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Appendix A - Concrete example of the general causal model

Consider the HIV prevention and treatment study. The general causal model (Eq. 2.1 and Figure 1
in the main text) describes the following data generating experiment. First the unmeasured factors
U are drawn from Py. Informally, we can think of generating these background factors U when we
sample the cluster from the target population and select individuals from that cluster. Then the
community-level covariates E (e.g. region, baseline HIV prevalence, perceived need) are generated
by some deterministic, but unspecified, function fg of background factors Ug. Next the matrix of
individual-level covariates W (e.g. demographic characteristics and risk behavior) is generated as
some function fy of the cluster-level covariates F and matrix of individual-level background factors
Uw . This causal model specifies that the intervention A may have been allocated among communities
differentially and may depend on the cluster-level characteristics F/, the matrix of individual-level
characteristics W, as well as the unmeasured factors included in Uy. Finally, this model assumes
that these pre-intervention community and individual-level characteristics (E, W) together with the
intervention and unmeasured factors (A, Uy) can affect whether each individual becomes infected
with HIV by the end of the study Y.

Appendix B - Pooled individual-level causal effect

When the number of sampled individuals is constant (N; = n Vj), we can rewrite the treatment-
specific mean as

E[Y%(a)] =E [Z a;.Y;.(a)
=1

= > EYi(a)]
=1

where we have used our choice of weights c;; = 1/n. In this case, the causal effect of the cluster-based
exposure on the cluster-level outcome equals the average causal effect of the cluster-based exposure
on the i*" individual’s outcome:

E[Y<(1) - Y¥(0)] = %ZE[Y}_(l) .0 (A1)
=1

Further, when the index i is non-informative (i.e. corresponds with the ith element of a random per-
mutation of {1,...,n}), then the marginal distributions of the baseline covariates and counterfactual



outcomes (W;.,Y;.(1),Y;.(0)) are constant in ¢. In this case, the right-hand side of equation (A.1)
does not depend on i and simplifies to E[Y (1) =Y (0)]: the expected difference in the individual-level
counterfactual outcomes if all clusters received the treatment versus control level of the intervention.
The expectation is now over the target population of pooled individuals from all clusters. Applied
to the HIV example, this causal parameter (Eq. A.1) evaluates the difference in the risk (proba-
bility) of HIV acquisition for a randomly selected individual if all communities implemented the
Test-and-Treat strategy versus if all communities continued with the standard of care.

If the number of individuals varies across clusters (N; # n Vj), then the pooled individual-
level causal effect can still be defined through an alternative cluster-level outcome with weights as
a;j = J/ > ;Nj. When cluster size is informative (i.e. when the intervention effect depends on
the cluster size [1]), the pooled individual-level causal effect (Eq. A.1) will generally not equal the
cluster-level causal effect (E[Y¢(1)] —E[Y(0)]). Depending on the application, either or both may
be of primary interest.

Appendix C - Additional details on loss functions

As an initial estimator of the conditional mean outcome, we can simply regress the cluster-level
outcome Y¢ onto the exposure and covariates (A4, F, W). We could, for example, use the squared
error loss function

Srsp(Q°)(0) = [V — Q°(A, B, W)]".

Alternatively, if the cluster-level outcome Y¢ is standardized so that Y¢ € (0, 1), then we could also
use the binary log-likelihood loss function[2]:

—L{(Q°)(0) =Y log [Q°(A, E,W)] + (1 —=Y)log [1 — Q°(A, E,W)].

These regressions would result in a cluster-level analysis. For example in a linear regression model,
the fitted regression parameters are defined as the least squares estimator:

—argmlnz Qﬁ A],E],W)]

Without making additional assumptions, these loss functions can also be specified at the individual-
level. For the squared error loss, we have

Larse(Q°)( Zaz Yi. - Q°(A, E,W)]?

=1

This is a valid loss function: Q§ = arg minge PoLarse(QF). A similar result can be proved for the
binary log-likelihood loss function. These loss functions would result in an individual-level regression
analysis. For example in a linear regression model, the fitted regression parameters are defined as
the least squares estimator:

J Nj
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where, for example, c;; = 1/N;. The least squares estimator B solves the estimating equation:
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From this latter equation, it follows that the least squares estimator for the individual-level analysis
is identical to the cluster-level least squares estimator.

Under the working model assumptions (Eq. 3.7), the squared-error loss function for Qo(4, B, W) =
Eo(Y|A, E, W) is now given by

Larse(Q)(0 Za@ (Yi. — Q(A, B, W;.))%.

=1

A similar representation can be written for the log-likelihood loss. These loss functions would result
in an individual-level regression analysis, but now with paired individual-level data (Y;., W;.) and
a much smaller adjustment set. For example in a linear regression model, the fitted regression
parameters are defined as the least squares estimator:

J Nj

B = arg mﬁinz > ai(Yij — Qa(Aj, By, Wig))?

j=1i=1

where, for example, a;; = 1/N;. Thus, we could now apply Super Learner based on this loss function
to estimate the common conditional mean function Q, which then yields a fit of the object of interest
QS(A, E,W) =Y, 0;.Qo(A, E,W;.). Assuming such a working model (Eq. 3.7) represents reality,
an estimator of Q8 based on a pooled individual-level regression analysis may be more accurate than
a cluster-level analysis, which is unable to pair individual-level outcomes and covariates.

Appendix D - Step-by-step implementation and R code

With hierarchical data, the cluster-level TMLE for W (Py) can be implemented in the following steps:

1. Estimate the expected cluster-level outcome given the exposure and covariates QS(A, E, W)
using Super Learner where the library includes both cluster-level regressions and averages of
individual-level regressions and where selection is based on a cluster-level loss function.

2. Use the resulting estimator @C to calculate the predicted outcomes éc(Aj, E;, W;) for each
cluster j =1,...,J.

3. Estimate the cluster-level propensity score gG(a|E, W) using parametric regression or Super
Learner with a cluster-level loss function.

4. Use the resulting estimator ¢¢ to calculate a cluster-level clever covariate e = i g

. I 9°(AG B, W)
each cluster j =1,...,J.

5. Estimate the fluctuation coefficient € by running parametric logistic regression of the cluster-
level outcome Y on the cluster-level covariate H¢ with offset as logit(Q°).



6. Obtain targeted predictions of the cluster-level outcome as
Q% (a, Bj, W) = logit ™" [logit[Q°(a, Ej, W;)] + ¢H]
for each cluster j =1,...,J.

7. Obtain a point estimate by taking the empirical mean of these targeted predictions across the
sample of J clusters:
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8. Construct 95% confidence intervals for the resulting TMLE as Ul +1.96 x % where 62 is the

sample variance of the estimated influence curve D' (Q*, §¢) (Eq. 3.6 in main text).

The individual-level TMLE for W!/(IPy)(a) can be implemented in the following steps:

1. Estimate the expected individual-level outcome given the exposure and covariates Qo(A, E, W)
using Super Learner where the library includes parametric and data-adaptive pooled individual-
level regressions and where selection is based on a individual-level loss function. If cluster size
varies, include weights o;; = 1/N;.

2. Use the resulting estimator 52 to calculate the predicted outcomes é(Aj,Ej,Wij) for each
individual 7 = 1,..., N; in cluster j =1,...,J.

3. Estimate the individual-level propensity score go(a|E,W;.) using a pooled individual-level re-
gression of A on (E,W;.) or using more data-adaptive methods, such as Super Learner, with a
individual-level loss function. If cluster size varies, include weights o;; = 1/Nj.

4. Use the resulting estimator g to calculate an individual-level clever covariate fIij = %

jsVVij
for each individual 7 = 1,...,N; in cluster j =1,...,J.

5. Estimate the fluctuation coefficient ¢ by running pooled parametric logistic regression of the

individual-level outcome Y;, on the individual-level covariate I;TZ with offset as logit(@). If
cluster size varies, include weights o;; = 1/N;.

6. Use the targeted estimator to obtain predictions of the individual-level outcome Y;, given A = a
and covariates as

Q*(a, B, Wij) = logit™! [ZOQit[é(a, Ej, Wij)] + éHy]
for each individual 7 in each cluster j.

7. Obtain a point estimate by taking the empirical mean of these targeted predictions within
clusters and then across the sample of J clusters:

vQ ZZ%@ (a, Bj, Wij).

]1@1

8. Construct 95% confidence intervals for the resulting TMLE as U1 +1.96 x \/j where 62 is the

sample variance of the estimated influence curve D (Q*, j).

Full R code for the simulations and estimators is at https://github.com/LauraBalzer/HierarchicalTMLE.



Appendix E- Theoretical comparison of the TMLESs

Proof. Suppose that the true observed data distribution Py is an element of the sub-model M/,
Then we have ¥ (Pg)(a) = W/ (Py)(a) = o(a). For simplicity, also consider a randomized trial with
G6(A|E, W) = go(A|E, W) = 0.5. Then we can re-write the efficient influence curves as

DI(PO)(O) = 2H(A = a) (Yc - Q(C)(Av E, W)) + Qg(a’> E, W) - ¢0((L) (A2)
and
N
D"(P)(0) = [c.21(A = a) (Yi. — Qo(A, B, W3.)) + Qo(a, B, Wi.) — tho(a)] (A.3)
=1

Due to the linearity of summations, one can show that in this setting D!(Pg)(O) = D! (Py)(O) and
thus the efficiency bound is the same. O
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Figure S1: Two possible directed acyclic graphs (DAGs) that are compatible with the no unmeasured con-
founders assumption in the general causal model. Here, U denotes unmeasured factors, E the cluster-level
covariates, (W1.,... Wy ) the individual-level covariates, A the cluster-level exposure, and (Y1,...,Yn.) the
individual-level outcomes. S1a: an observational setting where the covariates (E,(W1.,...Wn)) are sufficient
to control for confounding. S1b: cluster randomized trial where by design there is no confounding.

Figure S2: Directed acyclic graphs (DAGSs) to illustrate the assumptions on the distribution of unmeasured
factors. Let U denote unmeasured factors, E the cluster-level covariates, W the individual-level covariates,
A the cluster-level exposure, and Y the individual-level outcome. For ease of presentation, we only show two
individuals, denoted by subscripts 1 and 2, in a given cluster. In all causal models, the measured covariates
capture all the common causes of the exposure and outcomes. S2a: For simplicity, we ignore the cluster-level
covariates E. Even if all the unmeasured factors are independent (and thus not explicitly shown), we need to
control for both (W7, Ws.) when there is covariate interference (i.e Y1, is a function of Wo. and Ys, is a function
of Wy.). The assumptions in the restricted causal model do not hold. S2b: For simplicity, we again ignore the
cluster-level covariates E. Even with no covariate interference, we need to control for both (Wi ,Ws)) when
there is a shared unmeasured common cause of the individual-level covariates and individual-level outcomes.
The assumptions in the restricted causal model do not hold. S2c: Let Uy, and U, denote the i-specific
unmeasured common causes of the cluster-level covariates, individual-level covariates, and individual-level
outcome. FEven with no covariate interference, we need to control for (E, W1 ,W3.), because the cluster-level
covariates E are a collider of the Uy, and Us.. The assumptions in the restricted causal model do not hold.



Figure S3: When the cluster-level exposure is randomized, we do not need to adjust for covariates, regardless

of the error structure. If there is also no covariate interference, the assumptions in the restricted causal model
do hold.
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Supplementary Table S1: True value of the causal effect of the cluster-level exposure E[Y (1) — Y°(0)] for
each of the data generating processes in Simulation 1. When there is a treatment effect, the coefficient for the
exposure in the logistic regression for the conditional probability of the individual-level outcome (Eq. 6.1-6.2)
is 0.1. Nonetheless, the strength of the effect of the cluster-level exposure on the cluster-level outcome depends
on the presence or absence of strong covariate interference as well as the presence or absence of dependence in
the unmeasured factors determining the individual-level outcomes Uy . By construction, the treatment effect is
always 0 in the null setting. All measures are in %.

With an effect Under the Null
Indpt. Uy Dept. Uy Indpt. Uy Dept. Uy
Minimal covariate interference 1.6 3.8 0 0
Stronger covariate interference 2.1 6.3 0 0




Supplementary Table S2: Estimator performance in Simulation 1 under minimal covariate interference
(Eq. 6.1) and under stronger covariate interference (Eq. 6.2). We also vary the dependence of the unmeasured
factors determining the individual-level outcomes: independent (top) and correlated (bottom). Performance
is given by bias as the average deviation between the estimate and truth; o as the standard error; rMSE as
the root-mean squared error; type I error as the proportion of times the true null hypothesis is rejected, and
coverage as the proportion of times the 95% confidence interval contains the true value. All measures are in

%.

Minimal covariate interference Stronger covariate interference
Estimator Bias o rMSE Typel Coverage Bias & rMSE Type | Coverage
Unad;j. 104 51 115 54 46 76 39 85 51 49
TMLE-Ia -0.0 12 1.2 6 94 00 14 14 6 94
TMLE-Ib -0.0 12 1.2 5 95 -00 14 14 2 98
TMLE-IT 02 12 1.2 6 94 16 16 23 18 82
Independent Uy determining the outcome
Unadj. 65 33 73 53 47 -38 25 45 34 66
TMLE-Ie -0.0 13 13 5 95 00 18 18 6 94
TMLE-Ib -00 13 13 0 100 00 18 18 2 98
TMLE-II -42 23 438 43 57 23 21 31 19 81

Dependent Uy determining the outcome

Supplementary Table S3: For the TMLEs developed under the general model M! and under the sub-model
M the number of times a candidate variable was selected for adjustment during initial estimation of the
outcome regression or the known propensity score in Simulation 2. The candidates include nothing (“Un-
adj.”), degree, demographic risk group (“Demo.”), the number of partners infected at baseline (“N. partners”),
cluster-level baseline HIV prevalence, assortativity (“Assort.”), and the number of distinct sexzual groups (“N.
components”).

Unadj. Degree Demo. N. partners Prevalence Assort. N. components

Selection under the general model (TMLE- M)

Outcome regression 2 64 4 759 112 8 51
Propensity 830 36 38 8 33 25 30
Selection under the sub-model (TMLE-M!!)

Outcome regression 2 64 4 759 112 8 51
Propensity score 877 14 6 8 33 26 36




