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Renewal Process Models
Model Formulation
We model spike (action potential) generation as a renewal process consisting of two steps. A spike is generated if the afferent
neuron is recovered and a synaptic release from hair cells (excitatory input) has occurred. Following an action potential, a
neuron cannot immediately spike again and first undergoes a refractory period. We assumed that the refractory period consists
of a constant absolute-refractory period followed by a relative refractory period. The duration of the absolute-refractory period,
tabs, is assumed to be a fixed constant that corresponds to the minimal time period before the neuron can undergo another action
potential. The relative-refractory period, trel , is a random variable generated according to an exponential distribution with rate
λR. Thus, the probability density function for the total refractory period is given by

fR(t) =
{

0 for t < tabs,
λR exp(−λR(t− tabs)) for t ≥ tabs.

(S1)

Once the neuron is recovered, it will remain at rest until a synaptic release arrives. This time to excitation, tE , follows a
probability distribution function fE(t); we considered three different distributions that qualitatively describe distinct mechanisms
as discussed in the main article.

1. Exponential distribution with rate λE ,

fE(t) = λE exp(−λE t). (S2)

2. Mixture of Gamma and exponential distributions,

fE(t) = p
(

λE exp(−λE t)
)
+(1− p)

(
λE

Γ(n)
tn−1 exp(−λE t)

)
. (S3)

The first term represents a fraction p of the excitation times generated by an exponential distribution with rate λE , while
the second term represents the remaining fraction (1− p) generated by a gamma distribution with shape parameter n and
rate λE .

3. Mixture of exponential distributions,

fE(t) = p
(

λE1 exp(−λE1 t)
)
+(1− p)

(
λE2 exp(−λE2 t)

)
. (S4)

Here, we assume two independent sources of excitation times both of which exponentially distributed; the first source has
rate λE1 and probability p, the second with rate λE2 and probability 1− p.

By combining the distributions of refractory and excitation time, the probability density function for ISI, t = tabs + trel + tE , can
be written by conditioning over possible total refractory time tR,

fISI(t) =
∫ t

Tabs

fR(tR) fE(t− tR)dtR. (S5)



Least-Square Data Fitting
Parameter fitting to different fISI distributions above was completed via least-square minimizations on the cumulative distribution
functions (antiderivatives of fISI(t) (S5)). Our fitting procedure was similar to that outlined in Heil, et al. (2007). The absolute
refractory period tabs is assumed to be a constant whose value is the smaller of either 0.9×shortest ISI or 2.5 ms. For fitting to
different excitation time distributions fE(t), we first performed data fitting for the exponentially distributed fE (case (i)). This
data-fitting results were then used as initial guesses for the more complicated mixture models. More specifically, we used the
following initial guesses to start the least square minimization (implemented using lsqnonlin in Matlab):

1. Exponential distribution for fE(t)
We used the same choice of initial guesses as in Heil, et al. (2007).

λ
0
E =

1
mean ISI − tabs

, λ
0
R =

√
max{0,1/(Var(ISI)−1/λ 0

E)

Note that the result obtained by solving the convolution integral for fISI does not distinguish between λE and λR, i.e.
interchanging the rates used in fE(t) and fR(t) yields the same expression for fISI(t). Following data-fitting, we took the
larger of the rates to be λR (λE < λR) giving a range of total refractory time (absolute plus relative) of ∼ 2−12 ms. The
resulting best-fit refractory parameters λR and tabs were then used for the two mixture models below to limit the degree
of freedom in data-fitting.

2. Mixture of Gamma and exponential distributions
For initial guesses, we used the values of λE ,λR from fitting to the exponential fE(t), a random number between 1 and 4
for the shape parameter n, and a random number, uniformly distributed between 0 and 1 for p. We tested 100 sets of
initial guess values and ran least square optimization. The final parameter set with the smallest sum of square difference
was chosen as the best-fit parameter.

3. Mixture of exponential distributions
Initial guesses for the parameters were obtained from the results from fitting to the exponential fE(t): initially, λE1 was
set to λE obtained from the exponential data-fitting, λE2 was obtained by multiplying λE (from exponential data-fitting)
by a random number from 0 to 10, and p was initially set to a random number between 0 and 1. We again tested 100 sets
of initial guesses and ran least square optimization from each. The final parameter set with the smallest sum of square
difference was chosen as the best-fit parameter.

Best fit parameter values for each models are listed in Tables 1-3.

Model Evaluations
Once parameter fitting was done, we compared the CDF difference (SSD columns in Tables 1-3) and found that the CDF
difference is smallest, across all data sets, for the mixed exponential CDF (case (iii)). We further tested this by performing
one-tailed two-sample t-tests with the following alternative-hypothesis (null hypothesis that SSD are the same):

• H1 : SSD for exponential < SSD for mixed Gamma-exponential - rejected, p = 0.0547,

• H1 : SSD for exponential < SSD for mixed exponentials - accepted, p = 0.0017,

• H1 : SSD for mixed Gamma-exponential < SSD for mixed exponentials - accepted, p = 0.0029.

Additionally, we also evaluated the difference between the three models using the Akaike Information Criterion (AIC) and the
Bayesian Information Criterion (BIC). These criteria are used to measure the tradeoff between the number of parameters and
the goodness of fit of the model to the data.

Given an ISI dataset {ISIk}N
k=1, sorted from shortest to longest and N denoting the number of ISIs in the dataset, we define

the empirical CDF as a piecewise linear function such that

Fdata(ISIk) =
k
N
. (S6)

Denoting the model CDF as F(t), we evaluated values of F(t) at each ISIk. The goodness of fit is measured using the
log-likelihood function,

LL =−N · ln(
√

2π)−N ln(σ)−
N

∑
k=1

(F(ISIk)−Fdata(ISIk))
2

2σ2 , (S7)
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where σ2 represents measurement uncertainty (here taken to be a constant value of 0.1 across all datasets). This likelihood
function assumes that all errors are independent and identically distributed with a normal distribution. The AIC and BIC is
respectively defined as,

AIC =−2 ·LL+2 ·Kp, BIC =−2 ·LL+Kp · ln(N), (S8)

where Kp is the number of parameters involved in the model. The same refractory period parameter values (namely λR and
tabs) were used for all three models compared here. Thus, we only counted the number of parameters used in fE(t) for Kp, so
Kp = 1 for the exponentially distributed fE(t) (case (i)), Kp = 3 for the gamma-exponential mixture (case (ii)), and Kp = 3 for
the mixture of two exponentials (case(iii)). We determined which model is most consistent with the data by looking AIC and
BIC values. A lower value (more negative) of AIC or BIC indicates a better model. We found that both AIC and BIC gave
similar conclusions (see Table 4). In most cases, model (iii) with mixed exponential fE(t) is most consistent with the data
though there were a few cases where model (i) is deemed most consistent.

Tables of Data Fitting Results

Dataset # tabs (ms) 1/λR (ms) 1/λE (ms) SSD
1 2.5000 1.0000 103.8023 14.9960
2 1.5300 2.0350 85.3971 11.5371
3 1.8900 5.1875 64.2797 12.7117
4 1.3500 0.1000 30.0571 67.0271
5 2.5000 0.1013 85.2152 110.3327
6 2.1600 1.0000 45.2899 66.4405
7 2.2500 0.7068 52.9073 14.4063
8 2.5000 3.9863 105.2665 36.9623
9 1.9800 2.0546 68.7616 9.2877

10 2.5000 4.8986 98.8533 19.8469
11 2.4376 1.0000 50.5663 41.7124
12 2.5000 4.3005 96.8992 33.6167
13 1.3997 2.3255 79.1264 18.6114
14 1.0870 11.6052 85.8959 12.7329
15 2.5000 10.3001 97.6181 9.8741
16 2.5000 3.1309 122.4140 23.3867
17 2.0079 8.1880 55.3747 16.6694
18 0.7790 7.1572 90.5223 9.0096
19 2.5000 3.4343 63.3072 27.1732
20 2.5000 1.9739 90.6865 17.2356
21 2.5000 3.8392 65.1848 5.9885
22 2.3788 1.0000 33.6383 69.3876
23 0.7300 1.0000 86.9112 46.4528
24 2.0859 5.7215 56.1924 6.3252
25 2.4239 1.4399 76.2428 7.0868
26 1.9113 0.1000 100.4803 68.0964

Table S1. Best-fit parameter values for case (i) with exponentially distributed fE(t). SSD denote the sum of square difference,
SSD = ∑

N
k=1(F(ISIk)−Fdata(ISIk))

2.
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Dataset # tabs (ms) 1/λR (ms) 1/λE (ms) n (shape) p (fraction exp) SSD
1 2.5000 1.0000 95.4563 5.5339 0.9637 22.6599
2 1.5300 2.0350 84.3668 3.0757 0.9975 20.6141
3 1.8900 5.1875 64.2839 1.5721 0.9679 30.8084
4 1.3500 0.1000 25.0884 2.7713 0.8725 66.0503
5 2.5000 0.1013 69.9545 6.7263 0.8818 65.3558
6 2.1600 1.0000 41.2201 3.1396 0.8999 47.0824
7 2.2500 0.7068 44.5355 1.7351 0.7849 11.3063
8 2.5000 3.9863 76.0861 4.8635 0.8812 65.4366
9 1.9800 2.0546 57.6170 2.6005 0.8586 36.6013

10 2.5000 4.8986 98.6680 5.0442 0.9915 334.8282
11 2.4376 1.0000 51.9561 1.4064 0.9997 30.5427
12 2.5000 4.3005 89.7908 5.1367 0.9525 29.2498
13 1.3997 2.3255 76.3475 5.1744 0.9796 14.2559
14 1.0870 11.6052 89.6941 1.3458 0.9972 44.6663
15 2.5000 10.3001 98.5804 1.1613 0.5770 248.1164
16 2.5000 3.1309 122.8094 2.7397 0.9601 32.5143
17 2.0079 8.1880 54.7375 1.1121 0.3103 48.9654
18 0.7790 7.1572 90.2446 1.3355 0.9748 12.8438
19 2.5000 3.4343 58.1598 2.5551 0.9258 31.5468
20 2.5000 1.9739 79.6686 3.6880 0.9411 15.9124
21 2.5000 3.8392 65.8979 2.9681 0.9971 32.3334
22 2.3788 1.0000 27.8033 6.3103 0.8901 22.3474
23 0.7300 1.0000 73.5998 3.0517 0.8820 40.4161
24 2.0859 5.7215 58.6992 1.0071 0.9970 46.7645
25 2.4239 1.4399 68.5965 3.5201 0.9386 18.0411
26 1.9113 0.1000 87.9430 4.0820 0.9324 49.8319

Table S2. Best-fit parameter values for case (ii) with mixed gamma-exponential fE(t). SSD denote the sum of square
difference, SSD = ∑

N
k=1(F(ISIk)−Fdata(ISIk))

2.
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Dataset # tabs (ms) 1/λR (ms) 1/λE1 (ms) 1/λE2 (ms) p1 fraction from source 1 SSD
1 2.5000 1.0000 86.5052 167.2800 0.7192 7.2974
2 1.5300 2.0350 21.2770 86.3707 0.0101 10.9590
3 1.8900 5.1875 63.4518 114.8000 0.9775 12.6090
4 1.3500 0.1000 16.6083 85.2152 0.6159 18.0682
5 2.5000 0.1013 36.1141 239.4464 0.5311 28.9722
6 2.1600 1.0000 16.8848 75.5116 0.3576 9.4812
7 2.2500 0.7068 52.9073 55.9003 1.0000 14.4063
8 2.5000 3.9863 86.0585 340.5995 0.8349 21.5973
9 1.9800 2.0546 68.7569 68.7616 0.0277 9.2877
10 2.5000 4.8986 98.8533 98.8533 0.1244 19.8469
11 2.4376 1.0000 8.1773 59.1891 0.1087 6.1058
12 2.5000 4.3005 81.5461 369.4809 0.8663 22.9696
13 1.3997 2.3255 74.2776 961.3536 0.9615 12.0821
14 1.0870 11.6052 82.0749 237.3042 0.9531 11.1667
15 2.5000 10.3001 95.0209 4016.8709 0.9851 9.1513
16 2.5000 3.1309 104.2992 295.7705 0.8355 14.0650
17 2.0079 8.1873 55.3741 55.3741 0.1045 16.6695
18 0.7790 7.1572 88.3080 446.1895 0.9811 7.6650
19 2.5000 3.4343 54.0979 157.5274 0.8419 18.7378
20 2.5000 1.9739 82.9394 315.8859 0.9233 10.9598
21 2.5000 3.8392 65.1806 65.3424 0.9826 5.9885
22 2.3788 1.0000 10.6168 51.1876 0.2919 13.0114
23 0.7300 1.0000 63.5526 217.9029 0.7291 25.6208
24 2.0859 5.7215 56.1703 57.0679 0.9745 6.3252
25 2.4239 1.4399 74.8167 1758.7056 0.9892 5.8784
26 1.9113 0.1000 50.3195 228.3939 0.5347 11.4158

Table S3. Best-fit parameter values for case (iii) with mixed exponentials fE(t). SSD denote the sum of square difference,
SSD = ∑

N
k=1(F(ISIk)−Fdata(ISIk))

2.
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Dataset # AIC BIC
Model (i) Model (ii) Model (iii) AIC decision Model (i) Model (ii) Model (iii) BIC decision

1 -5995.5 -6090.2 -6226.4 (iii) -5974.7 -6073.4 -6209.6 (iii)
2 -6143.4 -5797.7 -6178.1 (iii) -6122.6 -5780.8 -6161.3 (iii)
3 -6055.6 -5704 -6065.7 (iii) -6034.8 -5687.2 -6048.9 (iii)
4 -4750.9 -4793.3 -6014.4 (iii) -4730.1 -4776.4 -5997.6 (iii)
5 -4143.8 -5115.8 -6119.2 (iii) -4123 -5099 -6102.4 (iii)
6 -4801.7 -5282.3 -6095.1 (iii) -4780.9 -5265.5 -6078.3 (iii)
7 -6144.8 -6035.1 -6140.8 (i) -6124 -6018.3 -6124 (i)
8 -5661.4 -5775.6 -6186.9 (iii) -5640.6 -5758.8 -6170.1 (iii)
9 -6157.1 -5818.7 -6153.1 (i) -6136.3 -5801.9 -6136.3 (i)

10 -6070.1 -2136.2 -6066.1 (i) -6049.3 -2119.4 -6049.3 (i) or (iii)
11 -5316.8 -5595.2 -6192.5 (iii) -5296 -5578.4 -6175.7 (iii)
12 -5692.1 -6021.7 -6140.4 (iii) -5671.3 -6004.9 -6123.6 (iii)
13 -5921.5 -6014.6 -6158.9 (iii) -5900.7 -5997.8 -6142.1 (iii)
14 -6105.8 -6013.2 -6187.1 (iii) -6085 -5996.4 -6170.3 (iii)
15 -6068.3 -2939.9 -6150.4 (iii) -6047.5 -2923.1 -6133.6 (iii)
16 -5873.5 -5842.3 -6199 (iii) -5852.7 -5825.5 -6182.2 (iii)
17 -6005.4 -5995.4 -6001.4 (i) -5984.6 -5978.6 -5984.6 (i) or (iii)
18 -6062.4 -5867 -6124.1 (iii) -6041.7 -5850.2 -6107.3 (iii)
19 -5844.5 -5770.8 -6159.8 (iii) -5823.7 -5754 -6143 (iii)
20 -5969.2 -6156.6 -6195.5 (iii) -5948.4 -6139.8 -6178.7 (iii)
21 -6182.1 -6161.4 -6178.1 (i) -6161.3 -6144.6 -6161.3 (i) or (iii)
22 -4772.5 -6048.6 -6070.9 (iii) -4751.7 -6031.8 -6054.1 (iii)
23 -5469.5 -5680.9 -6147 (iii) -5448.7 -5664.1 -6130.2 (iii)
24 -6180.2 -5488.3 -6176.2 (i) -6159.4 -5471.5 -6159.4 (i) or (iii)
25 -6133.7 -5928.6 -6196.8 (iii) -6112.9 -5911.8 -6180 (iii)
26 -4802.5 -5179.6 -6185 (iii) -4781.7 -5162.8 -6168.2 (iii)

Table S4. AIC and BIC for the three models.
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Additional Figures
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Figure S1. Increase in serial dependencies for ISI data with L-shaped distribution (` > 1). (A) Box plot of SRCs for
data sets with ` < 1 and ` > 1. (B) Comparisons of entries of renewal quartile matrix qi j. (C) Measurements of short ISI values
(5th-percentile, ISI05), long ISI values (95th-percentile, ISI95), and the ratio between the two.
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Figure S3. Comparison of spike count data (solid black line) to a Poisson process (dashed black line) with a linear spike
count over time (Nspike = λ t where λ is the spike rate (λ = 1/mean ISI for fitting here). The difference between the model and
the Poisson approximation is shown as the residual curve in red (see? Figure 4B for similar analysis).
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Histograms of Data Sets
SRC values listed on histograms on Figs. S4-S6 corresponds to lag n = 1, (SRC(1)).
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Figure S4. Histogram of Data Sets 1-9
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Figure S5. Histogram of Data Sets 10-18
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Figure S6. Histogram of Data Sets 19-26
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