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Supplementary Note 1: Estimation of band structure parameters from magnetoelectrical 

electrical transport on the bulk samples 

Magnetic field-dependent electrical resistance measurements on the WP2 bulk sample, revealed 

an enormous, highly anisotropic magneto-resistance (MR)1. The anisotropy has been attributed 

to orbital motions of charge carriers on the anisotropic Fermi surfaces, driven by the Lorentz 

force. Such effect has previously been reported2 in PdCoO2, which becomes hydrodynamic at 

low temperatures3. The anisotropy of the Fermi surface manifests itself in the Fermi velocity 

vF, which is directly related to the mean free path lmr in the different crystal planes perpendicular 

to the magnetic field. The MR is, therefore, maximum when the field is applied along the b-

axis of the crystal and is decreased by 2.5 orders of magnitudes when the field is rotated to the 

c-axis. Consequently, the lmr in the a-c plane is 250-times larger than in the a-b plane.

From the Hall (Supplementary Fig. 1 (a)) measurements, we obtain the temperature (T)-

dependent average carrier concentration n = (dxy/dB e)-1 above 30 K from a single band model. 

Below 30 K, the Hall resistivity becomes non-linear, indicating the contributions of multiple 

bands to the transport. At these low temperatures, four frequencies f were determined from 

Shubnikov-de Haas oscillations when the magnetic field is applied along the b-axis, of which 

two are hole-pockets  and  (f = 1460 T and f = 1950 T) and two are electron-pockets  and 

 (f = 2650 T and f = 3790 T) 1. These pockets were identified using the modified Becke-

Johnson method. We calculated the k-space areas of the extremal cross-sections of the Fermi 

surfaces perpendicular to a magnetic field that is applied along the b-axis of the crystal and 

found four frequencies at around 1300 T, 1900 T, 2800 T and 3900 T, which reflect the 

experimentally obtained frequencies well. We have recently determined the effective masses of 

the hole-pockets from the Shubnikov de-Haas oscillations as m = 1.67 m0 and m = 1.89 m0. 

To account for all bands at the Fermi level, we additionally calculated the effective masses of 



the electron-pockets as m = 0.87 m0 and m = 0.99 m0, where m0 denotes the free electron mass 

(Supplementary Fig. 2). 

From the Onsager relation, we determine the size of the Fermi surface cross sections AFi = 22fi 

/0 with 0 as the magnetic flux quantum and the sub-index i reflecting ,   and . Applying 

the standard circular approximation, we obtain momentum-vectors kFi = (AFi /)1/2 of kF = 2.11 

×109 m-1, kF = 2.40 ×109 m-1, kF = 2.84 ×109 m-1 and kF = 3.39 ×109 m-1. Fermi liquid theory 

in the limit of zero temperature results in the total carrier concentration of n = ∑ni = 2.9 ×1021 

cm-3, where ni = kFi
3/(32). Given the carrier concentrations for the whole temperature range 

investigated (Supplementary Fig. 1 (b)), we now calculate the average mobility  = (en)-1 of 

the WP2 bulk sample (Supplementary Fig. 1 (c)). The corresponding Fermi velocities vFi = ℏkFi 

/mi are vF = 1.46×105 ms-1, vF = 1.47×105 ms-1, vF = 3.78×105 ms-1 and vF = 3.97×105 ms-1. 

To account for all band contributions in the electrical transport, we calculated the harmonic 

mean giving the average effective mass m* = 4(1/m + 1/m + 1/m + 1/m)-1 = 1.22 m0 and the 

mean Fermi velocity vF = (∑vFi)/4 = 2.67×105 ms-1. The lmr in the a-c plane is then determined 

as a function of temperature from the T-dependent mobility  = evFlmr/m*. 

 

 

 

 

 

 

 

 



 

Supplementary Figure 1: Hall measurements on the bulk samples. (a) Hall resistivity xy 

as a function of magnetic field B at various temperatures. (b) Extracted total carrier 

concentration n and (c) average mobility  as a function of temperature T. n is decreasing with 

increasing temperature due to electron-hole compensation. 

 

 



 

Supplementary Figure 2: Fermi surface and effective mass calculations of (a) the -pocket, 

(b) the -pocket, (c) the -pocket and (d) the -pocket, for a magnetic field B applied along the 

b-axis of the WP2 crystal (here y-axis). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Note 2: Interface resistance at the metal/semimetal junction 

The interface resistance is an important issue, dealing with low sample electrical resistances in 

the range of m. We therefore have carried out three independent cross-checks to evaluate 

interface resistance in our devices. All three methods show independently that the interface 

resistance at the metal/semimetal junction is negligible small in our experiment, despite the low 

sample resistance: 

A common method to evaluate the contact resistance is to compare four 4- and 2-point (or quasi-

4-point) measurements. Quasi-4-terminal (red) and actual 4-terminal (blue) resistivity of the 9 

m-wide WP2 ribbon as a function of temperature are shown in Supplementary Fig. 3. The 

deviation between the two curves is below 1 % at 300 K and rises to 10 % at 4 K. We note, 

however, that this enhancement at low temperature is within the measurement error, due to the 

low resistivity in this temperature range. The 9 m-wide has the lowest resistance and should 

therefore be most sensitive to the interface resistance.  

Further, we have used a Focused Ion Beam to cut out four-terminal devices. Two devices of 0.8 

m and 3.5 m width have been fabricated (Supplementary Fig. 4). The resistivity data points 

obtained from these devices fit in perfectly to the width-dependent series. 

Next, we have checked the residual resistivity 0 of the width-dependent resistivity, fitting the 

data by  = 0 + 1w. As shown exemplarily in Supplementary Fig. 4 for the 4 K data, we find 

0 matching the resistivity values of the bulk samples measured in Kumar et al.1. Explicitly, 

0(4 K) = (4.1 ± 0.4) ncm.  

An important cross-check that the evaluated 0 itself does not introduce the width dependence 

is to determine 0 from the magnetic field-dependent resistivity data of each width 

independently. We therefore fit each magnetoresistance curve individually (Supplementary Fig. 

5) by the  = 0 + 1,aw/(1+(1,bB)2), where B is the magnetic field and  is extracted from the 



width-dependent analysis above. As shown in Supplementary Fig. 6, all individual curves result 

in a 0(4 K) of around 4, in full agreement with the previous analysis.  

Therefore, we conclude that within our measurement precision, the metal/semimetal interface 

perfectly transmits charge carriers and does not represent a noticeable resistance. This could 

indicate a different mechanism for resistances at hydrodynamic/normal metal electron 

interfaces. 

Supplementary Figure 3: Four-point versus quasi-four-point measurements.  (a) Sketch 

of the transport configuration. The bias current I is employed along the a-axis of the crystal in 

a quasi-4-terminal configuration at the inner contacts (red) and in an actual 4-terminal 

configuration (blue) at the outer contacts. The voltage response V is measured at the inner 

contacts. (b) Quasi-4-terminal (red rectangles) and actual 4-terminal (blue rectangles) 

resistivity of the 9 m-wide WP2 ribbon as a function of temperature. The deviation between 

the two curves is below 1 % at 300 K and rises to 10 % at 4 K. We note, however, that this 

enhancement at low temperature is within the measurement error, due to the low resistivity in 

this temperature range.  



 

 

Supplementary Figure 4: Width-dependent electrical resistivity fits.  (a) Measurements 

data (black dots) of the resistivity  versus width w at 4 K, fitted (red dashed line) by  = 0 + 

1w. We extract the power of  = 1.96 ± 0.03 and a residual resistivity of 0(4 K) = 4.1 ±0.4 

ncm. The filled symbols denote quasi-four terminal measurements, the open symbols denote 

four-terminal measurements. The inset shows the measurement data and fit of  versus w-2. (b) 

1/(-0) versus w, showing the w2-dpendence of the viscous conductance at 4 K. (c) Scanning 

electron microscope image of the four-terminal devices, cut by a Focused Ion Beam. The scale 

bar counts for both images. 



 

 

Supplementary Figure 5: Magneto-resistivity at 4 K of (a) the 0.4 m-wide sample, (b) the 

2.5 m-wide sample, (c) the 5.6 m-wide sample and the (d) the 9.0 m-wide sample. The 

black open symbols denote the measurements data and the red lines are best fits of  = 0 + 

1,aw/(1+(1,bB)2), from which the residual resistivity 0 can be extracted for each width 

individually. 

 

 

 

 

 

 

 

 



 

Supplementary Figure 6: Comparison of the residual resistivity 0 at 4 K, extracted from 

the zero-field width-dependent electrical resistivity (red dashed line, the light red area denotes 

the error from fit) shown in Supplementary Fig. 4 and from the magneto-resistivity (blue dots, 

error bars denote the errors from the fits) shown in Supplementary Fig. 5. The differently 

extracted 0 are similar, demonstrating the consistency of our results and analysis. 

 

  



Supplementary Note 3: Exponent of the functional dependence of  on w  

Because momentum-relaxation processes are always present in the bulk of the investigated 

material system, momentum can only be quasi-conserved. Therefore, the measured resistivity 

 always contains a width-independent Drude offset 0 from the remaining bulk scattering and 

a width-dependent power-law component 1w. To analyse the power law component in more 

detail, we have subtracted 0 from  at all temperatures fitting the experimental data with  = 

0 +1w. The obtained exponents  as a function of temperature are subsequently cross-

checked by a logarithmic analysis of −0 = 1w (Supplementary Fig. 7). log(−0) = log(1 

w) = log(1) +  log(w) is a linear equation in log(w) with slope , which can be obtained from 

the slope of linear fits to a log-log plot of  vs. w. The determined  are in excellent agreement 

with each other. Employing the hydrodynamic model for  = 2, the viscosity can be calculated 

from 1 = m*/(e2n)·12 

 

 

Supplementary Figure 7: Extraction of the exponent of the functional dependence of −0 

on w at various temperatures. The slope of the linear fits (dashed lines) from the experimental 

log-log data (symbols) is plotted in Fig. 1 (d). 

 

 



 

 

Supplementary Figure 8: The MEMS platform for thermal measurements. (a) Scanning 

electron micrograph of measurement device similar to the one used in this study prior to 

mounting the sample. The 1.2 mm-long MEMS beams are etched out of silicon nitride and carry 

three gold lines each. (b) Enlarged area of the measurement device with mounted WP2 sample. 

The stripes for stabilization the structure during fabrication (connecting the two heater areas) 

were cut using a focused ion beam. (c) Enlarged image of sample piece. Note that the WP2 

sample is in mechanical contact only with the gold and the deposited Pt lines, but not with the 

nitride membrane that forms a V-shaped gap. 

 

 

Supplementary Figure 9: Temperature calibration plot of the two heater/sensors of the 

measurement device. (a) The plot shows the data of heater 1 and heater 2 (extrapolated 

resistance to zero drive current) as dots and the calibration fits as lines versus cryostat 

temperature. (b) and (c) are zoom-ins at low temperatures for heater 1 and 2, respectively. 
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Supplementary Figure 10: Example of the analysis of the data used to calculate the 

thermal conductance of the WP2 sample. Here data for a cryostat temperature of 100 K is 

shown. Resistance of heater (blue) (a) and sensor (red) (b) for the given heating and sensing 

currents. Temperature rise above 100 K for heater (c) and sensor (d). The symbols denote 

measurement data, the lines linear fits. 

 

Supplementary Note 4: Considerations of Thermal Contact Resistance 

To minimize the influence of thermal contact resistance, we fabricated electrical contacts to the 

sample with a contact area to the metal of 16 m2. For the phonon contribution of the thermal 

boundary conductance we expect values of the order of 10-8 to 10-7 Km2W-1. Therefore, the 

thermal resistance of the contacts will be on the order of 104 – 105 KW-1, which is small 

compared to the measured overall resistance of 1 to 4×106 KW-1. Moreover, if we include the 

electron contribution to thermal conductance into this consideration, we expect the difference 

will be an order of magnitude further apart. Note, that although WP2 is classified as a semimetal, 

we have an additional band at the Fermi energy contributing to the sample carrier density. The 

large contact size, however, increases the systematic error in the sample dimension length used 

in the analysis. 



Supplementary Note 5: Additional magneto-hydrodynamic analysis 

Employing the hydrodynamic model for  = 2, 1 can be expresses as 1(B) = m*/(e2n)·12(B)w-

2, with (B) = 0/(1+(2erc)2). From this expression, we can extract er as a function of 

temperature from the data in Supplementary Fig. 11 and calculate the viscosity  = vF
2er/4 as 

a function of temperature. As shown in Supplementary Fig. 12, the viscosities extracted from 

the width-dependent zero field data (Supplementary Fig. 7) and extracted from the field-

dependent data in of Supplementary Fig. 11 are in excellent agreement. This agreement between 

the viscosities extracted from independent dependencies is an important cross-check of our 

interpretation and shows the consistency of our results.  

With vF =ler/er from the bulk analysis above, we can extract the momentum conserving length 

le for each width independently and compare it to the momentum relaxing mean free oath from 

the Hall analysis. As exemplarily shown in Supplementary Fig. 13 at 4 K, we find an excellent 

agreement between the mean free paths of the different widths. The obtained size-regime 

validates the application of the hydrodynamic model for the data where  = 2. 

 

Supplementary Figure 11: Electrical resistivity  of the 2.5 m-wide beam as a function of 

magnetic field B at various temperatures. 

 



Supplementary Figure 12: Kinematic shear viscosity  versus temperature.  The data is 

extracted from the functional dependence  ∼ w -2 (Supplementary Fig. 11) (red dots) and 

from the relaxation times er as  = vF
2er/4 (blue dots). The lines are guides to the eye. The 

error bars denote the errors of the accompanied fits. 

 

 

Supplementary Figure 13: Momentum-relaxing (green dots) and momentum-conserving 

(red dots) scattering length at 4 K, obtained from individual fits of the data in Supplementary 

Fig. 5 by the Navier-Stokes flow model.  The blue dashed lines denote the width of the 

individual measured samples. The light blue area shows the investigated size-range that lies 

well within the hydrodynamic regime at the boundary to ballistic crossover. However, we do 

not observe signatures for ballistic transport in our experiments. 



Supplementary Note 6: Additional key quantities 

To guide future interpretations of the data, we have calculated additional key quantities that are 

connected to the strength of the electron-electron interaction. In Supplementary Fig. 15 and 

Supplementary Fig. 16, we plot the ratio of dynamic viscosity and number density (D/n) in 

units of ℏ as a function of temperature and magnetic field, respectively. D/n is directly related 

to the momentum diffusivity.  

Also, lmrkF is a useful dimensionless quantity that characterizes the strength of interactions. lmrkF 

> 1 clearly supports the existence of quasiparticles in WP2, in agreement with the observed 

Shubnikov-de Haas oscillations in the bulk samples1. 

 

  

Supplementary Figure 14: Ratio of dynamic viscosity and number density (D/n) in units 

of ℏ as a function of temperature. 

 



 

 

Supplementary Figure 15: Ratio of dynamic viscosity and number density (D/n) in units 

of ℏ as a function of magnetic field at 4 K (right axis). Left axis: (−0)w2. 

 

 

 

Supplementary Figure 16: lmrkF as a function of temperature. lmrkF > 1 clearly supports the 

existence of quasiparticles in WP2. This, however, does not directly imply anything about 

correlations. 
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