
Supplementary A: Feature selection methods 

Five methods, including PCC, KCC, SCC, MI and CI, are used in this study to select 

the useful features. For the first four algorithms (PCC, KCC, SCC and MI), only those 

cases for which the event occurred are considered. On the contrary, all the cases are 

used to select the useful features for the CI feature selection method.  

◆ Correlation coefficient: 

The first three correlation coefficient algorithms are non-parametric methods used for 

measuring the linear dependency between two variables.  

The Pearson correlation coefficient (PCC) between the feature x and the times y is 

defined as following:  
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The Kendall correlation coefficient (KCC) between the feature x and the times y is 

defined as following:  
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𝜉∗(𝑥𝑖, 𝑥𝑗 , 𝑦𝑖, 𝑦𝑗) = {

1       𝑖𝑓     (𝑥𝑖 − 𝑥𝑗)(𝑦𝑖 − 𝑦𝑗) > 0

0       𝑖𝑓     (𝑥𝑖 − 𝑥𝑗)(𝑦𝑖 − 𝑦𝑗) = 0

−1     𝑖𝑓     (𝑥𝑖 − 𝑥𝑗)(𝑦𝑖 − 𝑦𝑗) < 0

                     (2c) 

The Spearman correlation coefficient (SCC) is equivalent to PCC applied to the 

rankings of the columns X and Y. when all the ranks in each column are distinct, the 

equation simplifies to: 

𝐶𝑜𝑟𝑟𝑆 =  1 −
∑6𝑑2

𝑛(𝑛2 − 1)
                                               (3) 

Here, d and n are the difference between the ranks of the two columns and length of 
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each column, respectively. 

◆ Mutual information (MI): 

MI is a method applied to measure the mutual dependence between the two variables. 

The equation is defined as following: 

𝑀𝐼𝑆 = ∑ ∑ 𝑝(𝑥, 𝑦)log (
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
)
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                      (4)  

𝑝(𝑥), 𝑝(𝑦)  are the marginal probability distribution functions of X and Y, 

respectively.  𝑝(𝑥, 𝑦) represents the joint probability function of X and Y. 

◆ Concordance Index (C-index): 

The C-index utilizes the relative risk of an event instead of the absolute survival times 

to evaluate a model in survival analysis. The main steps include: 

1) Create all pairs of observed responses. 

2) For all valid observed response pairs, i.e., x1>x2, test whether the corresponding 

prediction responses are concordant, i.e., y1>y2. If so, add 1 to the running sum 

(Sum).  If y1=y2, add 0.5 to the Sum. Then, count the number (n) of valid response 

pairs. 

3) Divide Sum by n. 

 

Supplementary B: Machine learning methods   

⚫ Cox proportional hazards model (Cox): 

The hazard function of this model is formulated as following: 

𝜆(𝑡|X) = λ0(𝑡)𝑒
𝛽𝑋                                                        (5) 

Here, the λ0  and 𝛽  are the baseline hazard function and regression coefficients, 

respectively. The 𝛽 can be estimated using the partial log-likelihood: 

𝐿𝐿(𝛽) =∑𝛿𝑖(𝛽𝑋 − log ( ∑ exp (𝛽𝑋𝑘)
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)
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⚫ Gradient boosting linear model based on CI and Cox (GB-Cindex and GB-Cox): 



The target of the gradient boosting linear models is to establish a function to find 𝑦 =

 𝑓∗(𝑌|𝑋, 𝜆) from data X and Y. The functional mapping is learned by minimizing the 

loss function 𝜙 of the empirical risk:  

𝑓∗(𝑌|𝑋, 𝜆) = min
𝑓
∑𝜙(𝑌, 𝑓(𝑥, 𝜆))
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                                  (7) 

Here, 𝑓 is the base-learner.  

The gradient boosting method calculates the negative gradient of the loss function at 

each iteration (m=1, …, 𝑚𝑠𝑡𝑜𝑝) and evaluates it at 𝑓𝑚−1(𝑋, 𝜆), 𝑖 = 1,… , 𝑛 . This 

yields the negative gradient vector for each base learner. The negative gradient vector 

is defined as following: 

𝑢𝑚: = −
𝜕𝜙

𝜕𝑓
(𝑌, 𝑓𝑚−1(𝑋, 𝜆))            𝑡 = 1,2, … , 𝑛                   (8) 

Typically, one base learner is utilized for each covariate and result in prediction values. 

Then, the 𝑢̂𝑚 is set equal to the fitted values from the corresponding best base learner. 

Finally, the current estimate is updated by setting 𝑓𝑚 = 𝑓𝑚−1 + 𝑣𝑢̂𝑚 . Here, 𝑣  in 

range (0,1] is the length factor. The different of GB-Cindex and GB-Cox is the loss 

function 𝜙. That is the GB-Cindex method used the concordance index (CI) while GB-

Cox used the Cox’s partial likelihood (Cox) as the lost function to be optimized. 

⚫ Cox model by likelihood based boosting (CoxBoost): 

This model is used to fit a Cox proportional hazards model by component wise 

likelihood based boosting. In contrast with the GB-Cox, the CoxBoost model is not 

based on the gradients of loss functions but uses the offset-based boosting proposed by 

Tutz (Tutz, 2007) for evaluating the Cox proportional hazards models. In each boosting 

step, the previous boosting steps are contained as an offset in the penalized partial 

likelihood evaluation, which is applied for obtaining an update for one single parameter 

in every boosting step. The main complexity parameter of this model is the number of 

boosting steps (stepno). The instruction of the R package “Coxboot” also recommended 

to optimize this parameter by cross validation or other hyper-parameter setting methods. 



The instruction also shows that the penalty value parameter (penalty) can be selected 

rather coarsely.  

⚫ Bagging survival tree model (BST): 

Bagging is one of the most common methods which is typically used to reduce the 

variance of the base learners. In the bagging survival tree model, the survival function 

can be obtained by averaging the predictions calculated from a single survival tree 

(Hothorn et al. 2004). There are mainly 3 steps in the BST method: 1). Implement m 

bootstrap samples for the given data. 2). For each bootstrap sample, establish a survival 

tree. Then ensure that, for all the terminal nodes, the number of events is greater than 

or equal to the threshold. 3). Compute the bootstrap survival function by averaging the 

predictions of the leaf nodes. For each leaf node, the Kaplan-Meier estimator is used to 

estimate the survival function.  

⚫ Random forests for survival model (RFS): 

The Random forests for survival model is an extension of Breiman’s random forest 

algorithm (Breiman, 2001) for survival data. The basic aim is to draw ntree bootstrap 

samples from the training cohort. For each sample, a survival tree is trained. For each 

node of the tree, mtry (p/3 in this study) variables (features) are selected randomly as 

splitting candidates. Here, p is the number of features. For each splitting candidate, the 

maximum of split points (nSplit) are selected randomly among the possible split points. 

The logrank splitting is used as the splitting rule criteria for survival data. The process 

of selecting splitting candidates and split points will continue to repeat until the terminal 

nodes contains no less than nodeSize unique events. Based on the resulting tree 

ensemble, cumulative hazard is estimated by integrating all the information of the ntree 

trees. It should be noted that the instruction of the R package “randomForestSRC” 

recommended to optimize the nodeSize by multiple experiments (Ishwaran, 2018). 

⚫ Survival regression model (SR): 

This model is a fully-parametric model which can offer different survival functions, 

such as Weibull, Gaussian and so on. For example, the Weibull probability density 



function can be as defined following: 

𝑓(𝑡) =
𝜆𝑡𝜆−1

𝛼𝜆
∙ 𝑒−(

𝑡
𝛼
)
𝜆

= ℎ(𝑡) ∙ 𝑆(𝑡)                                   (9) 

Here, S(t), h(t), 𝛼, 𝜆,  are survival function, hazard function, scale and shape of the 

Weibull distribution. Then the hazard function is formulated: 

ℎ(𝑡, 𝑋, 𝛽, 𝜆) = 𝜆𝑒−𝜆𝑋𝛽𝑡𝜆−1                                       (10) 

Where 𝜆 = 1/𝜎 is defined. 

⚫ Support vector regression for censored data model (SVCR): 

The core idea of method is to find a function which could estimate observed survival 

times (continuous outcome 𝑦𝑖) using covariates 𝑥𝑖 based on the conventional support 

vector regression (SVR) (Vapnik, 1998). The SVCR model can be formulated as 

following: 
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〈𝜓, 𝐹(𝑥𝑖)〉 + 𝑏 ≥ 𝑦𝑖 − 𝜖𝑖                           ∀ 𝑖 = 1,… , 𝑛

−𝛿𝑖(〈𝜓, 𝐹(𝑥𝑖)〉 + 𝑏) ≥ −𝛿𝑖(𝑦𝑖) − 𝜖𝑖
∗     ∀ 𝑖 = 1,… , 𝑛

𝜖𝑖 ≥ 0                                                             ∀ 𝑖 = 1,… , 𝑛

𝜖𝑖
∗ ≥ 0                                                            ∀ 𝑖 = 1, … , 𝑛

         (11) 

Here, δ, F, 𝛾, 𝜖, 𝜖∗ are the censoring indicator, the function that translates the observed 

covariates to the feature space, the strict regularization constant and the slack variables 

allowing for the errors in the training data predictions. 

 

 

 

 

 



Supplementary C: The values selected for the hyper-parameters on 

each validation fold. 

The following table and figure show the values selected for the hyper-parameters 

mentioned in table 2 and the number of selected features, respectively. Here, the CV in 

the table and figure represents the number of the validation fold. 

 GB-Cox CoxBoost GB-index RFS SR BST SVCR 

FS  CV NBS NBS NBS TN NT AD MS NT PR 

PCC 

1 107 33 480 7 307 II 5 201 1 

2 1 192 500 9 240 II 1 401 0.96 

3 196 130 239 8 442 II 4 43 0.88 

KCC 

1 17 442 422 10 239 II 9 357 1 

2 46 500 500 10 433 II 9 41 1 

3 156 46 345 6 440 II 3 170 0.86 

SCC 

1 257 432 425 10 239 I 9 357 1 

2 1 13 357 10 265 III 4 153 1 

3 81 1 500 9 82 II 9 500 1 

CI 

1 500 239 500 10 500 II 3 500 1 

2 361 167 500 1 220 II 10 224 1 

3 124 130 43 10 500 II 10 355 1 

MI 

1 102 147 480 2 497 II 5 201 0.01 

2 500 130 463 1 1 II 1 415 0.85 

3 81 55 497 10 367 II 4 43 1 

FS: Feature selection method.  

I: Weibull, II: Gaussian, III: Exponential 

NBS: number of boosting steps, TN: average terminal node size of forest, NT: number of trees, 

AD: assumed distribution, MS: minimum number of observations that must exist in a node, PR: 

parameter of regularization. 



 

 

Supplementary D: P-values of the log-rank test for all the feature 

selection and ML methods on each validation fold 

The following figure shows p-values of the log-rank test for all the feature selection 

and ML methods on each validation fold.  
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