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Summary		
	
Below	we	 consider	 the	 evolution	 of	 virus	 variants	 under	 the	 pressure	 of	 immune	
response	 in	 a	 human	 population.	 We	 show	 how	 the	 clonal	 interference	 between	
variants	explains	the	quasi	1D	trajectory	of	 influenza,	and	use	predict	the	speed	of	
evolution,	 the	 infection	 incidence,	 and	 the	 time	 to	most	 recent	 common	 ancestor.	
We	validate	the	model	with	data.	The	work	has	two	parts,	with	a	one-dimensional	
antigenic	 space,	 and	 a	 multi-dimensional	 model	 justifying	 the	 one-dimensional	
model..		
	
	
Part	1:	1D	model	and	the	Traveling	Wave		
	
We	 describe	 the	 dynamics	 of	 virus	 strains	 by	 one-dimensional	 model	 of	 genetic	
variants,	corresponding	to	the	main	trunk	of	the	phylogenetic	tree.	The	problem	is	
amenable	 to	 analytic	 derivation,	 which	 predicts	 a	 traveling	 wave	 with	 two	
components,	 the	 susceptible	 and	 the	 infected.	 The	 problem	 differs	 from	 the	
adaptation	under	constant,	externally	given	selection	pressure	in	that	the	selection	
coefficient	 is	determined	dynamically,	 from	an	SIR	model.	 	Below	we	show	how	to	
combine	the	SIR	problem	with	the	dynamic	selection	to	the	traveling	wave	approach	
(TSIMRING	et	al.	1996;	ROUZINE	et	al.	2003;	DESAI	AND	FISHER	2007).	These	results	yield	
the	evolution	speed	and	the	 incidence	of	 infection,	which	agree	with	experimental	
results.	This	is	the	part	discussed	in	the	main	text..	
	
Part	2.	Virus	competition	for	the	susceptible	individuals	forms	a	quasi-1D	trajectory	of	
escape	in	multi-dimensional	genetic	space	
	
We	consider	an	N-dimensional	genetic	space	and	employ	the	standard	SI	approach.	
The	population	at	any	time	is	comprised	of	two	groups:	the	infected	individuals	and	
the	 individuals	 recovered	 from	 infections	 with	 previous	 strains	 and	 partly	
susceptible	 to	 infection	 with	 current	 strains.	 Most	 individuals	 are	 those	 who	
recovered	 from	 strains	 immunologically	 similar	 to	 the	 current	 strain,	 and	 only	 a	
small	fraction	individuals	have	recovered	from	immunologically	distant	strains.	The	
currently	circulating	strains	can	be	transmitted,	with	full	efficiency,	only	to	this	last	
minority	 of	 individuals.	 The	 competition	 between	 virus	 strains	 for	 the	 most	
susceptible	 individuals	 regulates	 the	 reproduction	 number	 of	 the	 virus	 in	 the	
population	in	a	negative	feedback	loop,	as	follows.	If,	at	any	time,	the	reproduction	
number	 exceeds	 1,	 and	 the	 total	 infected	 population	 expands,	 the	 expansion	
depletes	 susceptible	 individuals	 decreasing	 the	 reproduction	 number	 below	 1.	 In	
the	 long-term,	the	distribution	of	strains	 in	the	genetic	space	becomes	a	system	of	
quasi-1D	 “snakes”	moving	 on	 parallel	 courses	 (see	 a	 two-dimensional	 example	 in	
Fig	 S5).	 The	 snake’s	 head	 comprises	 infected	 individuals,	 and	 the	 tail	 comprises	
susceptible	individuals,	with	the	end	of	the	tail	harboring	the	most	susceptible.		The	
snakes	compete	with	each	other	for	susceptible	individuals	until	only	one	survives,	



moving	 on	 a	 quasi	 1D	 path.	 This	 can	 also	 be	 viewed	 as	 a	 system	 automatically	
arriving	at	a	percolation	threshold.	
	
	
	
1.	1D	model		
	
1.1. Deterministic	model		
	
We	use	 1D	 coordinate	x	 to	 label	 strains	 of	 influenza	 virus.	We	define	 x	 (antigenic	
coordinate)	 as	 the	pairwise	 genetic	distance	 in	 the	 antibody-binding	 region	of	HA	
protein	between	a	strain	and	a	reference	strain	some	time	in	the	past.	The	frequency	
of	 individuals	 in	 a	 population	 infected	 with	 strain	 x	 is	 denoted	 i(x,	 t),	 and	 the	
frequency	 of	 the	 susceptible	 individuals	 who	 previously	 cleared	 infection	 with	
strain	x	is	denoted	s(x,	t).	The	susceptible	at	x	can	be	re-infected	with	a	strain	x’	>	x,	
with	 the	 efficiency	 proportional	 to	 the	 cross-immunity	 function	K(x’-x).	 The	 half-
distance	of	cross-immunity	a,	defined	by	the	condition	K(a)	=	0.5,	is	assumed	to	be	
large,	a	>>	1.	While	transmitting,	strain	x	can	mutate	to	strain	x+1	or	strain	x-1	with	
a	small	probability	Ub	(Ub	<<	1).	Dynamics	of	this	system	is	formalized	as	a	system	of	
partial	differential	equations:	

∂ i(x,t) /∂t = i(x,t) R0 K(x − y)s(y,t)dy
−∞

x

∫ −1
⎡

⎣
⎢

⎤

⎦
⎥ +Ub i(x +1,t)+ i(x −1,t)− 2i(x,t)[ ] 		(S1)	

∂s(x,t) /∂t = −s(x,t)R0 K(y − x)i(y,t)dy
x

∞

∫ + i(x,t) 		 	 	 	 (S2)	

The	total	frequency	is	one,	 !" ! !, ! + !(!, !) = 1.  !
!! 	

	
Below	we	assume	that	infection	of	an	individual	with	strains	ahead	in	the	antigenic	
space	 of	 the	 previously	 infecting	 strain	 is	 not	 possible,	 K(x<0)	 =0.	 Also,	 in	 this	
approach,	the	immune	system	remembers	only	the	last	infecting	strain.	The	role	of	
these	approximations	 is	discussed	below	(Section	1.4).	The	model	 in	Eqs.	S1-S2	 is	
adopted	from	(LIN	et	al.	2003).	 	Our	method	and	results	differ	from	the	cited	work	
substantially	(see	Section	1.3.4	below).	
	
Note	that	we	measure	"antigenic	coordinate"	x	 in	units	of	genetic	distance,	defined	
as	 the	 average	 number	 of	 bases	 that	 are	 different	 in	 two	 randomly	 sampled	
genomes.	 Another	 broadly	 used	 unit	 is	 the	 genetic	 distance	 causing	 a	 two-fold	
change	in	HA	protein	binding	by	antibodies.	We	use	the	first	definition,	because	we	
is	 that	 consider	 virus	 evolution	 on	 the	 host	 population	 scale,	 and	 we	 define	
parameters	in	Table	1,	main	text,	for	that	scale.	In	contrast,	the	HA	binding	unit	are	
directly	relevant	on	the	individual	host	scale.		
	
	
1.2	Analytic	derivation		
	



In	 the	 following	subsections,	we	develop	an	approximate	analytic	approach	 to	 the	
problem	 that	 applies	 in	 the	 limit	 of	 slow	evolution,	 relevant	 for	 the	 real	 influenza	
pandemics.	 First,	 we	 demonstrate	 the	 existence	 of	 a	 stationary	 traveling	 wave	
solution	 and	 predict	 its	 shape,	without	 specifying	 the	 speed.	 Then,	we	 derive	 the	
time-dependent	 fitness	 landscape	 moving	 with	 the	 wave,	 and	 determine	 the	
effective	 selection	 coefficient.	 Finally,	 we	 apply	 the	 traveling	 wave	 approach	
(TSIMRING	et	al.	1996;	ROUZINE	et	al.	2003;	DESAI	AND	FISHER	2007)	to	derive	the	speed.		
	
1.2.1	Traveling	wave	solution	
	
Below	 we	 assume	 small	 wave	 speeds,	 c	 <<	 1,	 which	 condition	 is	 met	 in	 the	
parameter	range	of	interest	(see	numeric	examples	in	Fig	4,	main	text).	Then	Eqs.	S1	
and	2	have	a	traveling	wave	solution	of	the	form		
	

s(x,t)	=	s[x−	xmax(t)	],					i(x,t)	=	i[x−xmax(t)],			 	 	 (S3)	
	 	 	 	 xmax(t)	=	ct	
	
where	c	is	the	wave	speed	(average	antigenic	escape	rate).	Thus,	the	susceptible	and	
the	infected,		s	and	i,		each	becomes	a	function	of	a	single	variable,	specifically,	of	the	
relative	antigenic	coordinate	x−xmax(t).	Here	xmax(t)	is	the	antigenic	coordinate	of	the	
reference	frame	moving	with	the	wave.	Eqs.	S1	and	S2	become	ODEs	
	

−c
di(u)
du

= i(u) R0 K(u− v)s(v)dv
−∞

u

∫ −1
⎡

⎣
⎢

⎤

⎦
⎥+[mutation term] 	 	 (S4)	

−c ds(u)
du

= −R0s(u) K(v − u)i(v)dv
u

∞

∫ + i(u) 		 	 	 (S5)	

	
“Mutation	term”	in	Eq.	S4	denotes	a	random	variable	assuming	values	0,	1/N,	2/N,	
with	the	average	given	by	the	last	term	in	Eq.	S1.	The	mutation	term	is	small	(due	to	
Ub	 <<	 1),	 and	 we	 can	 safely	 neglect	 it	 for	 most	 values	 of	 u.	 Mutation	 becomes	
critically	important	at	the	long	(u	>>	1)	leading	edge	of	the	wave,	where	new	most-
fit	virus	variants	are	generated	(see	subsection	Wave	speed	below).		
	
Without	 the	 loss	 of	 generality,	 we	 can	 define	 coordinate	 u	 so	 that	 the	 peak	 of	
infected	individual	density	i(u)	is	at	u=0,	as	given	by	[di/du]u=0	=	0.	Setting	u=0	in	Eq.	
S4	and	neglecting	the	small	mutation	term,	we	have	
	

(S6)	
	

which	reads	that	the	effective	reproduction	number	at	the	peak	at	u=0,	by	definition,	
is	equal	1.		
	
Now,	we	derive	the	frequency	of	the	susceptible	individuals	s(u)	from	Eq.	S5.	As	we	
verify	at	the	end	of	this	subsection,	i(u)	has	the	width	u	~	1.	Eq.	S6	implies	that	the	

R0 K(−u)s(u)du
−∞

0

∫ =1



width	of	s(u)	is	large,	|u|	~	1/a	>>	1.	Therefore,	i(u)	in	Eq.	S5	can	be	approximated	
with	a	delta-function	

i(u) ≈ Acδ (u) 	 	 	 	 (S7)	

	
where	 A	 is	 a	 constant.	 Product	 !" = !" ! !, ! ≪ 1  !

!! 	is	 the	 prevalence	 of	
influenza	in	a	population,	which	is	known	to	be	small	(Table	1).	Taking	into	account	
Eq.	S7,	Eq.	S5	takes	the	form	
	

ds / du = AR0s(u)K(−u)− Aδ (u), u < 0 	 	 	 (S8)	

	
Integrating	 Eq.	 S8	 with	 the	 boundary	 condition	! −∞ = 0 and	 using	 Eq.	 S6,	 we	
obtain		
	

s(u) =
Aexp −AR0 dvK(v)

0

−u

∫
⎡

⎣
⎢

⎤

⎦
⎥, u < 0

0, u > 0

⎡

⎣

⎢
⎢
⎢
⎢

	 	 (S9)	

	
Here	constant	A	is	determined	from	the	normalization	condition	

s(u)du
−∞

∞

∫ =1− i(u)du
−∞

∞

∫ =1− Ac ≈1
	 	 	(S10)	

	
Eq.	S9	implies	that	the	characteristic	width	of	s(u)	is	on	the	order	of	a,	as	we	already	
obtained	 before.	 Thus,	 the	 narrow	 peak	 of	 the	 infected	 at	 u=0	 is	 followed	 by	 a	
gradually	decaying	tail	of	the	susceptible	(Fig	2A,	main	text).	
	
1.2.2	Traveling	fitness	landscape	and	the	effective	selection	coefficient		
	
To	link	our	problem	to	the	traveling	wave	theory	and	calculated	the	wave	speed	c,	
we	 need	 to	 interpret	 Eq.	 S1	 in	 terms	 of	 fitness.	 The	 standard	 definition	 of	 virus	
fitness	is	the	reproduction	number,	i.e.,	the	average	number	of	individuals	infected	
by	 an	 individual	 (RICE	 2004;	 NOWAK	 2006;	 ASTIER	 2007;	 POULIN	 2007).	 It	 is	 more	
convenient	 to	 define	 fitness	w(u)	 as	 the	 logarithm	 of	 this	 quantity	 	 equal	 to	 the	
exponential	expansion	rate	(the	time	unit	is	one	generation),	which	represents	the	
average	fitness	effect	of	a	mutation	event	
	

Δ[w(u)]≡ ∂ ln i(x,t)
dt

= −
1
c
∂ ln i(u)
du

= R0 K(v+u)s(−v)dv
−u

∞

∫ −1
	 	

(S11)	

	
where	s(u)	 is	given	by	Eq.	S9.	Fitness	 landscape	w(u)	and	 its	 linear	expansion	are	
shown	in	Fig.	3.	We	can	simplify	Eq.	S11	in	three	asymptotic	limits,	as	follows:	
	



    

� 

w(u) ≈

R0 −1, u >> a

σu, σ ≡ R0 ′ K (u)s(−u)du
0

∞

∫ , |u|<< a

−1, u < 0,|u|>> a

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 	 	 	 (S12)	

 
To	obtain	the	first	case,	we	approximated	K(v+u)	in	the	integrand	of	Eq.	S11	with	its	
asymptotic	plateau	value	at	large	positive	v+u,	1.	In	the	second	case,	we	replaced	the	
RHS	 of	 Eq.	 S11	with	 its	 linear	 expansion	 in	u.	 In	 the	 third	 case,	we	 neglected	 the	
integral	in	Eq.	S11	because	the	overlap	between	K(v+u)	and	s(-v)	is	small.		
	
Thus,	 the	 fitness	 landscape	 travels	with	 the	wave.	Virus	strains	are	selected	 for	 in	
front	 of	 the	 infected	 peak	 and	 decline	 in	 the	 wake	 of	 the	 wave.	 Parameter	 σ	
represents	the	fitness	gain	per	mutation	for	strains	located	near	the	infected	peak	(u	
=	0)	and	plays	the	role	of	selection	coefficient	in	the	standard	traveling	wave	theory.	
The	value	of	σ	in	Eq.	S12	is	small:	from	the	scaling	of	K(u)	and	s(u)	implied	in	Eqs.	S9	
and	 S10,	 we	 have	 σ	 ~	 1/a	 	 <<	 1.	 Replacing	 fitness	 landscape	 with	 its	 linear	
expansion	 leads	 to	 accurate	 results	whenever	 the	 leading	 edge	 of	 the	wave	 stays	
confined	within	boundaries	of	 the	 linear	regime	(see	Section	1.3.1	and	Fig.	S1).	To	
increase	 	 the	accuracy	of	 the	analytic	predictions	 in	 the	entire	range	of	parameter	
values	 explored	 in	 our	 study,	 we	 also	 calculated	 the	 corrected	 value	 of	 σ	 that	
accounts	for	the	nonlinear	behavior	(Eq.	S23).			
	
1.2.3	Wave	speed		
	
The	evolution	speed	is	defined	biologically	as	the	wave	speed	in	terms	of	nucleotide	
substitutions,	 c	 =	 dE[xmax(t)]/dt	 and	mathematically	 in	 Eq.	 S3.	 So	 far,	 we	 left	 the	
value	 of	 c	 undetermined,	 because	 we	 considered	 only	 the	 distribution	 of	 the	
susceptible	 individuals	s	 in	antigenic	 coordinate.	We	showed	 that	 the	 form	of	 that	
distribution	is	not	affected	by	c	when	c	is	small.		
	
In	 the	 present	 subsection,	 we	 calculate	 the	 wave	 speed	 (evolution	 rate).	 For	 this	
purpose,	we	will	 include	 the	standard	 traveling	wave	 theory	(TSIMRING	et	al.	1996;	
ROUZINE	et	al.	2003;	DESAI	AND	FISHER	2007)	into	our	analysis.	This	will	also	allow	us	
to	 compare	 the	 predicted	 rate	 of	 antigenic	 evolution	 and	 the	 average	 annual		
infection	 incidence	 with	 experimental	 data	 below.	 As	 the	 cited	 models	 show,	
generally	 speaking,	 the	 speed	of	 asexual	 evolution	 cannot	 be	 found	 from	a	purely	
deterministic	 consideration.	 Linkage	 and	 finite	 population	 size	 N	 result	 in	
competitive	 interference	 between	 advantageous	 mutations	 randomly	 arising	 at	
different	sites,	which	effect	decreases	the	speed.		
	
So	far,	we	used	the	fact	that,	at	small	mutation	rates,	the	width	of	the	distribution	of	
the	infected	individuals,	i(u),	is	narrow	compared	to	the	width	of	susceptible	(|u|~a).	
Therefore,	 we	 approximated	 i(u)	 with	 a	 delta-peak.	 Now	we	 have	 to	 address	 the	
width	and	 the	shape	of	 i(u).	According	 to	 the	standard	 theory,	 the	shape	of	 i(u)	 is	



approximately	Gaussian	in	the	center,	and	has	exponentially	decaying	tails,	of	which	
especially	 important	 is	 the	 leading	 tail	 (u	 >	 0).	 Due	 to	 finite	 (but	 still	 very	 large)	
population	 size	 N,	 the	 real	 distribution	 of	 infected	 individuals	 i(u)	 ends	 at	 the	
leading	 edge	 at	 some	 value	 u0	 >>	 1.	 Rare	 stochastic	 events	 of	 generation	 and	
establishment	of	new	best-fit	genomes	at	the	leading	edge	u	=	u0	limit	the	speed	of	
the	wave	progress.	
	
Below	we	relate	the	speed	c	to	the	population	size	N,	the	genomic	mutation	rate	Ub,	
and	the	average	selection	coefficient	σ 	(Eq.	S11)	using	the	analytic	"traveling	wave"	
approach	 (TSIMRING	 et	 al.	 1996;	 ROUZINE	 et	 al.	 2003;	 DESAI	 AND	 FISHER	 2007).	 The	
expression	for	c	varies	depending	on	the	distribution	of	selection	coefficient	σ Δ[x]	
among	individual	mutation	events,	as	follows.	
	
The	case	of	fixed	selection	coefficient.	In	the	simplest	case	of	fixed	σ,	the	speed	c	is	a	
function	 of	 population	 size,	Ub	 and	 s,	 as	 found	 from	 the	 transcendental	 equation	
[(ROUZINE	et	al.	2008),	Eq.	S52]	

	

lnNinfec =
c
2σ

ln2 c
eUb

+1
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟− ln

σ 2Ub

c ln c /Ub( ) 		 	 	 (S13)	

where		
Ninfec=	cNA	 	 	 	 	 	 (S14)	

	
is	the	total	number	of	infected	individuals,	N	is	the	total	number	of	individuals,	and	
A	is	given	by	Eq.	S9.	The	edge	location	with	respect	to	the	wave	peak,		ue,	is	given	by	
[(ROUZINE	et	al.	2008),	Eq.	S39]		

	
ue =

c
σ
ln c
eUb 		 	 	 	 (S15)	

	
Exponential	distribution	of	selection	coefficient.	 In	real	systems,	σ	varies	randomly	
among	sites.	It	is	more	convenient	to	consider	other	measure	of	the	evolution	speed	
than	substitution	rate	c,	namely,	 the	adaptation	rate	r	defined	as	 the	 linear	rate	of	
fitness	gain	with	respect	to	the	virus	that	can	mutate	(Ub	=	0).	When	σ	is	distributed	
exponentially	with	the	average	σav,	as	given	by	Eq.	2	in	the	main	text	with	β=1,	the	
adaptation	 rate	 v	 defined	 as	 the	 average	 rate	 of	 	 fitness	 increase	 per	 unit	 time	 	 is		
found	from	the	coupled	equations	for	v	and	a	new	composite	parameter	we	[(GOOD	et	
al.	2012),	Eqs.	S14-S15]	

	

2 = !!
!

!!!!
!  1+ !

!!
+ !

!!!!!
!

!!!!!
!

!! 																														(S16)	

	

	1 = !!"#$%!! −1+ !! !

! + !! !!!! 
! !!

!!"!!!
!!! 	 	 	 (S17)	



	
Here	the	new	parameter	we	 is	defined	as	the	fitness	 lead	of	the	wave,	the	distance	
between	the	high-fitness	edge	of	the	traveling	wave	and	its	peak.	 	By	definition,	of	
we	,	fixation	of	newly	emerging	beneficial	alleles	with	larger	fitness	effect,	w	>	we	,	is	
not	affected	by	the	clonal	interference	with	the	rest	of	genome.	Such	alleles	are	fixed	
with	 probability	 w,	 as	 in	 a	 independent-site	 model	 (the	 limit	 of	 strong	
recombination).	The	substitution	rate	c	is	found	as	
	

! = !
!∗ ,    !

∗ ≡ !! − !
!		 	 	 (S18)	

	
The	 biological	 meaning	 of	 s*	 is	 the	 most	 probable	 value	 of	 fitness	 effect	 σ	 of	
mutations	that	are	fixed	in	a	population.	
	
To	predict		the	substitution	rate,	c,	the	system	of	Eqs.	S16	and	S17	has	to	be	solved	
numerically	 (main	 text,	 Results).	 In	 the	 main	 text,	 the	 predicted	 values	 of	 c	 are	
compared	to	simulation	results	in	a	range	of	parameters	a	and	N	(Fig	3,	main	text).	
The	 annual	 incidence	 of	 infection	 (365/τinf)	Ac	 (Eq.	 S9)	 agrees	with	 the	 observed	
value	(Fig.	4,	main	text).		
	
Arbitrary	 distribution	 of	 selection	 coefficient.	 	 Good	 et	 al	 (GOOD	 et	 al.	 2012)	
considered	a	more	general	case,	 in	which	the	distribution	density	of	 fitness	gain	σ	
has	an	arbitrary	form	ρ(σ)	(all	mutations	are	beneficial,	σ	>	0).	The	adaptation	rate	v	
and	the	fitness	edge	we	are	found	from	the	coupled	equations	al	[(GOOD	et	al.	2012),	
Eqs.	17-19]	
	

	

s* −we − v
∂logρ(s*)

∂σ
= 0
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*
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	 	 	 (S19)	

	
The	 speed	 c	 and	 annual	 incidence	 (365/τinf)	 Ac	 are	 given	 by	 Eqs.	 S18	 and	 S9,	
respectively.	For	the	case	! ! ∝ exp − ! !!" ! ,! > 0,	which	corresponds	to	β=2	
in	Eq.		2	of	the	main	text,	we	plot	the		value	of	c	in	Fig.	3,	main	text.		
	
The	case	of	large	β.		In	the	case	β	>>	1	(distribution	in	Eq.	2	in	the	main	text),		Eqs.	
(S19)	simplify	as	
	



!!! ≈ 2! log !" 	

! = !!!"# ! = !! 2log !"
log !

!!
	

!∗ = ! 2
! log !!!

!
!!!

	

! = !/!∗	 	 	 	 	 (S20)	

	
Simulation.	We	 test	 our	 analytic	 results	 using	 two	different	methods	 of	 stochastic	
simulation.	One	is	a	full	Monte-Carlo	simulation	of	the	SIR	model	based	on	Eqs.	1	in	
the	main	text	including	the	stochastic	mutation	term.	This	simulation	predicts	time	
dependencies	for	a	set	of	antigenic	coordinates	xi(t)	corresponding	to	virus	strains	
in	infected	individuals.	The	second	method	is	a	continuous-time		Moran	simulation	
of	infinite-site	model	with	a	selection	coefficient	σ k		assigned	to	each	string	position	
k	and	drawn	from	a	random	distribution	of	an	exponential	form	(Eq.	2	in	the	main	
text).	 This	method	 is	 similar	 to	 that	 used	by	 (GOOD	et	al.	 2012),	 Either	 simulation	
generate	 a	 time-dependence	 of	 the	 average	 infected	 individual	 density	 i(x,t).	 As	 a	
result,	we	predict	that	the	evolution	speed	c	and	the	infection	incidence	are	weakly	
sensitive	to	the	shape	index	of	the	exponential	distribution,	β	(Fig.	3,	main	text).	
	
1.2.4	Time	to	the	most	recent	ancestor		
	
An	accurate	prediction	for	the	average	time	to	the	most	recent	common	ancestor	of	
a	pair	of	 individual	genomes	TMRCA2	 for	an	arbitrary	distribution	of	σ	has	not	been	
published.	However,	analytic	predictions	for	the	fixed-σ	model	and	a	model	with	a	
Gaussian	distribution	of	σ	 symmetric	around	0	have	been	derived,	and	simulation	
tests	have	been	done	(WALCZAK	et	al.	2012;	NEHER	AND	HALLATSCHEK	2013).	Results	of	
these	two	works	can	be	approximated	as	follows:	
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where	we/v	given	by	Eq.	S20	represents	the	time	 in	which	the	wave	moves	by	the	
distance	between	its	maximum	and	high-fitness	edge,	and	z	 is	a	numeric	 factor	on	
the	 order	 of	 1.	 Specific	 choice	 of	 z	 depends	 on	 the	 form	 of	 selection	 coefficient	
distribution	ρ (σ),	Eq.	2	main	text,	as	follows	
	

z =

1 σ = const,σ > 0, analytic
1.5 σ = const,σ > 0, simulation
3 β = 2,   simulation

⎡
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⎢
⎢
⎢
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Note	that	simulation	shows	a	 larger	value	of	TMRCA2	 than	the	analytic	derivation	 in	
the	 relevant	 parameter	 range.	 The	 evolution	 of	 HIV	 and	 influenza	 involves	
mutations	with	both	positive	 and	negative	 sign	of	σ	 (BATORSKY	et	al.	 2014;	 LUKSZA	
AND	LASSIG	2014).		
	 In	 the	 main	 text,	 we	 compare	 the	 predicted	 value	 of	 TMRCA2	with	 available	
data	 for	 influenza	 A	 H3N2	 (Fig	 4,	 main	 text).	 Comparison	 with	 data	 on	 TMRCA2,	
Because	we	do	not	know	the	exact	form	of	the	distribution	of	ρ (σ),	in	Eqs.	S21	and	
S22,	we	approximated	our	situation	with	the	case	β=2,	in	which	case	z=3.	This	case	
is	more	realistic	than	constant	mutation	fitness	effect.		
	 To	calculate	the	speed	c	in	the	main	text	for	Fig.	4	more	accurately,	we	used	
Eqs.	S20,	but	replaced	log(Ns)	with	
	

ln N
σ 2Ub

c ln c /Ub( )
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i.e.,	we	used	the	more	accurate	pre-factor	at	N	from	Eq.	S13	obtained	originally	for	
the	case	of	constant	s.		
	
	
1.2.5	Comparison	to	a	previous	1D	model	of	influenza	evolution	
	
A	 similar	 1D	 model	 of	 the	 influenza	 pandemics	 was	 proposed	 in	 the	 pioneering	
work	by	Lin	et	al	(LIN	et	al.	2003).	These	authors	predicted	a	traveling	wave	solution	
and	 calculated	 its	 speed.	 Their	 method	 differs	 from	 ours,	 both	 conceptually	 and	
quantitatively,	in	two	crucial	aspects:	
	

(i) Their	model	is	based	on	Eqs.	S1	and	S2,	where	the	mutation	term	has	the	
diffusion	form	proportional	to	a	second	derivative	in	x.	

(ii) Infinite	population	size	is	assumed.	
	
Neither	approximation	holds	in	the	experimentally	relevant	parameter	range	(Table	
1).	The	diffusion	approximation	of	mutation	applies,	and	 the	difference	between	x	
and	x+1	 in	Eq.	 S1	can	be	 replaced	with	 the	2nd	derivative,	only	 if	 the	decay	of	 the	
wave	at	leading	slope	is	gradual,	as	given	by	|dln	i(x,t)/dx|	<<	1.	According	to	Lin	et	
al’s	asymptotic	solution	[(LIN	et	al.	2003),	Eq.	S16],	this	would	apply	if	2Ub	>>	R0-1.	
(The	condition	is	given	in	our	notation.	In	the	cited	work	notation,	it	is	λ/a	=	c/(2ad)	
<<	 1.)	 This	 is	 clearly	 not	 true	 in	 the	 actual	 data	 sets	 where	 the	mutation	 rate	 of	
influenza	virus	Ub	is	very	small,	and	the	reproduction	ratio	R0	is	on	the	order	of	one	
(Table	1).	Thus,	the	leading	front	of	the	infected	wave	is	in	fact	steep	and	the	cited	
solution	 is	 not	 self-consistent.	 Also,	 finite	 population	 size	 is	 important	 up	 to	
extremely	 large	 population	 sizes	 (ROUZINE	 et	 al.	 2003).	 Both	 factors	 are	 naturally	
taken	into	account	in	the	traveling	wave	approach.	
	



Consequently,	 the	 cited	 results	 differ	 from	 the	 results	 of	 stochastic	 simulation	
obtained	in	the	relevant	parameter	range	(Table	1).	For	the	evolution	speed	(LIN	et	
al.	2003)	predict	[see	equations	in	their	work:	Eq.	S3,	S12,	and	the	equation	before	
S3]	
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which	is	an	order	of	magnitude	below	the	simulation	results	in	Fig	3,	main	text.	Still	
another	 difference	 is	 in	 the	 scaling	 of	 the	 widths	 of	 infected	 and	 susceptible	
distributions	in	genetic	distance	with	the	mutation	rate	Ub.	(LIN	et	al.	2003)	predict	
the	 scaling	 Ub1/2	 and	 Ub1/4,	 respectively	 [(LIN	 et	 al.	 2003),	 Fig.	 3].	 In	 both	 our	
simulation	and	analysis,	the		susceptible	distribution	width	does	not	depend	on	Ub,	
and	 the	 infected	 distribution	 width	 depends	 on	 Ub	 logarithmically.	 In	 agreement	
with	 Fisher's	 Fundamental	 Theorem	 and	 Eq.	 S13,	 it	 is	 proportional	 to	 the	
substitution		rate,	c.		
	
1.3	Approximations		
	
The	analysis	is	based	on	three	approximations	as	follows:		(i)	Replacing	the	fitness	
landscape	 with	 its	 linear	 expansion	 (the	 selection	 coefficient	 approximation),	 (ii)	
prohibiting	 infection	with	 virus	 strains	 ahead	 of	 the	wave	 (the	 asymmetry	 of	 the	
cross-immunity	 matrix),	 and	 (iii)	 accounting	 for	 the	 immune	 memory	 of	 the	 last	
infecting	 strain	 only	 (the	 single-memory	 approximation).	 Below	we	 show	 that,	 in	
the	relevant	parameter	range,	approximation	(i)	somewhat	limits	the	accuracy,	but	
is	still	practically	useful	 for	the	experimental	comparison.	Approximation	(iii)	may	
cause	instability	in	the	far	trailing	tail	of	the	wave,	an	artifact	compensated	by	(ii).	
	
1.3.1	Linear	fitness	landscape	approximation	
	
To	 calculate	 the	 rate	 of	 evolution,	 we	 adopted	 the	 results	 of	 traveling	 wave	 by	
approximating	fitness	landscape	with	its	linear	Taylor	expansion	(second	line	in	Eq.	
S12).	The	actual	fitness	w(u)	is	predicted	to	saturate	at	large	negative	and	positive	u	
(Fig	2).	The	saturation	at	large	u	may	become	critical	at	the	leading	edge	of	i(u).	The	
traveling	wave	theory	[(ROUZINE	et	al.	2003),	(ROUZINE	et	al.	2008),	Eq.	S39]	predicts	
the	edge	location	(u	=	u0)	with	respect	to	the	peak	location	(u	=	0)	(Eq.	S14).	For	the	
linear	approximation	to	be	approximately	valid,	the	leading	edge	should	stay	within	
the	linear	range.	
	
Numeric	simulation	predicts	a	similar	edge	location	as	the	analytic	theory.	Showing	
the	edge	location	against	the	fitness	landscape	(Fig	S2,	vertical	dashed	lines),	we	can	
observe	that	the	linear	approximation	is	accurate	at	reasonable	mutation	rates	Ub	=	
10-6	-10-4	and	even	at	very	high	rates	Ub	=	5.10-3	it	overestimates	the	fitness	slope	at	
the	leading	edge	only	by	factor	of	2	(at	realistic	N).	The	deviation	from	linear	fitness	
landscape	 create	 an	 overshoot	 of	 analytic	 predictions	 as	 compared	 ti	 simulation	
results	for	speed	c	at	large	N	and	Ub	(results	not	shown).		



	
To	 partly	 compensate	 for	 the	 nonlinearity,	 we	 repeated	 the	 derivation	 given	 in	
(ROUZINE	 et	 al.	 2008)	 (	 see	 their	 mathematical	 Supplement)	 for	 arbitrary	 fitness	
landscape	w(u).	The	final	result	has	an	approximate	form	of	Eq.	S13,	but	with	u0	and	
σ	determined	from	

w(u0 ) =c ln
c
eUb

σ= w(u0 )
2

2 w
u0
u0
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which	replace	Eq.	S15	and	the	2nd	of	Eq.	S12,	respectively.	Here	 w

u0
is	the	average	

fitness	over	the	interval	0	<	u	<	u0.	The	new	effective	value	of	σ	accounts	for	the	non-
linear	 behavior.	 Analytic	 results	 shown	 in	main	 text	 (Fig	 3)	 are	 corrected	 for	 this	
effect.		
	
1.3.2	Asymmetry	of	cross-immunity	matrix	
	
The	analysis	so	far	assumed	an	asymmetric	immunity	matrix,	K(u<0)=0	(Eqs.	S2	and	
S3).	 Briefly,	 strains	 u	 were	 not	 allowed	 to	 infect	 the	 individuals	 recovered	 from	
infections	with	 strains	 lying	 ahead	 in	 the	 antigenic	 coordinate,	u’	 >	u.	Mostly,	 the	
approximation	 does	 not	 affect	 our	 results,	 because	 there	 are	 no	 susceptible	
individuals	 far	 ahead	 of	 the	 infected	 peak	 (Fig.	 1,	 main	 text).	 However,	 the	
restriction	 may	 actually	 help	 in	 the	 far	 trailing	 tail	 of	 the	 wave,	 where	 it	
compensates	 for	an	 instability	artifact.	 If	 the	 immunity	 function	 is	symmetric	 then	
there	is	a	parameter	range	where	a	second	wave	may	emerge	from	the	trailing	tail	of	
the	 main	 wave	 and	 start	 rolling	 backwards	 (Fig	 S3A).	 Either	 cutting	 off	 the	
distribution	 at	 finite	 1/N,	 Fig	 S3B,	 or	 prohibiting	 infection	 forward	 in	 fitness	
eliminates	this	problem	without	affecting	any	other	results.	
	
To	explain	this	phenomenon	analytically,	let	us	consider	for	a	moment	a	symmetric	
immunity	 matrix	 K(u),	 such	 that	 K(u)	 =	 K(-u).	 In	 this	 case,	 the	 upper	 limits	 in	
integrals	in	Eqs.	S4	and	S6	are	replaced	with	infinity,	and	the	lower	limits	in	Eqs.	S5,	
9,	11,	and	12	with	negative	infinity.	Because	i(u)	is	still	a	very	narrow	peak	in	u	from	
the	perspective	of	the	immunity	scale	|u|	~	a,	the	shape	of	s(u)	is	not	affected,	and	
most	of	the	results	apply,	except	for	a	change	in	the	trailing	end	of	the	wave	u,	|u|	>>	
a.	The	new	fitness	landscape	replacing	Eq.	S11	now	has	a	form	

    

� 

w(u) = R0 K(v + u)s(−v)dv
−∞

∞

∫ −1 	 	 	 (S24)	

As	it	follows	from	Eq.	S24,	fitness	w(u)	is	no	longer	a	monotonous	function	of	u	that	
was	shown	in	Fig.	2,	main	text,	and	Fig.	S1.	As	u	decreases,	instead	of	saturating	at	-1,	
as	 in	 Fig	 3,	 main	 text,	w(u)	 goes	 through	 a	 flat	 minimum	 and	 then	 increases	 to	
become	again	at	|u|	>>	a,	    

� 

w(−∞) = R0 −1	(the	plot	not	shown).	In	other	words,	as	the	
wave	moves	over,	 extremely	 low	counts	of	old	 strains	 left	 in	a	population	start	 to	



grow	 again.	 As	 a	 result,	 a	 new	 peak	 appears	 in	 the	 trailing	 edge	 and	 moves	
backward,	towards	negative	u	(Fig	S3A).		This	mirror	wave	is	not	a	biological	effect,	
but	 a	mathematical	 artifact	 of	 the	 single-memory	 approximation	 employed	 in	 the	
text.	 At	 modest	 population	 sizes	 N	 ~	 106	 -	 108	 or	 large	 a	 >	 15,	 the	 artifact	 is	
eliminated	 by	 the	 cutoff	 of	 the	 tail	 at	 a	 single	 individual	 [at	 s(u)	 ~	 1/N]	 already	
included	 in	 our	 simulation.	 An	 alternative	 method	 which	 works	 in	 the	 entire	
parameter	 range,	 is	 to	 prohibit	 the	 infection	 forward	 by	 choosing	 an	 asymmetric	
immunity	 function	K(u),	 as	we	did	 everywhere	 in	 the	 text.	 At	moderately	 large	a,	
this	asymmetry	of	K(x)	has	no	other	effects	on	the	evolutionary	dynamics	in	1D.	
	
1.3.3	Single-memory	approximation			
	
The	backward	wave	is	an	artifact	of	the	single-memory	approximation	introduced	to	
make	 the	 problem	 analytically	 tractable.	We	 assumed	 that	 an	 individual	 has	 only	
memory	cells	from	the	last	infection.	This	is	a	simplification.	In	reality,	the	immune	
system	of	an	individual	“remembers”	not	only	the	last	infecting	strain	u,	but	all	the	
previous	infections	(JANEWAY	AND	TRAVERS	1996).	The	single-memory	approximation	
we	 employ	 creates	 cycles	 of	 reinfection	 within	 a	 small	 group	 of	 strains,	 such	 as	
!! → !! → !!.		The	backward	wave	in	1D	is	an	example	of	such	a	reinfection	loop.		
	 In	 the	 absence	 of	 the	 artifact	 of	 the	 backward	 wave,	 the	 single-memory	
approximation	 is	 valid	 at	 large	 a,	 because	 the	 consecutive	 strains	 that	 a	 typical	
individual	 is	 infected	 with	 are	 sufficiently	 far	 apart.	 Indeed,	 the	 average	 last	
infecting	strain	is	at	the	distance	u	=	-a	behind	(Fig.	1	in	the	main	text).	Therefore,	
the	 earlier	 strains	 (the	 memory	 of	 which	 we	 neglected)	 are	 located	 at	 average	
coordinates	forming	the	arithmetic	progression	u	=	-2a,	-3a,	-4a,	…	.	At	these	remote	
locations	in	the	left	tail	of	the	susceptible	individuals	(Fig	1,	main	text),	they	are	very	
few	compared	to	the	maximum	at	the	edge	u=0.	Therefore,	the	approximation	has	a	
weak	effect	on	results.		
	
1.4	Numeric	tests	
	
We	 test	 our	 analytic	 results	 using	 two	different	methods	 of	 stochastic	 simulation.	
One	 is	 a	 full	Monte-Carlo	 simulation	of	 the	 entire	 SIR	model	 including	Eqs.	 S1,	 S2	
and	stochastic	mutation,	with	individual	binary	strings	and	random	fitness	effect	of	
mutation.	 This	 simulation	 predicts	 time	 dependencies	 for	 a	 set	 of	 antigenic	
coordinates	xi(t)	corresponding	to	virus	strains	in	 infected	individuals.	The	second	
method,	 designed	 to	 test	 the	 evolutionary	 component	 of	 the	 model,	 is	 a	 more	
restricted	continuous-time	(Moran's	algorithm)	simulation.	First,	we	calculated	the	
effective	selection	coefficient	sk	from	Eq.	S1	and	S2.	Then,	we	simulated	the	infinite-
site	model	which	assumes	that	mutation	never	happens	at	the	same	site	more	than	
once.	Fitness	effect	of	each	mutation	occurring	at	 random	time	was	drawn	 from	a	
random	 distribution.	 Either	 type	 of	 simulation	 generated	 very	 similar	 time-
dependence	 of	 the	 average	 infected	 individual	 density	 i(x,t),	 fairly	 similar	 to	 the	
analytic	results	(Fig.	1,	main	text).	
	
Section	2.	Multidimensional	models	



	
Then	we	 tested	whether	 a	1D	model	of	 genetic	 space	 is	 adequate	 for	 evolution	of	
immune	escape.	For	this	end,	we	considered	two	generalizations	of	the	1D	model:	a	
two-dimensional	lattice	model	(Fig.	S5)	and	a	random	tree	model	with	p	neighbors	
per	 node	with	 random	 component	 (Fig.	 S6).	 Results	 demonstrate	 that	 a	 1D	wave	
emerges	automatically	in	either	case	due	to	random	landscape	and	competition	for	
resources.	Thus	we	demonstrate	that	main	conclusions	are	robust		to	the	presence	
of	multiple	dimensions.	
	
2.1			Two-dimensional	genetic	space	(Fig	S5)	
	
One	antigenic,	one	neutral	coordinate.	In	the	two-dimensional	model,	we	consider	a	
2D	 square	 lattice	 {i,	 j}.	 We	 define	 the	 antigenic	 coordinate	!!" = ! + !!" 	and	 the	
neutral	 coordinate	!!" = ! + !!" , where	!!" 	and	!!"  are	 random	 values	 uniformly	
distributed	between	 –Vx	 and	Vx.	 The	 antigenic	 coordinate	 can	be	 chosen	 arbitrary	
along	any	line	on	the	plane	but	for	simplicity	we	consider	the	x-axis.	(We	also	turned	
it	by	45	degrees	without	substantial	change	in	results.)	The	antigenic	coordinate	for	
a	strain	is	a	sum	of	two	terms	—	a	regular	term	equal	to	the	number	of	the	lattice	
point	(in	the	horizontal	direction)	and	a	random	contribution	drawn	uniformly	from	
(−Vx,	 Vx),	 where	 Vx	 is	 a	 parameter	 additional	 to	 the	 one-dimensional	 model.	 The	
second	 coordinate	 of	 a	 strain	 in	 this	 model	 is	 neutral	 and	 does	 not	 influence	 its	
antigenic	properties.		

Immunity	matrix	 is	 defined	 between	 each	 two	 lattice	 points	 as	Kij,mk	=	K(xij	 -	 xmk),	
where	K(u	<	0)	=	0	 is	 the	 same	as	 in	 the	1D	model	 (Table	1,	main	 text).	 (We	also	
considered	a	symmetric	case,	see	below.)	Dynamic	equations	for	each	lattice	point	{i,	
j}	 are	 given	 by	 discrete	 versions	 of	 Eqs.	 S3	 and	 S4,	 in	 which	 the	 integrals	 are	
replaced	by	the	double	sums	over	the	lattice	vertices.	Mutation	can	occur	in	all	four	
directions,	with	the	same	rate	per	site	Ub.	

Several	 snapshots	 of	 the	 dynamics	 of	 the	 two-dimensional	 model	 (Fig	 S5)	
demonstrate	 the	 spontaneous	 development	 of	 a	 steady	 1D-like	 wave	 from	 a	 flat	
front.	 Starting	 from	 the	delta	distribution	 for	 the	 infective	density	 (brown	strip	 in	
the	 top	 left	 panel)	 and	 a	 uniform	 distribution	 for	 the	 susceptible	 density	 (brown	
rectangle	 in	 the	bottom	 left	panel)	 the	system	develops	several	competing	1D-like	
waves.	Due	to	the	randomization	of	the	antigenic	coordinate	the	head	of	one	of	the	
infective	waves	happens	to	be	 further	 in	 the	antigenic	coordinate	which	 facilitates	
the	 infection	 of	 the	 susceptible	 in	 the	 tail	 of	 the	 other	waves	 (middle	 rows).	 This	
competition	 between	 different	 infective	 waves	 for	 the	 common	 pool	 of	 the	
susceptible	ultimately	leads	to	a	single	wave	shown	in	the	right-most	panels	of	the	
figure.	 	The	 investigation	of	 the	model’s	dynamics	 leads	 to	 the	conclusion	 that	 the	
typical	width	of	a	wave	in	the	horizontal	direction	is	determined	by	the	parameters	
of	 the	 one-dimensional	 model,	 particularly	 a	 and	 R0,	 and	 that	 in	 the	 vertical	
(neutral)	direction	is	proportional	to	Vx.		
	



Numeric	simulation	is,	as	follows.	We	start	from	a	straight	strip	of	the	infected	along	
the	 left	side	of	 the	square,	with	 the	susceptible	 filling	 the	strip	behind	(Fig	S5,	 left	
panels).	 As	 the	 infected	wave	moves	 forward,	 it	 curves	 randomly.	 Tongues	 shoot	
forward,	their	number	decreases,	and	finally,	a	single	island	is	left,	with	a	tail	of	the	
susceptible	 trailing	behind.	The	system	resembles	a	system	of	1D	snakes	(comets)	
moving	 on	 parallel	 courses	 (Fig	 S5,	 center	 panels).	 The	 head	 of	 each	 snake	 is	 the	
infected	 individuals,	 and	 the	 tail	 is	 the	 susceptible.	 The	 mechanism	 behind	 this	
dynamics	 is	 that	 different	 strains	 compete	 for	 a	 limited	 resource,	 the	 susceptible	
individuals.	As	a	result	of	this	competition,	there	exists	a	back	feed	from	the	infected	
to	 the	 susceptible	distribution,	which	 sets	 the	branching	 ratio	 to	1	 and	brings	 the	
random	system	to	the	percolation	threshold.		
	
Two	 antigenic	 coordinates.	 To	 test	 whether	 the	 assumption	 of	 a	 single	 antigenic	
coordinate	is	restrictive,	we	also	performed	simulation	in	an	anisotropic	2D	model	
with	 two	 asymmetric	 antigenic	 coordinates	 (x,	 y).	 The	 cross-immunity	 matrix	
depending	on	the	elliptical	Euclidian	distance	in	the	plane	
	

!!",!" = ! !!" − !!"
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where	 asym	 <	 1	 is	 the	 asymmetry	 factor.	 Results	 confirmed	 the	 appearance	 of	 a	
quasi-1D	wave,	 although	with	 some	 complications,	 such	 as	 appearance	 of	 a	wake	
and	a	back	wave,	likely	to	be	artifacts	of	the	single-memory	approximation	(Section	
1.3.3).		
	
2.2	Tree	topology	of	genetic	space	(Fig	S6).	
	
We	also	performed	Monte-Carlo	simulations	using	tree	topology	for	parameter	sets	
where	we	varied	Ub,	N,	R0,	a	and	Vx.	In	this	case,	the	antigenic	coordinate	of	a	strain	
was	defined	as	x	=	xf	+	a	random	contribution	drawn	uniformly	from	(−Vx,	Vx),	where	
Vx	 is	 a	 parameter	 additional	 to	 the	 one-dimensional	model	and	 xf	 is	 the	 antigenic	
coordinate	of	the	parental	strain.	The	total	antigenic	distance	between	two	nodes	i	
and	 j	 was	 added	 along	 the	 (single)	 path	 connecting	 these	 two	 nodes.	 The	 cross-
immunity	function	Kij	was	asymmetric	and	depended	on	the	total	distance	as	in	the	
1D	model	(Table	1,	main	text).	Model	parameters	were	Ub	=	0.001,	N	=	108,	R0	=	3,	a	
=	 10.	 The	 antigenic	 coordinate	 of	 a	 strain	was	 set	 to	 be	 x	=	 xf	 +	 [random	number	
between	0.5	and	1.5].		
	 	
An	example	of	time-dependent	phylogenetic	tree	is	shown	in	Fig.	S6.	Thus,	a	quasi-
1D	trajectory	arises	automatically	from	either	2D	or	a	tree	topology	(Fig.	S5	and	S6)	.	
These	 results	 demonstrate	 that	 the	 main	 results	 of	 the	 present	 work	 are	 not	
restricted	by	the	1D	model	used	for	the	main	part	of	analysis.	
	
Section	3.	Experimental	comparison	and	parameter	fitting	(Table	1	and	Fig.	4,	
main	text)	



	
To	estimate	parameters	and	verify	the	1D	model,	we	fit	our	model	to	data,	as	follows.	
In	the	epidemiological	literature	and	on	CDC	site,	the	annual	incidence	of	influenza	A	
(H3N2)	varies	 in	 the	range	of	1-15%	of	annually	 infected	 individuals.	The	average	
evolution	 rate	 and	 TMRCA2	 are	 known	 more	 accurately,	 c=0.036	 aminoacid	
substitutions/genome/cycle	 (1	cycle	=	5	days)	and	TMRCA2	=	3.03	years	 [see	refs	 in	
Figure	4	caption].		The	population	size	relevant	for	influenza	(which	is	required	only	
within	 logarithmic	 accuracy)	 is	 on	 the	 order	 of	N=108-109	 individuals.	 Immunity-
free	 reproduction	 ratio	R0=1.8	 can	be	approximated	by	 its	 value	determined	 from	
the	most	rapid	pandemics,	such	as	those	that	occurred	in	1918	and	1968.		
	
To	 compare	 our	 analytic	 model	 with	 data,	 we	 used	 mutation	 rate	 Ub	 and	 cross-
immunity	distance	a	 as	 fitting	parameters.	The	effective	epitope	 length	defined	as	
the	total	number	of	mutating	aminoacids	within	the	antibody-binding	regions	of	HA	
protein	spans	L=120	non-synonymous	nucleotides	(~60	aminoacids)	(LASSIG	2012;	
LUKSZA	AND	LASSIG	2014).	The	mutation	rate	per	nucleotide	per	infectious	period	was	

estimated	from	the	synonymous	substitution	rate,	5.8	.	10-5	(LASSIG	2012;	LUKSZA	AND	
LASSIG	 2014).	 However,	 not	 all	 aminoacids	 participate	 equally	 in	 the	 host	 B	 cell	
immune	 response,	 and	 not	 all	 mutations	 of	 the	 immunologically	 relevant	
aminoacids	abrogate	immune	recognition	by	a	value	close	to	100%.	Therefore,	the	
effective	epitope	length	is	expected	to	be	below	60.	It	is	difficult	to	determine	from	
any	direct	experiment	or	observation.	Therefore,	the	immunologically	relevant	non-
synonymous	mutation	 rate	 per	 genome	Ub	 is	 usually	 estimated	 roughly	 (guessed)	
(BEDFORD	et	al.	2012;	BEDFORD	et	al.	2015).	In	this	situation,	we	viewed	Ub	as	a	free	
fitting	parameter.	We	adjusted	parameters	a	and	Ub	to	fit	our	predictions	for	c	and	
TMRCA2		(Fig.	4A).	The	influenza	incidence	predicted	by	our	analysis	(7%)	agrees	with	
the	experimental	value	(PARK	et	al.	2009).	Furthermore,	our	best-fit	value	a	=14.7	is	
also	 in	 excellent	 agreement	 with	 the	 observed	 value	 (PARK	 et	 al.	 2009)	 used	 in	
previous	stochastic	simulation	of	a	similar	model	by	(BEDFORD	et	al.	2012)	(in	their	
notation,	 1/s).	 Further,	 our	best-fit	 estimate	 of	Ub	 at	 3.3e-4	 is	 3.3-fold	 larger	 than	
that	in	the	simulation	(BEDFORD	et	al.	2012).	Thus,	our	method	allows	us	to	obtain	a	
more	effective	epitope	length	at	the	population	level,	L~7	variable	aminoacids.		
	 Thus,	 our	 analytic	 method	 enables	 accurate	 estimates	 of	 four	 important	
population-scale	parameters:	a,	L,	Ub,	and	the	annual	incidence	of	influenza	A	H3N2	
virus	 infection	 by	 combining	 epidemiological	 and	 genomic	 data.	 Three	 of	 these	
parameters	 (a,	L	and	 the	 incidence)	are	known	 from	data	analysis	and	agree	with	
with	previous	data.	
	
Our	analysis	 is	not	 restricted	 to	 influenza.	We	 	also	calculated	 the	predicted	 three	
parameters	(c,	TMRCA2	,	and	the	incidence)	over	a	range	of	values	of	N	and	a	(Fig	4B,	
main	text),	as	well	 the	sensitivity	of	 the	speed	and	the	 incidence	to	parameters	Ub	
and	R0	(Figs.	S3	and	S4).		
	
Conclusion	
	



We	 show	 that	 the	 effective	 selection	 coefficient	σ	 and	 the	 substitution	 rate	 c	 are	
approximately	 proportional	 to	 R0/a	 (Eqs.	 10-14,	 main	 text).	 We	 observe	 a	
logarithmic	 dependence	 of	 population	 size	 N	 and	 mutation	 rate	 Ub	 for	 all	 these	
parameters,	a	watermark	of	asexual	evolution	models	(ROUZINE	et	al.	2001;	ROUZINE	
et	al.	2003;	DESAI	AND	FISHER	2007;	DESAI	et	al.	2007;	GOOD	et	al.	2012;	ROUZINE	AND	
WEINBERGER	2013;	ROUZINE	et	al.	2014a;	ROUZINE	et	al.	2014b)		
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