and 
are readily identified by ICA+FIX and eliminated from the data.  3) “Spin history” effects of 
movement caused by some portions of the brain being excited sooner than they should and 
other parts being excited later than they should by the slice selection profiles.  In a ‘worst case’ 
scenario where the head moved exactly one slice up or down in the slice direction, this would 
produce a strong banding pattern in the data.  Such bands are readily identified by ICA+FIX and 
eliminated from the data.  In summary, no plausible biophysical mechanism has been proposed 
by which head movement would induce a truly global change in fMRI signal intensity (short of 
the subject completely exiting the head coil), as opposed to spatially specific changes in fMRI 
signal intensity that are visible to spatial ICA-based approaches.  Further, the global fMRI 
signals are highly tissue and area specific (Supplementary Figs. 5 and 6), and no plausible 
biophysical mechanism has been proposed for how subject motion could directly cause such 
phenomena.  Instead, the hypothesis advanced in the main text Box 1 about global fluctuations 
being partly due to non-neuronal physiological fluctuations and partly to subject-specific neural 
effects seems much more likely.   
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Approaches such as ICA+FIX and similar methods47,48 are attractive for removing the direct 
effects of movement from fMRI data (along with other spatially specific effects like MRI physics 
related artifacts or arterial and venous pulsation artifacts).  Indeed, ICA+FIX results approach 
that of the more aggressive censoring (‘scrubbing’) approach when movement becomes severe, 
but are not forced to make binary ‘scrub/not scrub’ choices based on thresholds in framewise 
displacement (FD) and/or framewise image intensity difference (DVARS) measures that may 
themselves be quite noisy in high temporal resolution data.  Instead ICA+FIX derives a 
weighted solution directly from the data.  That being said, it remains an open question whether 
scrubbing (for example, based on those frames where ICA+FIX begins to approach the 
scrubbing solution by removing substantial amounts of unstructured noise variance from the 
data) would be useful if we put aside for a moment the effects of global noise.  A similar 
question can be asked regarding the standard bandpass filtering that is often using to clean 
fMRI data, but has not been demonstrated to be useful above and beyond ICA+FIX and 
appropriate global noise cleanup.  Unfortunately, white matter and CSF timeseries regression 
are unlikely to represent an effective approach to global noise cleanup, as they have relatively 
little correlation with the global fluctuations as long as they are derived from ROIs free from grey 
matter contamination (which can arise from spatial smoothing or partial volume effects of ‘white 
matter’ voxels encroaching into gray matter, particularly in low resolution datasets), see also 
Supplementary Fig. 5.  Similarly it is not clear that physiological noise modeling approaches, 
such as that currently implemented in FSL’s PMN47 will deal with all global noise, though they 
may help.  Imperfections in the modeled effects of physiological noise parameters on BOLD 
fMRI data will lead to incomplete physiological noise clean up.  As mentioned in the main text 
Box 1, a recommendation for the complete approach to fMRI timeseries noise cleanup will have 
to wait until a selective and effective approach to global noise cleanup becomes available.   
 
Besides ICA+FIX48,49 and ICA-AROMA50,51, Multi-Echo-ICA (ME-ICA) is another approach that 
uses ICA to identify and remove non-BOLD noise components from a functional timeseries52,53.  
In this approach, multiple images are acquired at different echo times (TEs), and each 
component is scored as to how well it fits a T2* or BOLD-like decay curve.  Importantly, 
although this approach is able to separate BOLD-like from non-BOLD-like components, it does 
not remove BOLD-like global fluctuations from physiological sources (e.g., the global 
fluctuations in deoxyhemoglobin from rate and depth of breathing, heart rate, and end tidal 
pCO2 mentioned in the main text Box 1).  Thus, it does not represent a solution to the global 
signal/global noise problem raised here.  Additionally, multi-echo EPI is currently limited in the 
spatial and temporal resolution that can be achieved (on the order of 4 mm isotropic in 
published results with a TR of 2.5 s).  With the incorporation of multi-band into a multi-echo 
sequence, the spatial-temporal resolution of this technique should be improved, enabling 
accurate cortical analysis (i.e., 2.5 mm isotropic or better). At that point, a thorough evaluation of 
the pros and cons of standard multi-band vs. combined multi-band and multi-echo should be 
done, in which there are considerations of the tradeoffs in spatial-temporal resolution and 
temporal SNR, relative to performance in time series de-noising. Currently, we recommend 
using one of the other ICA-based techniques with standard multi-band fMRI.  It is possible that 
the temporal resolution recommendations of <1 s could be relaxed for multi-echo techniques, 
though the impact of fewer timepoints on multi-variate methods such as ICA or partial 
correlation would need to be investigated.   
 
10.  Selective Spatio-temporal Smoothing of Unstructured Noise  
 
A major limitation of spatial and temporal smoothing (or filtering) is that they smooth signal and 
noise indiscriminately.  When using smoothing to improve SNR, the data is also being blurred 
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across areal boundaries or removing high frequency temporal information that is known not to 
be fully noise54,55.  For the purposes of estimating dense functional connectivity, an attractive 
alternative makes use of Principal Components Analysis (PCA) to represent an fMRI 4D 
timeseries as a series of weighted spatial eigenvectors, ordered according to the size of their 
eigenvalues.  The eigenvalues of the PCA decomposition together form an eigenspectrum (a 
Wishart distribution in the null case56).  A white noise timeseries will have a characteristic 
spectrum of eigenvalues, and structured signal (or noise) present in the data will increase the 
eigenvalues above and beyond this null eigenspectrum.  Even in a dataset containing structured 
signal (e.g. area-specific resting-state fluctuations), the tail of the eigenspectrum will be largely 
unstructured noise.  A Wishart function can be fit to this tail, making a prediction of the null 
eigenspectrum for the dataset.  This null distribution can be subtracted from the data, forcing 
most of the eigenvalues representing noise to zero, and the PCA series can then be converted 
back to a timeseries that has higher SNR (for individual subjects), or correlated as a PCA series 
with higher SNR and fewer artifacts (for group data).  Although reducing the small eigenvalues 
may remove some very weak signals, the technique avoids the blurring of strong signals that 
occurs with typical spatial and temporal smoothing.  Additionally, this Wishart rolloff approach 
can be used to remove the effects of spatially autocorrelated noise and ringing from iteratively 
generated group PCA series57 (http://www.humanconnectome.org/documentation/mound-and-
moat-effect.html). Supplementary Fig. 7 illustrates both effects.  	
 
11. Improving Subcortical Alignment Using Diffusion Fiber Orientations 
 
One arena in which the current HCP Pipelines could likely be improved is in the alignment of 
subcortical white matter, which is based only on T1w images that have relatively little contrast 
within white matter.  Much as areal-feature-based registration improves the alignment of cortical 
areas over using only folding patterns, using fiber orientation information to drive white matter 
tract alignment will provide the registration algorithm more information about the identity of the 
fiber tracts being aligned.  Because of their low white matter contrast, T1w images will only 
approximately align these tracts.  Future versions of the HCP Pipelines may integrate such a 
diffusion fiber orientation-based nonlinear registration, as has previously been demonstrated 
(http://dti-tk.sourceforge.net/pmwiki/pmwiki.php?n=Main.HomePage)58,59. 
 
12. Effects of Thresholding on Reproducibility of Neuroimaging Results  
 
Two interrelated issues arise from the traditional use of statistical thresholding for display of 
neuroimaging results and identification of regions (which are often then converted to 3D 
standard space coordinates as the sole means of data sharing):   
 
(1) Statistical significance maps (e.g. Z or p maps) are affected by more than the measure of 
interest (e.g., %BOLD change or relative myelin content).  They also reflect the estimate of the 
error of the measurement.  While such maps are statistically interpretable as the likelihood that 
a finding differs from chance, and thus have a role for establishing statistically significant effects, 
they are less biologically interpretable than maps of the original effect of interest.  For example, 
in data generated using modern multi-channel head coils, regions near the center of the brain 
have lower Z-statistic values owing to the higher amount of unstructured noise in those regions 
after correcting for the sensitivity profile of the head coil.  This will decrease Z-statistics even if 
the %BOLD change in a subcortical central region is the same as in a cortical region.  Thus, 
when searching for biological boundaries in the data, one should arguably use maps of the 
effect of interest, rather than Z-statistic maps.  Further, biologically important boundaries in the 
data are likely to be identified most reliably by looking for large and rapid changes in the original 
effect of interest over a small spatial distance. Thus focusing on gradients (measures of spatial 

Nature Neuroscience: doi:10.1038/nn.4361



	 10	

change) in modalities can be an effective way to identify biologically important boundaries in 
one’s data, as was done in the HCP’s recent multi-modal parcellation34.  Using such gradients 
may aid in comparing across studies to determine the overlap of the results (i.e., do two studies 
activate or connect the same brain area or not?). 
 
(2) Traditionally, statistical significance maps are thresholded (usually at p<0.05 after some 
method of multiple comparison correction), and the regions that are identified are generally 
represented by the stereotaxic coordinates of the spatial center of gravity.  Often the 
thresholded statistical maps are all that is provided in the published figures of a study, making it 
harder to identify the underlying patterns in the data (only the “peak” and “valley” blobs are 
identified).  One problem that could be caused by this approach is missing evidence of an 
artifactual pattern that is more obvious in the unthresholded data (e.g. after thresholding one 
might find a few blobs on gyri and sulci, but the unthresholded data might clearly have a gyral vs 
sulcal bias).  Another issue is that the location of the statistical threshold contour can vary much 
more across studies than the underlying maps of the effect of interest or their gradients (See 
Supplementary Fig. 8).  Relatively uninteresting differences in Z statistical maps can easily turn 
activations whose significance is right around the threshold value from being above threshold to 
below threshold and vice-versa as illustrated in the figure.  These differences include slight 
changes in the spatial distribution of the noise, slight errors in the measure of the effect of 
interest, or even something as simple as adding more subjects or data.  When looking for 
cortical areal borders, the focus should be on where the effect of interest changes markedly 
across the cortical surface, not where the variance of non-interest changes.  Also, in the limit, 
given enough data in an individual subject or enough subjects, nearly the entire brain may have 
statistically significant activation and deactivation in a task fMRI study using even a very 
conservative statistical threshold, but this says little about the biological significance of this 
whole brain activation and deactivation60.  Thus, it is advantageous to use gradients in maps of 
the effect of interest to delineate areal borders or regions of interest, rather than statistical 
thresholds.  Some of the spatial uncertainty present in the traditional neuroimaging analysis 
paradigm may reflect the use of statistical thresholding to define clusters from which 3D 
activation peaks, or centers of mass are computed (also, many of the widely used multiple 
comparison correction and statistical thresholding approaches also have very inflated false 
positive rates 61).  Thus, it would be helpful if the maps of the effect of interest, their gradients, 
and statistical significance maps were displayed in publications and uploaded to neuroimaging 
databases such as BALSA (see main text), OpenfMRI (https://openfmri.org), and NeuroVault 
(http://neurovault.org).   
 
13. Group Average Registration Drift 
 
Group average registration drift is a phenomenon that occurs when registration templates are 
being generated with non-rigid registration algorithms or when different registration algorithms 
or templates are used to drive alignment to a common standard space.  A particularly striking 
example of drift is the ~37% increase in brain volume that occurs when one registers HCP study 
brains to the MNI152 template (see Supplementary Fig. 9), owing to a gradual expansion in the 
non-rigid components of the registration during the iterative process of template generation 
used to create the original MNI space62,63.  Drift can be removed by computing the group 
average registration effect and concatenating its inverse onto each individual subject’s 
registration.  It is both desirable and feasible to avoid such drifts in future brain templates.  If 
such drifts are eliminated64, very precise cross-study, cross-modal boundary comparisons can 
be made.  This is true even when using different areal features in different studies after a gentle 
folding-based registration to a common geographic template (see Supplementary Fig. 10), so 
long as the two studies’ samples are drawn from the same population.  Importantly, the current 
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grayordinates space is still based on MNI space for subcortical structures and thus still has this 
drift embedded in it.  A future version of the CIFTI grayordinates space may eliminate this drift.   
 
14.  ‘Weighted’ Approaches to Parcellation 
 
Parcellation of the brain is often carried out by clustering together neighboring voxels or vertices 
on the basis of the similarity of their timeseries. This typically yields a large number of non-
overlapping parcels, with a single contiguous group of voxels in each parcel (or network node). 
This can be referred to as a “hard parcellation”65,66. However the clustering does not have to be 
“hard”, but may instead be “fuzzy” or even probabilistic.  One approach to generating a “fuzzy 
parcellation” involves high-dimensional spatial independent-component analysis (ICA)67.  Using 
ICA, each network “node” is described by a spatial map of varying weights.  Notably each map 
may overlap with other nodes’ maps and may include more than one set of contiguously 
neighbouring voxels.  Network edges (connections between nodes) are estimated by comparing 
the fMRI time series associated with the nodes (usually derived using multiple regression).  With 
any of these parcellation approaches, brain connectivity can be represented as a ‘parcellated 
connectome’, which can be visualized simply as an Nnodes x Nnodes network matrix or a graph 
(explicitly showing nodes and the strongest edges68) or using more sophisticated visualization 
approaches that embed nodes and edges into spatial representations of the brain69.  Hard 
parcellations have the advantage of being simpler representations and are therefore a more 
parsimonious yet accurate representation, if they are a good biological model of the data. They 
are also easier to interpret as distinct neuroanatomical entities.  On the other hand, soft 
parcellations may be useful where the biology does not fit the model of non-overlapping spatial 
segregation or there is a premium on maximizing the homogeneity of signals.  Multiple 
regression using a weighted parcellation may be able to produce “purer,” more homogeneous 
timecourses when multiple neural signals are spatially superimposed (e.g. the distinct signals 
related to the eccentricity and polar angle axes of visuotopic organization in the visual cortex34).  
Further, an ICA-based weighted parcellation by definition will not allow rank-deficient node-
timeseries matrices to occur, whereas this condition can be a problem for partial correlation of 
hard parcellations (i.e. especially if a parcellation includes homotopically related parcels across 
the two hemispheres). 
 
15. Current Limitations to Generating Human Connectomes Using Non-invasive Approaches 
 
The Human Connectome Project’s core goal is to create area-to-area connectivity matrices 
using diffusion tractography and functional connectivity.  While much progress has been made 
in this direction (in particular in defining the cortical areas to be connected34), much work 
remains to assess and maximize the accuracy of the non-invasive measures of brain 
connectivity by comparing them to invasive tracers in non-human primates.   
 
Despite its well documented capabilities for localizing major fiber tracts in the white matter (see 
below), using diffusion tractography to map connections between distant gray matter regions 
has several limitations and is a field of active research70-72. Some of the limitations are 
fundamental, whereas others are amenable to methodological advances. One fundamental 
limitation of diffusion tractography is that it is unable to provide accurate directionality 
information about connections (it is impossible to know if an estimated connection is A à B, A 
ß B, or A ßà B) because water diffusion in axons is bidirectional.  In contrast, invasive 
retrograde and anterograde tracers reveal the directionality of connections71,73.  Thus, 
directionality information would have to be inferred through some other means (indeed, this 
prospect was one reason that MEG was included as an imaging modality in the HCP).  Another 
problem is the indirect nature of the measurements: a mapping is necessary from 
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measurements of diffusion displacements to axons and fiber patterns.  Due to the limited 
resolution of MRI (~mm3), hundreds of thousands of axons coexist in the same brain imaging 
voxel74, giving rise to different complex geometries (crossing, “kissing”, branching, fanning, 
converging). Distinguishing these configurations from the measured diffusion signal is an ill-
posed problem in general.  For instance some axons in white matter branch by bifurcation at 
quasi-right angles (e.g.,75), making it difficult for tractography to distinguish axonal branching 
from crossing of independent fiber bundles. These issues can cause errors when tracking either 
deep in the white matter or close to the cortex.   
 
Current tractography paradigms are also challenged in reaching terminations within gray matter 
and in accurately tracking in the vicinity of the WM/GM boundary74,76,77.  There is a pronounced 
bias in tractography streamlines towards being higher on gyral crowns and much lower in sulci.  
When streamline density is normalized relative to flat regions (zero surface curvature in sulcal 
banks), it becomes clear that the bias is actually more of an anti-sulcal bias rather than as 
strong an increase in gyral connectivity.  Such biases are strongest when tractography 
streamlines return to the cortex from the deep white matter, and so they are most prevalent 
when seeding bidirectionally within the white matter.  Pushing to higher resolution does help (as 
shown when fusing 3T and 7T HCP dMRI data78), but does not fully address this issue (as 
shown with 250um isotropic resolution in post-mortem macaques77).  The problems arise 
because (i) near sulcal fundi, superficial white matter and deep grey matter are dominated by 
tangentially running “U-Fibers,” which direct streamlines around the sulci, rather than allowing 
them to penetrate the grey matter; and (ii) in ‘gyral blades’ (white matter lying between sulcal 
banks), fiber bundles are predominantly oriented towards gyral crowns. It is possible to predict 
components of a neuroanatomically reasonable gyral bias in the tractography using simple 
geometric models74,76,77 that assume that each cubic mm (or square mm of the cortical 
midthickness surface) should, to first order, send out and receive a comparable number of 
axons.  Thus gyral crowns should have somewhat more axons crossing their white matter 
surfaces and sulcal fundi somewhat less; however, the bias observed in tractography is 
frequently much higher74,76.  This geometric model can serve as a reference upon which 
tractographic model improvements can be objectively evaluated.   
 
Concerns about the performance of tractography near the grey-white interface and the influence 
of folding patterns on the locations of gradients in tractographic connectivity led to tractography 
not being used as a modality in the HCP’s multi-modal parcellation of the cerebral cortex34.  
That said, it will be interesting to compare tractographic connectivity gradients to the multi-
modal consensus areal borders once large amounts of HCP tractographic data have been 
generated and shared.  Should tractography produce gradients that overlap substantially with 
the multi-modally defined cortical areal borders, tractography features could aid in predicting the 
locations of cortical areas in individual subjects using the multi-modal areal classifier34.  If 
tractography gradients do not have strong overlap with the multi-modal consensus areal 
borders, future improvements in tractographic models could be objectively evaluated with 
respect to these reference areal borders to aim for better agreement.   
 
Collectively, these issues give rise to significant challenges in keeping track of area-to-area 
connections as they travel from cortex through the deep white matter within fascicles and then 
fan out again to reach distant regions of cortex. To the extent that axons do not remain 
clustered together relative to the voxel size of the diffusion scan, these fascicles—which 
themselves have complex cross-sectional shapes—form bottlenecks where the accuracy of 
information about the strengths of inter-areal connections will be eroded.  If fibers from one area 
tend to cluster together within the deep white matter and then fan out again when they reach 
cortex, this will relax the spatial resolution requirements needed to accurately reconstruct area-
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to-area pathways.  On the other hand, if axons relatively randomly distribute themselves within 
fascicles, accurate reconstructions of area-to-area pathways would require dramatic 
improvements over current spatial resolution.  Invasive tracer studies in non-human primates 
compared with tractography may help to resolve which reality predominates within the brain; 
though the plethora of studies that show agreement between tractography results and other 
modalities and in various contexts (see Ref.71 for a review of such evidence) suggest that the 
geometrical realities may be somewhat on the favorable side.  
 
The above limitations in estimating direct connection strengths using tractography are difficult to 
fully address.  However, better data and better methods can help to reduce errors.  Work within 
the HCP consortium has aimed towards these goals18,19.  The HCP pushed the spatial 
resolution of dMRI to reduce partial volume effects, while keeping high SNR and high angular 
resolution.  At the same time, data at multiple angular contrasts (b values) have been sampled, 
which can further help in accurately mapping of fiber orientations79,80.  Up to three fiber 
crossings within the deep white matter, as well as various microstructure metrics,81-84 can be 
routinely modeled using the current HCP data releases.  New paradigms for mapping 
connections are also being explored, including incorporation of fiber dispersion85 in tractography 
and neighbourhood-wise tracking86.  Better, neuroanatomically informed models of axonal 
trajectories near the cortical ribbon incorporated into tractography may help to reduce gyral and 
sulcal biases.  In Ref, 87, the relationship of fiber orientations with cortical features is explored 
using post-mortem high-resolution histology and used to inform generative models for in-vivo 
diffusion MRI in an attempt to use mesoscale information to better estimate the paths of 
tractography at the transition between white and gray matter.  As improved tractography models 
aimed at measuring accurate area-to-area connection strengths emerge, results can be 
compared directly with invasive tracer studies in the macaque to see whether modifications to 
tractography models improve the agreement between tracers and tractography76.   
 
Aside from the question of accurate area-to-area connections, tractography can still provide 
useful information about the major fascicles themselves, for understanding how large territories 
of cortex are connected (e.g., refs. 88,89, for understanding how large fascicles have changed 
through evolution90,91, for understanding differences in fascicles in health and disease, or for the 
purposes of surgical planning.  Thus, even without yet having a fully accurate and validated 
area-to-area connectome, investigators are able to see how large ensembles of brain regions 
are connected to one another and to investigate white matter microstructural changes along 
these fascicles.   
 
A different set of limitations affect functional connectivity measures. Obtaining connectivity 
estimates using statistical dependences of the time-varying BOLD signal is also very indirect 
and has its own caveats.  Functional connectivity can be strong between parts of cortex that are 
known not to be directly connected (e.g., the horizontal meridian representations in V1 across 
hemispheres92).  Thus, functional connectivity reflects both direct and indirect connections, likely 
including common inputs.  One approach that attempts to make functional connectivity more 
direct is partial correlation functional connectivity.  This multi-variate approach attempts to 
identify the unique pairwise influences between cortical areas.  Such analyses are very 
demanding in terms of the number of timepoints and data quality required to produce 
meaningful data, and may not behave optimally in the context of neuroanatomical parcellations 
(as opposed to the ICA-based parcellations mentioned in Topic #14).  Estimating reliable 
directionality information from rfMRI timeseries is also problematic, partly because of the 
temporal smoothing of the BOLD response function, although causal inference methods not 
based on temporal lag are being developed and evaluated for rfMRI data (e.g., see references 
and discussions in Ref. 93).  Another conceptual limitation, raised in Ref. 71 involves an area that 
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participates in many resting state networks and as a result integrates many competing signals.  
Such an area might actually appear less connected than other areas, and a graph theoretic 
analysis searching for hubs might overlook it94.   
 
Significant progress had been made, in part by the HCP consortium, on how to correct for the 
temporal fluctuations induced by subject movement (main text and Topic #9).  That said, as 
discussed in Box 1 and Topic #9, standard full correlation-based functional connectivity has a 
global signal/global noise problem (as opposed to partial correlation, which is largely immune) 
that has been much debated in the literature.  This problem will need to be solved before full 
correlation functional connectivity provides an unbiased measure for assessing differences 
between groups with differing amounts of global noise (fortunately, global noise, by virtue of its 
global nature, does not affect the locations of gradients).  All these functional connectivity 
approaches (full correlation, partial correlation, attempts at directional correlation) would benefit 
from comparison with invasive tracer data from non-human primates, just as tractography does, 
for validation and to improve their accuracy at representing brain connectivity.  Such a 
framework, just like for tractography, could aid in making decisions about processing and 
modeling strategies for the generation of more accurate non-invasive human connectomes.  
 
16.  The ‘Standard’ Individual Lab’s Study in the HCP-Style Paradigm 
 
The HCP-Style neuroimaging paradigm includes a set of standard, concrete recommendations 
that are applicable to many if not most human neuroimaging studies (i.e., what is desirable for 
investigators to do in the absence of a good reason to do something different):   
 
Acquisition: A standard study should acquire 3D T1w and T2w structural images on a 3T 
scanner with a multi-channel head coil (ideally 32 or more receive channels) with 0.8 mm 
isotropic resolution or better (half the minimum thickness of the cerebral cortex), which can be 
acquired in ~13 minutes.  (3T is currently the most mature platform that produces higher SNR 
than 1.5T, and Siemens Prisma scanners are farthest along with the necessary technology and 
stability).  Functional MRI data should be acquired using task and/or resting state paradigms 
according to the purpose of the study.  The functional MRI data are acquired whole-brain with 
isotropic spatial resolution of 2.5 mm or better (less than the 2.6mm mean thickness of the 
cerebral cortex) and a TR of 1 second or less.  As much fMRI data is acquired as is feasible 
(ideally 1 hour or more, and at least 30 min is strongly recommended32).  A phase-reversed pair 
of spin echo images is acquired with the same geometry as the fMRI data in about 1 minute (for 
mapping the b0 distortion field and the fMRI receive intensity bias field).  If diffusion imaging is a 
part of the study, it should be acquired using a monopolar diffusion encoding scheme with whole 
brain coverage and with as high spatial resolution (i.e. less than 2 mm isotropic), as many 
directions (more than 60 for high angular resolution), and as high a b-value (ideally more than 
b=1000 s/mm2, and multiple shells are also generally helpful), as is feasible for the scanner that 
is used.  At a minimum, phase reversed b0s should be acquired and as many unique directions 
as possible (rather than repeating directions for averaging).  Ideally phase-reversed averages 
are acquired if there is time for hundreds of directions to be acquired as in the main HCP.  Both 
the fMRI and diffusion MRI data must be acquired using a multi-band sequence to maximize 
efficiency and to reach the targets for spatial resolution, temporal resolution, and angular 
resolution.   
 
Preprocessing:  The HCP’s minimal preprocessing pipelines, or alternatives with demonstrably 
superior capabilities, should be used to remove all image distortions, remove the spatial effects 
of subject motion, align data across modalities, and generate individual subject cortical 
surfaces, subcortical segmentations, and myelin and thickness maps.  Structured temporal 
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noise is removed from fMRI data using ICA+FIX or a similar approach and it is removed from 
DWI data using the outlier modeling available in FSL’s ‘eddy’ or a similar approach.  Data are 
registered on the surface using MSMAll or a similar areal-feature-based approach to maximize 
alignment of areas across subjects and, if the study is creating its own areal-feature-based 
registration template, group registration drift relative to a gentle folding-based geographic 
registration is removed.  Volume data are registered using a nonlinear volume registration 
approach (perhaps in the future based on fiber orientation information if diffusion data has been 
acquired, but currently based on the T1w image).  CIFTI files are created as the final outputs of 
these registrations in the 2mm standard grayordinates space.  Spatial and temporal smoothing 
are avoided as a rule (unless specific study goals require it, e.g. matching the spatial resolution 
between fMRI and a grid of electrodes in ECOG), and unstructured noise is reduced using 
parcellation or an approach like the Wishart rolloff method in Topic #10.  Parcellation is done 
using a neuroanatomical parcellation that reflects the structural and functional organization of 
the brain (e.g. the HCP’s multi-modal parcellation) that was generated based on accurately 
aligned data of hundreds of subjects.  If greater accuracy is desired, individual subject 
parcellations can also be created using the previously trained cortical areal classifier (so far this 
has been tested on 1 hour of resting state fMRI data, but in principle other kinds of fMRI data 
should also work, though the minimum amount of data needed has not yet been established).   
 
Analysis:  Analyses of fine spatial patterns are carried out on the dense (grayordinate-wise) 
CIFTI files, however statistical analyses of whole brain, area-level patterns are carried out on 
parcellated CIFTI files to benefit from gains in sensitivity and power.  Statistical comparisons 
across the whole brain are thus carried out on parcellated data, whereas finer comparisons 
might be carried out only within predefined brain areas.  Obviously there are a very large 
number of analyses that could arise from HCP-Style studies, including those that wish to go 
beyond areal-feature-based registration to establish non-spatial correspondences across 
subjects such as those in hyperalignment95.  The critical features of an HCP-Style analysis 
relate to the neuroanatomical fidelity of the spatial localization at the areal level and the use of 
neuroanatomy to describe the results.   
 
Data Sharing:  Results are visualized on cortical surfaces for the cerebral cortex and in volume 
slices for subcortical nuclei.  If thresholded statistical maps are generated, unthresholded 
versions of the effect of interest are also made available.  When appropriate, figures of brain 
images are created directly in Connectome Workbench or another neuroimaging software with 
equivalent features for figure creation and saved as “scenes” which link the data to the figure 
along with any annotations of the figure.  These scenes are linked within the resulting 
publication using unique identifying URLs and the scenes are uploaded to a neuroimaging 
database so that they and their data are available for download by other investigators.  This will 
allow users access to the brain maps of published figures to facilitate direct cross-study 
comparisons.  Any customized analysis code is uploaded to a code sharing service (e.g., 
GitHub) and also shared with readers.   
 
17. Can’t I Just Map between the Group Average Surface and Group Average Volume MNI 
Space? 
 
A frequent question on the HCP-Users mailing list concerns how to compare group average or 
atlas data in MNI space to data within the standard CIFTI grayordinates space (91282 
grayordinates, 2mm spacing).  Although it is possible to compare group average or atlas data in 
the standard grayordinate space to an individual subject’s physical volume space (by using the 
MSMAll registered individual surfaces to form a cortical ribbon in the subject’s physical volume 
space and projecting the data into this ribbon), there exists no method to bring data from a 
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group average surface into group average MNI volume space that maintains the spatial 
localization accuracy of the HCP-style neuroimaging paradigm.  Insofar as a particular cortical 
region has a consistent folding pattern across subjects and these folds have a consistent 
relationship with cortical areas, the decrease in accuracy is smaller, but this condition holds for 
only a minority of cortical regions (e.g., the central sulcus, the calcarine sulcus, and the insula).  
Even in these regions, there is a substantial amount of degradation in spatial localization 
precision in the volume (e.g., V1 in Fischl et al96), and inaccuracy in mapping to a group 
average cortical surface (e.g., area 2 in Van Essen et al97).  This makes neuroanatomically valid 
comparisons between group average data in MNI volume space and group average data on the 
surface inherently challenging7.   
 
The problem manifests itself most strikingly when comparing data mapped to group average 
cortical surfaces, where matching between vertices is derived from areal feature-based 
registration, to data mapped to average structural images registered in the volume using 
nonlinear volume registration (in this case FNIRT, as in Glasser et al 201317).  Supplementary 
Fig. 12 shows the issue with a comparison between group average and individual data.  In most 
cortical regions, group average surfaces and curvature maps are much blurrier than individual 
subject surfaces and curvature maps.  The only exceptions are regions where there is strong 
consistency in folding patterns across subjects and between cortical areas and folds96, such as 
the central sulcus, the calcarine sulcus, and the insula.  This has an important impact on the 
group average surface contour, which shrinks from geometric effects of the averaging.  This 
shrinkage can be approximately corrected for on the surface when performing computations on 
group average surfaces (e.g., computing gradients or resampling data) by also making use of 
the group average of the vertex areas across the individual subjects’ midthickness surfaces in 
their native physical volume spaces.  This shrinkage makes mapping to or from group average 
surfaces into group average volume space (e.g., MNI standard space) highly problematic, as 
the surfaces will shrink and miss large portions of grey matter.  To compare group average data 
from two studies while maintaining the neuroanatomical fidelity of the HCP-style paradigm, it is 
necessary to process both studies using the HCP-style neuroimaging analysis approach.  This 
means cortical atlases should be surface-based and any averaging across subjects should 
occur on the surface after areal features have been aligned.  Another approach, generating a 
surface from a group average volume template and registering it to a surface template using 
folding patterns, may avoid the shrinkage issue98,99; however, surfaces previously produced 
using this approach are of poorer quality than individual subject surfaces owing to the blurring of 
partial voluming effects on the volume template from inadequate cross-subject cortical 
alignment.  There is also no guarantee that cortical areas will be aligned across templates, and 
the volume-based cortical data of interest will still be poorly aligned.   
 
18. How can I compare surface-based data generated on other platforms to the HCP_MMP1.0 
parcellation and other group average surface data?  
 
Many investigators have carried out surface-based analyses using atlases and platforms other 
than fs_LR97 and Connectome Workbench, but may be interested in comparing their results to 
HCP group average data, particularly the HCP_MMP1.0 cortical parcellation.  This requires a 
mapping between the surfaces (individual or group average) on which the investigator’s analysis 
has been carried out and the HCP group average surface mesh.  The HCP_MMP1.0 
parcellation and most other HCP group average datasets are represented on the ‘32k_fs_LR’ 
mesh (32,492 vertices per hemisphere, with a 2 mm average vertex spacing on the 
midthickness surface).  This mesh has good geographic correspondence between the left and 
right hemisphere surfaces as a result of landmark-constrained interhemispheric registration 
between the left and right hemispheres (fs_L and fs_R) of FreeSurfer’s fsaverage atlas 
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surface97.  For datasets analyzed in FreeSurfer, data from the fsaverage atlas surfaces can be 
mapped to the 32k_fs_LR mesh by resampling from the registered fsaverage atlas spherical 
surface to the 32k_fs_LR atlas surface (see 
https://wiki.humanconnectome.org/display/PublicData/HCP+Users+FAQ; entry #9 – “How do I 
map data between FreeSurfer (native or fsaverage mesh) and HCP’s fs_LR mesh?”)97.  
Conversely, data on the 32k_fs_LR mesh can be mapped onto FreeSurfer surfaces by 
reversing the order of files called in the resampling command.  In general, we encourage 
investigators to map data onto the 32k_fs_LR mesh (the correspondence between left and right 
hemispheres is useful in a variety of contexts), but recognize there may be project-specific 
reasons for mapping in the reverse direction. For investigators using other surface-based 
analysis platforms (e.g., SUMA, BrainVoyager, or BrainVisa), analogous inter-atlas 
transformations have yet to be generated but such methods will be posted to the HCP-users 
FAQ if and when they are implemented.   
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Supplementary Figure 1 

Average cortical thickness map of 210 HCP subjects at each left hemisphere vertex and the associated colorized 
histogram.   

The mean cortical thickness is around 2.6 mm, and this roughly divides fMRI data into high resolution (less than the mean 
cortical thickness) and low resolution (more than the mean cortical thickness).  The HCP‟s 3T and 7T chosen resolutions 
are also plotted. For the data in this figure and other Supplementary Figures, subject recruitment procedures and informed 
consent forms, including consent to share de-identified data, were approved by the Washington University institutional 
review board. 
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Supplementary Figure 2 

dMRI data for 3T and 7T scans of the same subject (HCP Subject 158035). 

Top row: Fractional anisotropy (FA) maps (axial, coronal and sagittal views). Notice that B1 inhomogeneities at 7T lead to 
poor SNR and noisy FA estimates in the inferior temporal regions (evident in the coronal views), but efforts have been 
taken to minimize them

19
.  Bottom row: DTI principal fiber orientations (coronal zoomed view of the area delineated by the 

yellow box). The orientations are RGB color-coded (Red: Left–Right, Green: Anterior–Posterior, Blue: Superior–Inferior) 
and superimposed on the structural T1w image. The pial surface and the WM/GM boundary surface are also shown.  
Reproduced, with permission, from Ref. 78. 
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Supplementary Figure 3 

Patterns of cortico-striatal connectivity revealed by tractography. 

Seed locations were in different cortical regions, including vmPFC (ventromedial prefrontal cortex), OFC (orbito-frontal 
cortex), dACC (dorsal anterior cingulate cortex), dPFC (dorsal prefrontal cortex) and Premotor cortex.  Path probabilities 
(yellow: high, red: intermediate, black: low) are obtained using probabilistic tractography (FSL‟s probtracx2, 
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/UserGuide) and the Matrix 3 (bidirectional white matter voxel to gray-matter 
terminations) algorithm to compute dense connectomes. N=150 HCP subjects were analyzed and averaged. Note the 
strong similarity to patterns of tracer-based connectivity reported in the macaque monkey, shown in the sketch on the right 
(reproduced with permission from Ref. 100). 
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Supplementary Figure 4 

Multi-band imaging schematic and exemplar results. 

Left: A schematic representation of the array coil elements over a human head image and a multi-band (MB) excitation (8 
slices, in red). Each coil detects a linear combination of signals from each slice weighted by the sensitivity profile of that 
coil.  Right. Four slices from a whole brain data set with standard acquisition (upper left, MB1) and with SMS/MB 
acquisition with MB=8, MB=12, and MB=16, all obtained using a 32-channel coil on a 3T scanner. Visual inspection of the 
M=16 image reveals discernible artifacts (e.g., ghosting), whereas the MB=12 and MB=8 images appear much cleaner. 
Quantitative estimates of cross slice contamination and reconstruction noise can be made

101
. The HCP used MB=8 for 

fMRI and MB=3 for dMRI (now MB=4 or more for HCP Short). 
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Supplementary Figure 5 

Beta map of the mean fMRI timeseries. 

The timecourses were averaged over the whole brain (including gray matter, white matter, and CSF), regressed into the 
data of each subject, and then averaged across (n = 210 HCP subjects).  One particularly striking characteristic of this 
map is how tissue-specific the global signal is (after ICA+FIX data cleanup), being generally most positive in grey matter, 
close to zero in white matter, and slightly negative in the ventricles.  The tissue specificity of this signal argues against a 
non-physiologic, non-BOLD contrast-based cause of the signal (e.g., direct biophysical effects of subject head motion).  
This map by itself does not tell us to what extent the global signal is physiological noise vs. neural signal.  Although the 
data are averaged in the volume across subjects, they still appear relatively sharp because they are not smoothed.  Data 
at http://balsa.wustl.edu/0L1m. 
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Supplementary Figure 6 

Visualization of the mean grey signal.   

The mean grey timeseries beta map (top rows) and the ratio of the variance of the mean grey timeseries to the total BOLD 
variance (i.e., variance classified as signal by ICA+FIX; bottom rows). The absolute magnitude of the mean grey signal is 
highest in sensory regions including visual cortex, early somatosensory cortex (particularly of the face), early auditory 
cortex, and several thalamic nuclei including the LGN/MGN.  Visual, somatosensory, auditory, and likely vestibular cortical 
areas are highlighted with black outlines.  Data based on averaging across 210 HCP subjects, aligned using MSMAll for 
the cortical surface.  When the global signal is strong in individual subjects, it closely matches the group average pattern, 
however when it is weaker, it may or may not match the group pattern.  In these cases, the global signal often looks like 
one or another widespread RSN (e.g., the task positive or task negative (default mode) network).  This is further evidence 
that removing the global signal as a preprocessing step may distort resting state functional connectivity and hence that we 
need a more selective way to clean global noise out of the data. The bottom row is a relative measure of how much the 
fMRI timeseries will be altered by regressing out the mean grey timeseries (on average across subjects), as it is a 
measure of the proportion of the total BOLD signal represented by the mean grey timeseries.  Regressing out the mean 
grey signal will also tend to cause resting state gradient boundaries to move somewhat in the regions where this map has 
sharp gradients

34
.  Data at http://balsa.wustl.edu/2VnN. 
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Supplementary Figure 7 

Effects of the Wishart rolloff on dense functional connectivity maps of both an individual subject and group data 
(210 HCP subjects; MSMAll surface registration).   

Top rows show an individual subject, before (column 1) and after (column 2) Wishart rolloff for a seed location in lateral 
parietal cortex (white dot in upper left panels).  The correlation increases dramatically as unstructured spatio-temporal 
noise is reduced, however the map is not substantially “smoothed” as it would be with typical smoothing algorithms.  
Bottom rows show a group dataset before and after Wishart rolloff for a seed location in the posterior cingulate sulcus 
(white dot in lower left panels).  The dataset has been created using the MIGP

57
 algorithm to generate a group PCA series 

(d=4500) that represents the group concatenated timeseries.  Because of the hard cutoff at PCA component number 
4500, there is a „ringing” pattern resulting from spatial autocorrelation in the spatio-temporal noise that is represented by 
the PCA components with the lowest eigenvalues.  If a Gaussian filter had been applied, this pattern of “local connectivity” 
would be a blob instead of rings. The Wishart rolloff eliminates these rings and again dramatically increases the SNR of 
the data.  Data at http://balsa.wustl.edu/rrpl. 
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Supplementary Figure 8 

The HCP language task (story vs baseline) beta maps and their spatial gradients. 

Beta maps (rows 1 and 3) and gradient maps (rows 2 and 4) are from two independent groups of 210 HCP subjects, 
“210P” (rows 1 and 2) and “210V” (rows 3 and 4).  Because of the large number of high quality HCP subjects, the beta 
maps are very similar across the two groups, and the strong gradients in the beta maps are also very similar.  Also shown 
are white contours of a Bonferroni corrected significance threshold across all 91282 grayordinates (z+/- ~5).  Two things 
are apparent: 1) Because of the large amount of high quality data, most of the brain is either significantly activated or 
deactivated (an issue that has been discussed before, see Ref. 60).  Thus the statistical threshold is not particularly 
biologically meaningful (a point about statistical thresholds that generally applies).  At the same time, the statistical 
threshold is also not strongly reproducible, in spite of the large amount of high quality data (highlighted ellipses show large 
differences in the area of activation classified as “significant” that are not particularly impressive when viewing the 
unthresholded beta maps).  In contrast, the strong gradients in the beta maps are much more reproducible, are likely also 
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more biologically meaningful, and hence provide a better substrate for defining regions of activation or comparing across 
studies.  Data at http://balsa.wustl.edu/PrmK. 
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Supplementary Figure 9 

Effects on average brain volume of registering 196 HCP brains to MNI space.   

The total brain volume (minimal preprocessing pipelines‟ whole brain mask) measured in the subject‟s native physical 
space is around ~1350 cc; however, after registration to MNI space it is ~1800 cc, though the variability in brain volumes 
goes down as indicated by the narrower standard deviation error bars.  This reduction in variability is the intended effect of 
registration, but the increase in brain volume is group average registration drift that was built into MNI standard space 
during the non-rigid registrations of the template generation process

62-64
.  
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Supplementary Figure 10 

A comparison between the HCP data and published retinotopic parcellation data.   

Data from Ref. 64 and from 120 HCP subjects (from Q1-2) were registered using MSM areal-feature-based registration
102

 
and group average registration drift was removed from both.  Because of this, a contour in functional connectivity in the 
MT+ region distinguishing strong connectivity to the heavily myelinated IPS hotspot (LIPv, column 1) and to the STS 
(column 3) lines up with the border between MT+V4t (orange and yellow) and MST+FST (red and maroon, middle 
column).  This illustrates the kind of precise cross-modal, cross-study boundary comparisons possible using the HCP-
Style paradigm.  Data at http://balsa.wustl.edu/x2Lz. 
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Supplementary Figure 11 

Classification of area 55b in individual subjects by the areal classifier.   

The typical location of area 55b is shown in black or white outlines on the inflated left hemisphere surface.  The top two 
rows show a subject having an area 55b in the typical location found in the population.  Rows 1 and 2 are entirely 
separate „test/retest‟ runs of this subject through the full HCP MRI acquisition and analysis protocol.  Column 1 is the 
subject‟s individual curvature map, column 2 is the subject‟s myelin map, column 3 is a d=40 RSN map that shows strong 
connectivity between 55b and other areas of the language network, column 4 is the raw probabilistic output of the areal 
classifier, column 5 is the final output of the areal classifier.  Rows 3 and 4 show a different subject whose 55b is 
atypically split (heavy myelination running through the population average location of 55b and a concomitant lack of 
resting state connectivity).  In both runs through the protocol, this subject shows a split 55b that is accurately detected by 
the areal classifier, showing that the classifier can accurately classify atypical subjects and that these atypical patterns are 
stable across time.  Rows 5 and 6 show a third subject whose 55b is atypically shifted relative to its neighbors.  Again the 
pattern is stable across time and the areal classifier is able to accurately detect the area.  Reprinted from Ref. 34.  Data at 
http://balsa.wustl.edu/WPPn. 
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Supplementary Figure 12 

Effects of averaging surface coordinates and folding maps after areal feature-based registration 
(MSMAll).   

The first row shows the group average midthickness surface (left), and the group average curvature map also 
displayed on inflated and flat surfaces (center and right).  The group consisted of 210 subjects.  The second 
row shows an individual subject‟s midthickness surface (left), and the individual‟s curvature map displayed also 
on inflated and flat surfaces (center and right).  Note how much less detailed the group average surfaces and 
curvature maps are in most regions of cortex.  However, in regions with consistent folding patterns across 
subjects and consistent relationships between cortical areas and folds, the group average patterns remain 
sharp (e.g. the central and calcarine sulci and the insula).  The third row shows the group average T1w volume 
(after FNIRT nonlinear volume registration to MNI152 space of each subject in the group) together with the 
group average white (green) and pial (blue) surface contours.  The fourth row shows the same individual 
subject‟s T1w volume together with the individual‟s white and pial surfaces (after aligning both the T1w volume 
and the surfaces to the group average in MNI space using FNIRT nonlinear volume registration).  Despite the 
high precision of the white and pial surfaces in following the grey matter ribbon in the individual, the group 
average surfaces do not follow the group average volume particularly well, except in the regions where there 
are consistent folding patterns across subjects and consistent relationships between cortical areas and folds 
(as mentioned above).  These issues also occur with folding-based surface registration (not shown), though 
they are less severe, because for folding-based registration the dominant factor is inconsistency in folding 
patterns across subjects (as no attempt is made to directly align cortical areas).  The midthickness surfaces 
are the average of the white and pial surfaces (this average is performed on each individual, and the group 
midthickness surface is the average of the individual midthickness surfaces).  Data at http://balsa.wustl.edu/7qP3. 
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